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Abstract
Autoregressive attention-based time series fore-
casting (TSF) has drawn increasing interest, with
mechanisms like linear attention sometimes out-
performing vanilla attention. However, deeper
Transformer architectures frequently misalign
with autoregressive objectives, obscuring the un-
derlying vector autoregressive (VAR) structure
embedded within linear attention and hindering
their ability to capture the data generative pro-
cesses in TSF. In this work, we first show that
a single linear attention layer can be interpreted
as a dynamic VAR structure. We then explain
that existing multi-layer Transformers have struc-
tural mismatches with the autoregressive forecast-
ing objective, which impair interpretability and
generalization ability. To address this, we show
that by rearranging the MLP, attention, and input-
output flow, multi-layer linear attention can also
be aligned as a VAR model. Then, we propose
Structural Aligned Mixture of VAR (SAMoVAR),
a linear Transformer variant that integrates in-
terpretable dynamic VAR weights for multivari-
ate TSF. By aligning the Transformer architec-
ture with autoregressive objectives, SAMoVAR
delivers improved performance, interpretability,
and computational efficiency, comparing to SOTA
TSF models. The code implementation is avail-
able at this link.

1. Introduction
In recent years, autoregressive decoder-only Transform-
ers have made significant strides (Vaswani, 2017; Radford,
2018), powering Large Language Models (LLMs) (Brown
et al., 2020; Touvron et al., 2023) capable of handling com-
plex sequential data. Their core mechanism, autoregressive
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self-attention, computes attention weights between the cur-
rent token and all preceding tokens during prediction. How-
ever, using softmax to compute the N ×N attention map re-
sults in large O(N2) time complexity as the sequence length
grows. To address the efficiency bottleneck, researchers
have developed efficient variants like Linear Transformers
(Katharopoulos et al., 2020; Hua et al., 2022). By replac-
ing softmax with a linearizable kernel, linear attention re-
duces complexity from O(N2) to O(N) by maintaining
a 2d-dimensional hidden state instead of forming the full
N ×N attention map (Choromanski et al., 2021; Hua et al.,
2022; Sun et al., 2023). Although it often underperforms
vanilla attention in complex tasks like NLP, studies show
that in simpler tasks, such as time series forecasting (TSF),
linear attention can outperform vanilla attention (Patro &
Agneeswaran, 2024; Lu et al., 2024a; Behrouz et al., 2024).

Autoregressive modeling has a long history in time series
forecasting. Traditional methods like ARIMA handle uni-
variate series through autoregression, differencing, and mov-
ing averages (Winters, 1960; Holt, 2004), while Vector
Autoregression (VAR) (Stock & Watson, 2001; Zivot &
Wang, 2006) extends this to multivariate settings by captur-
ing cross-variable lag dependencies. Although widely used
in fields like economics and climate due to their interpretabil-
ity and theoretical guarantees (Burbidge & Harrison, 1984;
Pretis, 2020), these models’ linear assumptions and fixed lag
orders limit their ability to capture complex patterns. With
growing data scale and complexity, deep learning-based
TSF models, especially attention-based approaches, have
outperformed traditional AR/VAR methods (Li et al., 2019;
Zhou et al., 2021; Nie et al., 2022; Liu et al., 2024).

Previous research offers various perspectives on linear at-
tention, viewing it as an RNN with linear state updates, a
dynamic temporal projection, or fast weight programming
(Katharopoulos et al., 2020; Schlag et al., 2021). In this
paper, we show that linear attention naturally contains a
VAR structure. While a single-layer linear attention mod-
ule can be directly interpreted as a VAR model, stacking
multiple layers introduces structural mismatches with the
time series generative process, reducing its effectiveness for
TSF. We demonstrate that by reorganizing the input-output
flow, multi-layer linear attention can fully align with a VAR

1

https://github.com/LJC-FVNR/Structural-Aligned-Mixture-of-VAR


Linear Transformers as VAR Models

model. Further, we propose Structural Aligned Mixture of
VAR (SAMoVAR), which enhances linear Transformers for
TSF, improving both accuracy and interpretability.

The main contributions are summarized as follows:

1) We provide a new perspective by interpreting a single-
layer linear attention module as a VAR structure, where the
key represents the observation and the outer product of value
and query forms dynamic VAR weights.

2) We analyze how the designs of existing Transformers
lead to misalignments with a VAR model’s time series gen-
erative objective, including mismatched losses, inconsistent
residual streams, and unbalanced observation weighting.

3) We show that properly arranging the input-output flow in
a linear Transformer allows multi-layer linear attention to
act as a expressive dynamic VAR model. With l layers, each
past step’s influence on future steps is captured through a
“temporal influence path” involving up to l− 1 intermediate
nodes, enhancing interpretability.

4) Based on this aligned structure, we propose SAMoVAR
for TSF. Experiments demonstrate that it surpasses previous
TSF models in accuracy, interpretability, and efficiency.

2. Background
2.1. Time Series Forecasting

Time Series Forecasting (TSF) aims to predict future values
in a multivariate sequence S ∈ RL×C , split into a historical
part SI ∈ RLI×C and a future part SP ∈ RLP×C , where
L = LI + LP are the series lengths, and C is the number
of channels. The task is to learn a function f : RLI×C →
RLP×C that generates ŜP = f(SI), given the input SI .

2.2. Preliminaries: Attention Mechanisms

Previous studies have examined autoregressive attention
mechanisms from various angles, emphasizing their com-
mon feature of dynamic weights (Katharopoulos et al., 2020;
Hua et al., 2022; Sun et al., 2023). For an input sequence
of length N and dimension d, represented as X ∈ RN×d,
with each token denoted by xt ∈ R1×d, a single-head au-
toregressive attention layer is formulated as:

Attn(X) = σ
(
M⊙ (QK⊤)

)
VWo,

with Q,K,V = XWq,XWk,XWv,

X := X+ Attn(LN(X))

(1)

Here, Wq,Wk,Wv,Wo ∈ Rd×d are the projection ma-
trices for query, key, value, and output. The causal mask
M ∈ RN×N ensures autoregressive behavior, with Mij =
1{i ≥ j} −∞ · 1{i < j}, allowing only current and past
positions. Attn(·) and LN(·) denote the attention and layer
normalization functions. When σ is softmax (ignoring the

1/d scaling), the mechanism becomes vanilla attention. Re-
placing σ with an identity mapping simplifies it to a linear
attention with an identity kernel. Adding an MLP layer after
the attention layer, as X := X + MLP(LN(X)), forms a
standard autoregressive Transformer block. We will explore
the attention from multiple perspectives (P·). An attention
layer dynamically computes a temporal mapping weight ma-
trix QK⊤ ∈ RN×N for a sequence of length N . For each
input step t, it generates an attention map over all N tokens
as dynamic weights. In vanilla attention, these weights are
softmax-normalized to sum to 1. In autoregressive attention,
a lower-triangular mask M ensures each step only attends
to positions up to t. Thus, the attention layer functions as a
variable-length dynamic linear layer on the input value se-
quence V(Vaswani, 2017; Katharopoulos et al., 2020; Yang
et al., 2024).

P2: Recurrent Form and Autoregression

Autoregressive attention can be viewed as a step-by-step
generative process with a recurrent formulation. For the
input xt at step t, the output ot is: ot =

∑t
i=1 σ(qt,ki)vi∑t
i=1 σ(qt,ki)

,

where qt,kt,vt ∈ R1×d are query, key, and value vectors
at step t. When σ(qt,ki) = exp(qtk

⊤
i ), this represents

vanilla attention, relying on all previous keys k{1,...,t} and
values v{1,...,t}. If σ(qt,ki) is derived from a kernel fea-
ture map k(qt,ki) = ϕ(qt)ϕ(ki)

⊤, the computation is lin-

earized as: ot =
ϕ(qt)

∑t
i=1 ϕ(ki)

⊤vi

ϕ(qt)
∑t

i=1 ϕ(ki)⊤
. This avoids the full

N ×N attention map by aggregating past information into
a hidden state. Ignoring the denominator, the simplified
form is: ot = qt

∑t
i=1 k

⊤
i vi. Here, attention acts like an

RNN with a 2D hidden state k⊤
i vi ∈ Rd×d and identity

state updates. Studies have shown comparable performance
without normalization, so we use this simplified form (Zhai
et al., 2021; Mao, 2022; Qin et al., 2022; Sun et al., 2023;
Yang et al., 2024). In this view, attention is a dynamic au-
toregressive model with shared weights wt,i = σ(qt,ki)

across all d channels: ot =
∑t

i=1 wt,ivi.

P3: Fast Weight Programming Fast weight programming
(FWP) refers to the process of dynamically determining a
set of linear predictor weights for each step in the input
sequence, i.e., WFWP,t = g(x1, . . . ,xt) ∈ Rd×d. In linear
attention, this is achieved using a summation aggregator
to combine past weight information (Schlag et al., 2021):
WFWP,t =

∑t
i=1 ϕ(ki)

⊤vi, which serves as a dynamic
linear predictor for qt. The final output at step t is then
ot = qtWFWP,t.

2.3. Linear Attention as VAR

Recent TSF research shows that linear attention—without
softmax—sometimes outperforms vanilla attention (Patro &
Agneeswaran, 2024; Lu et al., 2024a; Behrouz et al., 2024).
While it can be viewed as an RNN or a form of fast weight
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programming (FWP), these perspectives do not directly link
to the autocorrelation or generative nature of TSF data. In
this section, we demonstrate that linear attention naturally
forms a dynamic VAR structure, making it well-suited for
modeling TSF data generation.

P4: Vector Autoregression A classic Vector Autoregressive
model VAR(p) with lag p uses parameter matrices Aj ∈
Rd×d to model dependencies on p previous time steps:

y⊤
t = A1y

⊤
t−1 +A2y

⊤
t−2 + · · ·+Apy

⊤
t−p + u⊤

t ,

where yj ∈ R1×d represents the observations and ut ∈
R1×d is the residual. In the RNN and FWP views, the pa-
rameter matrices depend directly on ki and vi and act on the
query qt rather than sequentially applying to previous steps
as in VAR. However, we can reformulate linear attention to
reveal its VAR structure. Since qtk

⊤
i is a scalar, rearrang-

ing terms gives:ot =
∑t

i=1 kiq
⊤
t vi. By transposing this

expression, we obtain the VAR form of a single-layer linear
attention mechanism:

o⊤
t =

t∑
i=1

At,ik
⊤
i , At,i = v⊤

i qt (2)

This defines a VAR(t) structure with dynamic weights,
where the observations are k⊤

i and the rank-1 weight matri-
ces At,i = v⊤

i qt are dynamically generated for each step
t. Unlike RNNs or FWP, where weights propagate across
steps, these matrices are independently generated at each
time step. Thus, autoregressive linear attention forms its
own VAR(·) structure at each step, as shown in Figure 1(a).

3. Aligning the Objective of Autoregressive
Attention with Autoregressive Forecasting

In this section, we show that while a single linear attention
layer naturally exhibits a dynamic VAR structure, the de-
sign of current multi-layer Transformers diverges from the
VAR training objective. As a result, these models lose the
beneficial VAR properties for time series forecasting (TSF).

Time series data naturally show temporal dependence. A
classic VAR model captures both autocorrelation and cross-
correlation in the data generation process, with weight ma-
trices Aj decoupling how past values influence future out-
comes. Although standard attention and Transformers are
effective for modeling complex sequence relationships (e.g.,
in NLP), their architecture conflicts with VAR’s goal of ex-
plicitly representing lag-based dependencies. We outline
the key sources of this misalignment below.

VAR Loss and Position Shifting A VAR model is designed
to directly capture the relationship between past observa-
tions and future values. Suppose we rewrite Eq. (2) into a

strict VAR model form:

k⊤
t+1 = o⊤

t + u⊤
t =

t∑
i=1

v⊤
i qt︸ ︷︷ ︸
At,i

k⊤
i + u⊤

t , (3)

where ut ∈ R1×d is the residual not explained by the dy-
namic VAR system. To align linear attention with a VAR
model, minimizing ut should be part of the training objec-
tive. Adding a loss term for each layer’s residual kt − ot−1

might partially achieve this but would conflict with the over-
all Transformer objective.

In a VAR model, the weights are learned to perform for-
ward shift for each input position. With l attention layers,
enforcing this VAR loss would result in l shifts, whereas
the Transformer’s autoregressive objective only requires a
single-step shift at the output. As a result, each layer would
need to perform only a fractional shift to stay aligned.

Residual Stream Next, we focus on how each attention
layer operates. In decoder-only Transformers, a common
pre-normalization design (Radford, 2018) includes a resid-
ual shortcut from input to output, with each block learning
the difference between the current and the next step. The at-
tention layers gather information from previous steps, grad-
ually refining this difference and adding it to the shortcut.

If all attention layers are disabled, the model reduces to
a local MLP predictor that maps the current input to the
next-step output. With patch tokenization, where each token
covers LP time steps, the model effectively becomes an
MLP-based TSF predictor mapping LP input steps to LP

outputs. Adding an attention layer adjusts the input pattern
using past tokens to better match the next-step difference.
Recent studies of in-context learning (Zhang et al., 2023;
Akyürek et al., 2022) suggest that with more layers, the
model can dynamically approximate predictors like gradient
descent, ridge regression, or shallow MLPs. Thus, attention
layers prioritize refining local predictors through context,
rather than explicitly modeling step-by-step generation con-
sidering raw observations.

Input and Output Comparing the attention output in Eq.
(1) with the VAR output in Eq. (3), we see that attention out-
puts must align with the residual shortcut space, while VAR
outputs correspond to the key observations k. VAR repre-
sent the data generation process, so their outputs should not
be treated as residuals. However, by adjusting the weight
matrix at each step, we can align the dynamic VAR struc-
ture of linear attention with the residual-based objective for
transitioning observations to the next step. We call this a
“key shortcut,” which adds an identity matrix to the dynamic
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Figure 1. Visualization of Key Concepts in SAMoVAR. The subfigures highlight different structural and conceptual elements of the model.

VAR weights, guided by an indicator for the output step t.

k⊤
t+1 = k⊤

t + o⊤
t + u⊤

t =

t∑
i=1

At,i k
⊤
i + u⊤

t ,

where At,i = v⊤
i qt + I · 1[i=t].

(4)

However, in a pre-normalization setup, the attention layer
only processes the transformed input LN(xt) and lacks di-
rect access to the original signal xt needed to model the
residual. As a result, it is not possible to establish a strict
VAR recurrence involving o⊤

t and the original signal, re-
gardless of adjustments to kt or the weight matrices At,i.

Balanced Weights of Observations In a VAR model, all
lag positions are initially treated equally, with their influ-
ence on future steps determined by learned weights, free
from positional bias. In contrast, a multi-layer Transformer
requires each token to perform two roles: (1) gather infor-
mation via attention to predict its next step and (2) serve as
context for future tokens. As layers deepen, accumulated
residual updates cause the representation frep(x1, . . . , xi)
to drift away from the original observation semantically.
This drift complicates the VAR-like stepwise shift and leads
to uneven weighting of original observations in a linear
attention-based VAR framework.

4. Structural Aligned Mixture of VAR
We show that the misalignments between linear attention
and VAR-based forecasting can be resolved by reorganizing
the MLP and attention layers in a linear Transformer. By re-
designing the input-output flow, we can enable multi-layer
linear attention to maintain a VAR structure, improving

its ability to model the generative processes of time series
data. For a single linear attention layer in Eq. (2), the Trans-
former naturally aligns with the VAR objective for one-step
shifting, as position-wise operations are confined within the
layer. The VAR weights remain balanced across past lags
when viewed in the original key observation space. To main-
tain this structure, the output and input signals must follow
the same recursive equation, and the residual shortcut should
share the same normalization as the attention layer’s key
inputs, avoiding typical pre-normalization shortcuts seen in
standard Transformers.

4.1. Multi-layer Linear Attention as VAR

Using a single linear attention layer preserves a clear VAR
structure but limits the Transformer’s expressive power.
Each outer product weight v⊤

i qt forms a rank-1 matrix,
and unlike RNNs or fast weight programming, this VAR for-
mulation cannot increase rank through timestep summation.
Below, we show that when multiple linear attention layers
are stacked without MLP layers in between, and ot is di-
rectly fed into the next layer, the attention layers can still
function as a dynamic VAR model. This model uses the
first layer’s key input k(1)

t as the observation, with explicit
weight matrices that remain aligned with the autoregressive
forecasting objective.

Let us denote the output of the first linear attention layer
at step t by o

(1)
t (omitting residuals, normalization, and

setting Wo = I). In the single-head case: o
(1)⊤
t =∑t

i=1 v
(1)⊤
i q

(1)
t k

(1)⊤
i , where q

(1)
t = xtW

(1)
q , k

(1)
i =

xiW
(1)
k , v

(1)
i = xiW

(1)
v . Denote the first layer’s key input
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by k
(1)
t ≡ kt, and let B(1)

t,j be the weight matrix directly
acting on kj . Then:

o
(1)⊤
t =

t∑
j=1

B
(1)
t,j k

⊤
j , B

(1)
t,j = A

(1)
t,j = v

(1)⊤
j q

(1)
t .

Now take o(1)
t as input to the second layer. The second-layer

output becomes: o(2)⊤
t =

∑t
i=1

(
v
(2)⊤
i q

(2)
t

)︸ ︷︷ ︸
A

(2)
t,i

k
(2)⊤
i , where

q
(2)
t = o

(1)
t W

(2)
q , k

(2)
i = o

(1)
i W

(2)
k , v

(2)
i = o

(1)
i W

(2)
v .

After expansions and rearrangements, this can be rewritten
in a VAR-like form in terms of the original observation kt:

o
(2)⊤
t =

t∑
j=1

B
(2)
t,j k

⊤
j ,B

(2)
t,j =

t∑
i=j

(
v
(2)⊤
i q

(2)
t

)︸ ︷︷ ︸
A

(2)
t,i

W
(2)⊤
k B

(1)
i,j

Thus, for l stacked linear attention layers, the final weight
B

(l)
t,j for the original key observation kj at step t is:

B
(l)
t,j =

t∑
i=j

(
v
(l)⊤
i q

(l)
t

)︸ ︷︷ ︸
A

(l)
t,i

W
(l)⊤
k B

(l−1)
i,j . (5)

This shows how stacking multiple linear attention lay-
ers—without MLP layers in between—produces a expres-
sive dynamic VAR structure for autoregressive forecasting,
using the first layer’s key input as the observation.

Temporal Influence Path The dynamic weight matrix at
step j for step t, B(l)

t,j , is derived by applying the layer-

l weights A
(l)
t,i and W

(l)⊤
k to the previous layer’s B

(l−1)
t,j

across all intermediate steps i. Repeated multiplication of
different Wk matrices can lead to numerical instability. To
address this, we replace the key projection with the identity
matrix I. Under this setup, each term in the summation can
be interpreted as a modification (amplification or attenu-
ation) of the previous layer’s dynamic weights across the
intermediate points after step j to t. The iterative factor
within each path can be expressed as:

P
(l)
t,j,{i1,··· ,il−1} = A

(l)
t,i1

A
(l−1)
i1,i2

· · ·A(1)
il−1,j

= v
(l)⊤
i1

q
(l)
t v

(l−1)⊤
i2

q
(l−1)
i1

· · · v(1)⊤
j q

(1)
il−1

where t ≥ i1 ≥ i2 ≥ · · · ≥ il−1 ≥ j. This describes
a temporal influence path from step j to t involving l − 1
intermediate timesteps. All possible combinations of in-
termediate steps form the complete set of influence paths
contributing to B

(l)
t,j . The number of such paths is given by

the binomial coefficient npath
t,j,l =

(
(t−j)+(l−1)

l−1

)
.. Because

each path representa a rank-1 matrix, the maximum rank

of B(l)
t,j is npath

t,j,l. Each path’s scale is controlled by a se-

ries of dot-product scalars, e.g., (q(l−1)
i1

v
(l−2)⊤
i3

). Notably,
positions farther from the output step t have more influ-
ence paths summed, reflecting the dynamic VAR structure’s
capacity to capture complex long-term dependencies.

Robust Path Pruning To maintain numerical stability, we
must prevent exploding values in each path’s multiplicative
chain. Additionally, with distant timesteps, the large number
of possible paths can increase weight variance, making it
essential for the model to prune unimportant paths. In this
setup, any path with a query-key dot product of zero is
effectively pruned.

a) Controlling Exploding Values. We use root mean square
layer normalization (RMSNorm) on q and v vectors to pre-
vent their norms from growing excessively. The weight
matrices Wq and Wv are initialized with low variance, en-
suring paths start at small scales, especially those with many
intermediate points. b) Passive Pruning of Distant Paths.
Multi-heads with a sufficiently large dimension d increases
the chance that qt and vi become orthogonal, resulting in
zero dot products that naturally prune unnecessary paths.

Since each layer’s output oi aggregates multiple influence
paths, reusing oi directly to form the next layer’s q and
v can further complicate control over numerical stability.
In the structure above, all the q and v are used only to
generate each layer’s dynamic VAR weights. Hence, to
maintain stability, we choose to compute q

(l)
t and v

(l)
i di-

rectly from the original first-layer input signals. Specif-
ically, let k(1)

i = x
(1)
i . For the l-th attention layer, we

parametrize: q
(l)
t = RMSNorm(l)(x

(1)
t W

(l)
q ),v

(l)
i =

RMSNorm(l)(x
(1)
i W

(l)
v ),k

(l)
i = o

(l−1)
i I. In this setup,

the total weight at each position is a combination of multi-
rank path matrices. Gradient updates amplify the ranks
of important paths while suppressing less significant ones,
implicitly applying a low-rank regularization.

Key Shortcut and Mixture of VAR 1 To address instability
from initializing all paths with small weights, we introduce a
key shortcut by adding I to B

(l)
t,j when t = j, as described in

Eq. (4). This effectively incorporates a temporal influence
path for l = 0 at each step. Additionally, instead of relying
solely on the final layer’s output o(l)

t , we aggregate outputs
from all attention layers. This creates a mixture of VAR
parameters, with the final output expressed as:

o
(final)⊤
t =

t∑
j=1

Ct,jx
(1)⊤
j , Ct,j =

l∑
m=1

B
(m)
t,j + I · 1[i=t].

1Please note that even though we use the name ”Mixture of
VAR,” its final form remains an integrated and complete dynamic
VAR model. The ”mixture” aspect is reflected in the traversal and
combination of all possible temporal influence paths.
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Here, each B
(m)
t,j represents the combination of all temporal

influence paths from j to t using up to m − 1 intermedi-
ate points. Consequently, Ct,j contains all paths from j
to t with up to l − 1 intermediate points, with a total of∑l

m=1 n
path
t,j,m + 1 paths (as illustrated in Figure 1(b)).

Structural VAR A classic VAR model can be generalized
into a Structural VAR (SVAR) (Rubio-Ramirez et al., 2010;
Primiceri, 2005) by introducing an invertible matrix D ∈
Rd×d: Dy⊤

t =
∑p

i=1 Aiy
⊤
t−i + ϵ⊤t , where D captures

instantaneous relationships among variables but requires
extra constraints for proper identification. The structural
shocks ϵt are derived by decomposing residuals ut using D.
Since interpreting individual channel weights in the learned
VAR observations ki can be complex, we use this SVAR
form mainly to enhance representational capacity and better
interpret residuals. The structural form of our multi-layer
linear attention VAR is given as:

x
(1)⊤
t+1 = o

(final)⊤
t + ϵ⊤t =

t∑
j=1

D−1Ct,jx
(1)⊤
j + ϵ⊤t .

where D−1 can be viewed as a shared output projection
W⊤

o across l attention layers. We parameterize W⊤
o via

a learnable LU factorization: a lower triangular matrix L
(with diagonal fixed to 1) and an upper triangular matrix U
(diagonal activated by softplus) are multiplied to form D,
from which we derive its inverse.

4.2. SAMoVAR Transformer

The aligned multi-layer linear attention module described
above preserves a valid VAR structure, resolving misalign-
ments in standard linear attention related to training objec-
tives, data generation, input/output spaces, and autoregres-
sive forecasting. Building on this, we introduce SAMoVAR
(Structural Aligned Mixture of VAR), which reorganizes
MLP and linear attention layers, serving as a drop-in re-
placement for standard linear Transformers in time series
forecasting (TSF), as shown in Figures 1 (c) and (d).

A l-layer SAMoVAR Transformer includes: a) MLP Com-
ponent: Consists of l MLP layers that learn optimal repre-
sentations for VAR observations. After MLP processing,
layer normalization ensures VAR outputs align with the
transformed input signals. b) SAMoVAR Attention: Com-
prises l linear attention layers, parameterized with the robust
path pruning methods discussed earlier. A unified residual
shortcut across all layers stabilizes training. The overall
architecture is shown in Figures 1 (d) and (e).

Patch-based ARX Tokenization Prior research highlights
the importance of preserving univariate dependencies for
effective multivariate time series forecasting (TSF) (Zeng
et al., 2023; Nie et al., 2022; Lu et al., 2024b). For multivari-
ate inputs SI , we adopt an autoregressive (ARX) tokeniza-

Transformer
Transformer

(a) AR Tokenization for
Univariate Forecasting (b) ARX Tokenization for Multivariate Forecasting

Figure 2. Illustration of the ARX tokenization, where we use sjt to
represent the t-th patch token of series j, S[i:i+LP ,j]

I .

tion strategy, which captures univariate relationships while
treating other series as exogenous inputs to model multi-
variate dependencies. We partition a time series of length
LI into non-overlapping patches of size LP . If needed,
zero-padding P is added so that LI + P is divisible by LP ,
resulting in N = LI+P

LP
patches S[i:i+LP ]

I ∈ RLP×C . For
each series j, a linear projection Wtok ∈ Rd×LP trans-
forms its patch S

[i:i+LP ,j]
I into an autoregressive token

(Wtok S
[i:i+LP ,j]
I )⊤ ∈ R1×d. This token is used to pre-

dict the next LP steps for series j, which can be viewed
as a PatchTST-style tokenization (Nie et al., 2022) with an
autoregressive loss.

Inspired by vector autoregressive with exogenous variables
(VARX), yt =

∑p
m=1 Amyt−m +

∑q
n=0 Bnet−n + ut,

where et−n represents exogenous factors, we model all
other series as exogenous when forecasting series j. Specif-
ically, a linear projection Wex ∈ RC×C mixes each
channel independently to generate the exogenous token(
Wtok S

[i:i+LP ,:]
I W

[:,j]
ex

)⊤
∈ R1×d. As shown in Figure

2, we combine autoregressive and exogenous tokens along
the sequence dimension to form the input tokens Xinput ∈
RC×2N×d. The channel dimension is treated as part of the
batch for independent computation, with each exogenous to-
ken placed before its corresponding target token. Trainable
position embeddings based on token positions and channel
indices are added. The SAMoVAR Transformer processes
the sequence, and the outputs corresponding to target to-
kens are projected using Wout ∈ RLP×d to generate the
next-step ARX predictions.

5. Experimental Results
5.1. Synthetic Tasks

Model Setup We use the SAMoVAR architecture described
in Fig. 1(d) along with the ARX tokenization from Fig. 2 to
train our TSF models. Additionally, we construct a baseline
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Figure 3. Visualization of the validation datapoint and model weights for the synthetic VAR task. See Section 5.1 for more details.
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Figure 4. Visualization of the loss curves for synthetic VAR tasks.
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Figure 5. Visualization of the 2 temporal influence paths from step
124 to step 128 for the two series in the datapoint shown in Fig.
3, where even-numbered steps represent endogenous tokens and
odd-numbered steps represent exogenous tokens.

model (LinTrans) based on the classic linear Transformer
structure shown in Figure 1(c) to highlight the improvements
of SAMoVAR. To demonstrate the impact of dynamic VAR
weights, we replace SAMoVAR’s mixture of VAR modules
with a fixed-weight VAR layer (FixedVAR).

VAR Generalization To test SAMoVAR’s ability to learn
and generalize to the underlying data generation process, we
generate training and test data using random VAR(p) models
with varying lag orders. For training, p ∈ {1, 2, 3} with co-
efficients between -0.5 and 0.5. For validation, p ∈ {3, 4, 5}

with coefficients between -0.25 and 0.25 to evaluate extrap-
olation. The input length is LI = 64, output length LP = 1,
and C = 2 series, with ARX tokenization. We use 3 lay-
ers and 2 attention heads. As shown in Fig. 4, during
training, FixedVAR effectively memorizes the input struc-
ture but struggles in validation. In contrast, SAMoVAR’s
dynamic VAR inference generalizes well and significantly
outperforms FixedVAR. LinTrans, which does not explicitly
model the TSF process, performs worse in both phases.

Explainability The left side of Fig. 3 shows the original
VAR weights, cumulative temporal contributions, and raw
observations for a validation datapoint. The middle part
compares the averaged attention maps of SAMoVAR and
LinTrans. The upper right visualizes SAMoVAR’s final out-
put contributions using WoutD

−1Ct,jW
⊤
out across channels.

The lower right shows LinTrans’s final-row attention map
after reordering. SAMoVAR’s VAR-based attention better
aligns well with the true contribution heatmap, providing
more interpretable results than LinTrans.

Temporal Influence Path Figure 5 highlights how visual-
ized paths reveal intermediary effects between time steps.
The displayed values on the edges represent the averaged
weights from the path matrix P. The top section shows
Series 1 (S1) and the bottom, Series 2 (S2). From the orig-
inal VAR weights, we know S2 has a stronger influence
on S1 than vice versa. Correspondingly, in the top sec-
tion, paths passing through exogenous points (marked “Ex”)
show higher weights, while in the bottom section, these
paths are weaker. This visualization effectively uncovers the
transmission dynamics within the VAR structure, enhancing
interpretability of TSF results.

5.2. Multivariate TSF

We conducted comprehensive experiments on 12 widely-
used TSF datasets, including Weather, Solar, Electricity
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Table 1. Summary of Multivariate TSF Results. Averaged test set
MSE are reported. See Table 3 for the original results.
Model SAMoVAR LinTrans FixedVAR CATS iTransformer FITS PatchTST Dlinear EncFormer

Weather 0.214 0.217 0.247 0.216 0.232 0.222 0.221 0.233 0.251
Solar 0.184 0.189 0.430 0.206 0.219 0.209 0.202 0.216 0.212
ETTh1 0.401 0.419 0.564 0.408 0.454 0.440 0.413 0.422 0.906
ETTh2 0.324 0.346 0.391 0.320 0.374 0.354 0.330 0.426 0.877
ETTm1 0.339 0.346 0.519 0.345 0.373 0.354 0.346 0.347 0.735
ETTm2 0.240 0.243 0.278 0.243 0.265 0.247 0.247 0.252 0.576
ECL 0.151 0.166 0.345 0.151 0.170 0.167 0.159 0.165 0.664
Traffic 0.391 0.438 0.717 0.385 0.414 0.418 0.391 0.431 0.824
PEMS03 0.150 0.188 0.375 0.225 0.212 0.234 0.230 0.254 0.443
PEMS04 0.102 0.136 0.404 0.184 0.171 0.256 0.222 0.246 0.377
PEMS08 0.234 0.261 0.674 0.359 0.271 0.296 0.290 0.357 0.681

AvgRank 1.41 3.41 8.16 2.86 5.43 5.20 4.00 5.82 8.30
#Top1 29 3 0 9 1 0 2 1 0

Table 2. Summary of Ablation Study Results. Averaged test set
MSE are reported. See Table 4, 5, 6, 7 for the original results.

Exp SAMoVAR w/ w/o w/o Heads=4 Heads=8 Heads=16 Heads=32
Wk D−1 QV Norm dim=16 dim=8 dim=4 dim=2

ETTh1 0.401 0.413 0.409 0.421 0.401 0.406 0.412 0.413
ETTm1 0.339 0.346 0.344 0.350 0.339 0.342 0.343 0.344

Exp l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8

ETTh1 0.420 0.411 0.401 0.404 0.413 0.414 0.408 0.410
ETTm1 0.346 0.342 0.339 0.345 0.346 0.348 0.349 0.351

(ECL), ETTs, Traffic, and PEMS 2. See §A.2 for detailed
descriptions of the datasets. Detailed hyperparameter set-
tings and implementation details can be found in §A.4.

For SAMoVAR, LinTrans, and FixedVAR, we used l = 3
Transformer layers, with the hidden dimension determined
empirically as d = 32⌊

√
C⌋. The number of attention heads

was set to d/16, ensuring that the dimension per head was
16. During testing, we predicted the next LP time steps
corresponding to the last input token, following the same
approach as the baselines for consistency.

Baselines In addition to SAMoVAR, LinTrans, and Fixed-
VAR, we introduced five recent state-of-the-art baselines:
CATS (Lu et al., 2024b), iTransformer (Liu et al., 2024),
FITS (Xu et al., 2024), PatchTST (Nie et al., 2022), and
DLinear (Zeng et al., 2023). We also included an encoder-
only vanilla Transformer, named Encformer, as a compar-
ison to autoregressive Transformers. Encformer uses the
same tokenization method as Autoformer (Wu et al., 2021)
and Informer (Zhou et al., 2021).

Fair Comparison All baseline models were trained
under the same conditions with input lengths LI ∈
{512, 1024, 2048, 4096}, and the best performance was
reported. This approach may yield stronger results
than the original papers, ensuring a rigorous and
fair comparison. For the three VAR-based mod-
els, we used consistent settings (LI : LP ) =
(1024, 96), (2048, 192), (2048, 336), (4096, 720) to ensure
appropriate ARX tokenization.

Main Results As shown in Table 1, SAMoVAR consistently
outperformed other models across all datasets, with a sig-
nificantly higher average ranking and top-1 count. Notably,

2Note: Due to baseline models failing to train on PEMS07
when using batch size = 1 and LI = 4096, this dataset is excluded
from the main text, as described in the fair comparison paragraph.

on datasets like Solar and PEMS, which contain many se-
ries with stable long-term patterns, SAMoVAR achieved
over 30% improvement compared to previous models. This
shows the significant benefit of incorporating dynamic VAR
structures and alignment when modeling complex TSF data
with stable generative processes. Furthermore, although lin-
ear Transformers did not fully align with the autoregressive
forecasting targets, they still outperformed most baseline
models, indicating their potential in TSF.

Ablation Studies In Table 2, we present ablation studies to
validate the effectiveness of components within SAMoVAR:
1) Reintroducing key projection weights: Based on our anal-
ysis in §4.1, introducing Wk negatively impacts the scaling
control of temporal influence paths and increases numeri-
cal instability due to the additional weight matrices. The
results show a significant performance drop and training
instability when Wk is added. 2) Removing the inverse
matrix D−1: This matrix, corresponding to Wo, plays a
critical role in controlling the output space. Without it, per-
formance degrades, as expected. 3) Removing RMSNorm
from queries and values: As discussed in §4.1, norm control
over queries and values is essential for learning effective
VAR path weights. Removing RMSNorm significantly de-
grades performance and causes training issues. 4) Increasing
the number of attention heads: When the hidden dimension
is fixed, using more attention heads reduces the dimension
per head and passively disables more influence paths during
initialization, leading to performance degradation. This also
reduces the parameter capacity of dynamic VAR weights,
further hurting performance. 5) Varying the number of
Transformer layers l: The layer depth l determines the num-
ber of intermediate points in the temporal influence paths
included in the final VAR weights. The results show that
l = 1 yields the worst performance due to the lack of in-
termediate points. For real-world TSF datasets, l = 3 or
l = 4 (2 or 3 intermediate points) is sufficient for good
performance, while larger l values lead to overfitting risks.

Computational Costs SAMoVAR introduces no additional
computational overhead compared to the vanilla linear
Transformer and even reduces the key projection step. This
gives it efficiency advantages over other TSF models. De-
tailed comparisons are shown in Table 8.

6. Conclusion and Limitation
This work bridges the gap between linear attention Trans-
formers and VAR models for time series forecasting. We
demonstrate that single-layer linear attention inherently cap-
tures dynamic VAR structures, while standard multi-layer
architectures misalign with autoregressive objectives. By
structurally aligning the input-output flow and MLP layers,
we propose SAMoVAR, a multi-layer linear Transformer
that integrates dynamic VAR weights through temporal in-
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fluence paths. SAMoVAR achieves superior accuracy, in-
terpretability, and efficiency compared to state-of-the-art
models across synthetic and real-world benchmarks. As for
limitation, we have not yet tested larger SAMoVAR models
on large-scale general TSF tasks to evaluate their potential
as foundation models. Additionally, we have not explored
applying SAMoVAR to general sequence modeling tasks
to assess whether the learned dynamic VAR weights are
effective beyond TSF tasks.

Impact Statement
This research introduces a novel approach to time series
forecasting, advancing the accuracy and interpretability of
attention-based time series models. By enabling better-
informed decisions in fields such as economics and health-
care, the method demonstrates broad practical value. While
its overall societal impact leans toward positive outcomes,
the use of this technology in sensitive areas requires thought-
ful management and ethical oversight to minimize potential
risks and unintended consequences.
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A. Appendix
A.1. Workflow of the SAMoVAR Attention Module

We present the details of the attention module in the SAMoVAR Transformer, as shown in Algorithm 1.

Algorithm 1 SAMoVAR Attention Module

Input: Sequence X ∈ RB×L×D, layers Lattn, head count H , head dimension d = D/H , query projection W
(l)
q ∈ RD×D,

value projection W
(l)
v ∈ RD×D, invertible matrix D ∈ RH×d×d, dropout rate p

Output: Processed sequence X̃ ∈ RB×L×D

B,L,D ← shape(X)
Xorig ← clone(X) {Store original input for separate Q, V computation}
Initialize X̃ ← X
Generate invertible matrices D using LU factorization
for l = 1 to Lattn do

Compute Query and Value Projections:
Q(l) ← reshape(W(l)

q Xorig, B, L,H, d) {Q(l) ∈ RB×L×H×d}
V (l) ← reshape(W(l)

v Xorig, B, L,H, d) {V (l) ∈ RB×L×H×d}
Q(l) ← RMSNorm(Q(l)), V (l) ← RMSNorm(V (l))
Compute Keys from Input:
K ← reshape(X,B,L,H, d) {K ∈ RB×L×H×d}
Compute Cumulative Fast-Weight Updates:
W ← cumsum(K ⊗ V (l), dim = 1) {W ∈ RB×L×H×d×d}
Compute Output using Q(l):
Y ← Q(l) ⊗W {Y ∈ RB×L×H×d}
Apply Dropout and Mix Output via Structural Matrix D:
Y ← dropout(Y, p)
Ytransformed ← einsum(′blhd, hde− > blhe′, Y,D−1) {Apply per-head invertible transformation}
Ytransformed ← reshape(Ytransformed, B, L,D) {Reshape back to RB×L×D}
X̃ ← X̃ + Ytransformed
Update Input for Next Layer:
X ← Y

end for
Return: X̃ ∈ RB×L×D

A.2. Experimental Datasets

Our multivariate time series forecasting experiments employ twelve real-world benchmark datasets. The original dataset
names and their key details are summarized as follows:

Weather Dataset3(Wu et al., 2021) This dataset records 21 meteorological indicators (e.g., temperature, humidity) at
10-minute intervals throughout 2020, collected from the weather station of the Max Planck Institute for Biogeochemistry in
Germany.

Solar Dataset4(Lai et al., 2018) Comprising solar power generation data from 137 photovoltaic plants, this dataset captures
energy production values sampled every 10 minutes during 2006.

Electricity Dataset5(Wu et al., 2021) Containing hourly electricity consumption records of 321 clients, this dataset spans a
three-year period from 2012 to 2014.

ETT Dataset6(Zhou et al., 2021) The Electricity Transformer Temperature (ETT) dataset monitors operational parame-

3https://www.bgc-jena.mpg.de/wetter/
4http://www.nrel.gov/grid/solar-power-data.html
5https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
6https://github.com/zhouhaoyi/ETDataset
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ters (including load and oil temperature) from power transformers, recorded at 15-minute (ETTm1/ETTm2) and hourly
(ETTh1/ETTh2) resolutions between July 2016 and July 2018. Each subset contains seven critical operational features.

Traffic Dataset7(Wu et al., 2021) This dataset provides hourly road occupancy rates from 862 highway sensors in the San
Francisco Bay Area, collected continuously between January 2015 and December 2016.

PEMS Dataset8(Li et al., 2017) A standard benchmark for traffic prediction, the PEMS dataset includes California freeway
network statistics recorded at 5-minute intervals. Our experiments utilize four widely adopted subsets: PEMS03, PEMS04,
PEMS07, and PEMS08.

A.3. Related Works

Time Series Forecasting Models. Time Series Forecasting (TSF) has seen extensive research spanning traditional statistical
models to deep learning-based approaches. Classical methods, including ARIMA (Box et al., 1974) and exponential
smoothing (Holt, 2004), effectively model univariate series by capturing trends and seasonality but struggle with complexity
in multivariate and nonlinear scenarios. Vector Autoregression (VAR) (Stock & Watson, 2001; Zivot & Wang, 2006) extends
autoregressive methods to multivariate series, accounting for cross-variable interactions, and remains prevalent in economics
due to interpretability and theoretical robustness (Pretis, 2020).

The emergence of deep learning, particularly RNN-based approaches like LSTM (Hochreiter & Schmidhuber, 1997) and
DeepAR (Salinas et al., 2020), significantly improved capturing temporal dependencies. However, RNNs often suffer
from challenges in modeling long-range dependencies. Recent advancements leveraging Transformer architectures have
transformed TSF through models such as LogTrans (Li et al., 2019), Informer (Zhou et al., 2021), and Autoformer (Wu
et al., 2021), each introducing innovative mechanisms like local convolutions, ProbSparse attention, and auto-correlation
respectively. Despite their sophistication, these methods have not consistently outperformed simpler approaches like MLPs
or linear models in various contexts (Zeng et al., 2023; Xu et al., 2024; Lu et al., 2024b). Recent innovations explore novel
directions, such as treating series as patches (Nie et al., 2022), focusing attention across variates (Liu et al., 2024), and
utilizing Large Language Models (LLMs) for zero-shot forecasting or foundation model training (Gruver et al., 2023; Jin
et al., 2024; Das et al., 2024). Balancing model complexity, interpretability, and effectively modeling both temporal and
cross-variate dependencies remains a central challenge in TSF (Zhang & Yan, 2023; Lu et al., 2024b).

Linear Attention Mechanisms. The quadratic complexity of traditional Transformer attention (Vaswani, 2017) has spurred
extensive research into efficient alternatives. Linear attention mechanisms emerged as a promising solution, beginning
with kernel-based linear Transformers (Katharopoulos et al., 2020), which approximate attention operations linearly
by employing kernel feature mappings. Despite achieving substantial computational efficiency, initial implementations
experienced performance drops compared to vanilla attention.

Subsequent efforts have focused on addressing these shortcomings and enhancing practical usability. Notably, Performers
introduced FAVOR+ for unbiased softmax approximation (Choromanski et al., 2021), while TransNormer (Qin et al., 2022)
tackled issues of gradient instability and attention dilution. RetNet (Sun et al., 2023) integrated retention mechanisms
with linear attention to better capture sequential patterns. Further theoretical insights emerged connecting linear attention
to classical concepts like Fast Weight Programming (Mao, 2022; Schlag et al., 2021), providing new interpretability
perspectives. Recent advancements have emphasized practical large-scale deployment and efficiency. Gated Linear Attention
(Yang et al., 2024) improved hardware efficiency during training, and innovative tiling strategies in Lightning Attention-2
ensured constant training speeds irrespective of sequence length. The introduction of exponential moving-average (EMA)
into gated linear attention models further stabilized training dynamics and performance (Ma et al., 2022). Despite these
advancements, effectively aligning linear attention structures with generative processes of time series forecasting data
remains an active research area.

A.4. Hyper-parameter Settings and Implementation Details

This section explains the hyper-parameter settings for SAMoVAR attention, linear (AR) attention, and fixed VAR models
used in the experiments.

Attention Module: We use 3 layers, consisting of 3 MLP layers and 3 attention layers for SAMoVAR attention. For linear

7http://pems.dot.ca.gov/
8http://pems.dot.ca.gov/
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attention, we also use 3 Transformer blocks. For fixed VAR, we first use 3 MLP layers and replace the final mixture of
VAR modules in SAMoVAR with a single-layer VAR structure with fixed weights. This VAR structure shares the same
architecture as linear attention, but the query and key vectors are replaced with a set of fixed position vectors, similar to
trainable positional embeddings.

Hidden Dimension: For all Transformers, we set the hidden dimension as d = 32⌊
√
C⌋, where C is the number of

multivariate time series. For linear attention and fixed VAR, we use 8 attention heads. For SAMoVAR, the number of heads
is determined to ensure each head dimension is 16. For example, for the ETT datasets (C = 7), d = 64, and the number of
heads is 16. For the Weather dataset (C = 21), d = 128, and the number of heads is 8.

Initialization: All linear layers are initialized using a normal distribution with a mean of 0 and a standard deviation of 0.02.
Embedding layers are zero-initialized. For projection layers in MLPs, we use GPT-2-style initialization with a scale factor
of 1√

l
, where l is the number of MLP/attention layers. The MLP structure follows the standard 2-layer Transformer design

with an expansion ratio of 4. The dropout rate is set to 0.1 uniformly.

Layer Normalization: We add RMSNorm after query and key projections for SAMoVAR. For the other layer normalization
modules, experiments showed no significant difference between traditional layer normalization and RMSNorm, so we opted
for RMSNorm due to its lower computational cost.

Input Preprocessing: For input time series of shape (C,LP ), where LP is the input length, we concatenate timestep
embeddings along the channel dimension if available (as described in works like Autoformer (Wu et al., 2021) and DLinear
(Zeng et al., 2023)). The time series is divided into N non-overlapping patches of size LP . Zero padding is applied if
LP does not divide LI evenly. The resulting input tokens have shape (C,N,LP ). We apply RevIN (Kim et al., 2022) to
normalize each token by subtracting its mean and dividing by the standard deviation of the entire input.

We then create an additional set of tokens by projecting the channel dimension using C×C linear weights. These exogenous
tokens are interleaved with the univariate tokens, resulting in an ARX input of shape (C, 2N,LP ). The patch size dimension
LP is projected to the hidden dimension d, resulting in input tokens of shape (C, 2N, d). We add d-dimensional channel
and position embeddings to the input tokens.

Transformer Module: The input tokens are layer-normalized and passed through the Transformer module. The output
has shape (C, 2N, d). We select the outputs corresponding to the original univariate tokens, resulting in (C,N, d). This is
followed by layer normalization and projection back to dimension LP , producing output tokens of shape (C,N,LP ). The
RevIN reverse process restores the outputs by multiplying with the previously calculated standard deviation and adding the
mean. We compute the MSE loss between the output and the next timestep’s univariate token values.

Training Setup: All experiments are conducted on a single Nvidia RTX 4090 GPU with a batch size of 32. For datasets that
cause memory overflow, the batch size is reduced to 16 or 8, with 2-step or 4-step gradient accumulation to maintain an
effective batch size of 32. The optimizer is AdamW with a weight decay of 0.1 and β values of (0.9, 0.95). All baseline
models are retrained under the same settings.

Dataset Splits and Preprocessing: Following Nie et al. (2022); Liu et al. (2024), we use a train-validation-test split ratio of
0.7, 0.1, and 0.2. Input data is standardized using the mean and standard deviation calculated from the training set.

Training Procedure: We apply early stopping with a patience of 12 epochs and a maximum of 100 epochs. For the first 5
epochs, we use a warm-up learning rate, gradually increasing it from 0.00006 to 0.0006, followed by linear decay until the
maximum epoch is reached.

A.5. Detailed Experimental Results

A.6. Additional Visualization of the Synthetic VAR Task

A.7. Additional Proofs and Clarifications

A.7.1. COMPLEXITY ANALYSIS OF SAMOVAR ATTENTION

Proposition. The computational complexity of SAMoVAR Attention with respect to the sequence length L is O(L).

Proof. We provide a detailed complexity analysis for Algorithm 1 (SAMoVAR) here. Let the batch size be B, the model
dimension D, the number of heads H , the per-head dimension d = D/H , and the number of attention layers Lattn.
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Table 3. Full results of Multivariate TSF task. The test set MSE and MAE are reported. The best results are bolded and the second best
are underlined.

Models SAMoVAR LinTrans FixedVAR CATS iTransformer FITS PatchTST DLinear Encformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather (96) 0.141 0.193 0.145 0.196 0.170 0.230 0.143 0.196 0.158 0.209 0.149 0.204 0.149 0.198 0.150 0.209 0.188 0.248
Weather (192) 0.186 0.240 0.187 0.243 0.218 0.277 0.188 0.242 0.203 0.254 0.189 0.241 0.190 0.241 0.211 0.265 0.215 0.297
Weather (336) 0.232 0.279 0.237 0.283 0.269 0.311 0.235 0.278 0.250 0.291 0.237 0.283 0.240 0.279 0.255 0.305 0.270 0.340
Weather (720) 0.295 0.334 0.299 0.330 0.331 0.356 0.297 0.331 0.316 0.341 0.311 0.332 0.306 0.327 0.316 0.350 0.332 0.382
Solar (96) 0.165 0.230 0.174 0.244 0.440 0.495 0.182 0.239 0.230 0.257 0.189 0.240 0.209 0.251 0.208 0.274 0.201 0.225
Solar (192) 0.177 0.253 0.176 0.251 0.405 0.496 0.214 0.283 0.204 0.282 0.206 0.249 0.192 0.255 0.208 0.265 0.209 0.289
Solar (336) 0.196 0.262 0.198 0.266 0.406 0.474 0.216 0.272 0.222 0.297 0.219 0.258 0.200 0.253 0.221 0.279 0.221 0.289
Solar (720) 0.199 0.261 0.207 0.271 0.467 0.533 0.213 0.267 0.218 0.299 0.221 0.256 0.205 0.258 0.227 0.291 0.218 0.274
ETTh1 (96) 0.357 0.394 0.362 0.396 0.493 0.484 0.365 0.396 0.396 0.422 0.369 0.398 0.370 0.399 0.370 0.394 0.986 0.720
ETTh1 (192) 0.398 0.419 0.416 0.437 0.548 0.531 0.404 0.420 0.431 0.451 0.435 0.444 0.412 0.421 0.405 0.416 0.814 0.691
ETTh1 (336) 0.422 0.442 0.427 0.446 0.560 0.538 0.423 0.437 0.459 0.470 0.468 0.467 0.422 0.436 0.439 0.443 0.883 0.680
ETTh1 (720) 0.427 0.451 0.471 0.485 0.653 0.607 0.441 0.465 0.528 0.523 0.488 0.497 0.447 0.466 0.472 0.490 0.941 0.739
ETTh2 (96) 0.266 0.329 0.276 0.334 0.294 0.357 0.259 0.327 0.299 0.358 0.270 0.336 0.274 0.336 0.277 0.346 1.303 0.924
ETTh2 (192) 0.323 0.386 0.342 0.382 0.380 0.423 0.315 0.368 0.365 0.399 0.348 0.400 0.339 0.379 0.375 0.412 0.939 0.714
ETTh2 (336) 0.341 0.394 0.375 0.414 0.396 0.440 0.339 0.392 0.407 0.429 0.376 0.426 0.329 0.380 0.448 0.465 0.551 0.544
ETTh2 (720) 0.366 0.421 0.389 0.431 0.493 0.513 0.365 0.419 0.423 0.454 0.421 0.463 0.379 0.422 0.605 0.551 0.714 0.631
ETTm1 (96) 0.278 0.339 0.286 0.344 0.493 0.462 0.282 0.339 0.325 0.376 0.305 0.347 0.290 0.342 0.299 0.343 0.686 0.603
ETTm1 (192) 0.318 0.367 0.324 0.371 0.502 0.471 0.326 0.363 0.352 0.388 0.334 0.371 0.328 0.369 0.335 0.365 0.636 0.580
ETTm1 (336) 0.359 0.396 0.363 0.397 0.496 0.472 0.358 0.382 0.382 0.405 0.363 0.387 0.359 0.392 0.359 0.386 0.791 0.602
ETTm1 (720) 0.401 0.413 0.409 0.432 0.583 0.527 0.414 0.416 0.432 0.434 0.412 0.409 0.405 0.415 0.396 0.409 0.825 0.641
ETTm2 (96) 0.154 0.242 0.158 0.246 0.188 0.282 0.158 0.248 0.187 0.281 0.164 0.253 0.165 0.255 0.184 0.283 0.481 0.525
ETTm2 (192) 0.208 0.287 0.213 0.287 0.244 0.318 0.211 0.285 0.232 0.311 0.211 0.292 0.214 0.289 0.218 0.301 0.434 0.517
ETTm2 (336) 0.257 0.333 0.263 0.326 0.302 0.361 0.261 0.322 0.281 0.342 0.259 0.334 0.266 0.328 0.263 0.333 0.461 0.531
ETTm2 (720) 0.340 0.372 0.339 0.378 0.377 0.421 0.340 0.371 0.358 0.392 0.352 0.377 0.344 0.376 0.341 0.388 0.928 0.739
ECL (96) 0.129 0.226 0.149 0.265 0.315 0.401 0.127 0.223 0.132 0.226 0.144 0.246 0.129 0.222 0.135 0.232 0.227 0.342
ECL (192) 0.141 0.243 0.160 0.268 0.382 0.457 0.143 0.241 0.166 0.269 0.149 0.249 0.147 0.240 0.151 0.249 0.658 0.611
ECL (336) 0.156 0.255 0.171 0.299 0.307 0.398 0.155 0.253 0.176 0.270 0.168 0.262 0.163 0.259 0.169 0.267 0.988 0.801
ECL (720) 0.176 0.281 0.183 0.279 0.375 0.446 0.179 0.273 0.206 0.283 0.206 0.303 0.197 0.290 0.203 0.301 0.781 0.739
Traffic (96) 0.371 0.261 0.423 0.294 0.764 0.487 0.359 0.253 0.356 0.259 0.404 0.286 0.360 0.249 0.399 0.286 0.915 0.460
Traffic (192) 0.375 0.268 0.434 0.295 0.769 0.460 0.373 0.258 0.410 0.278 0.406 0.274 0.379 0.256 0.423 0.287 0.723 0.485
Traffic (336) 0.390 0.279 0.439 0.299 0.670 0.418 0.384 0.274 0.431 0.281 0.412 0.279 0.392 0.264 0.436 0.296 0.764 0.451
Traffic (720) 0.429 0.298 0.454 0.306 0.663 0.431 0.425 0.298 0.458 0.299 0.449 0.291 0.432 0.286 0.466 0.315 0.892 0.483
PEMS03 (96) 0.119 0.232 0.144 0.258 0.299 0.437 0.157 0.267 0.135 0.229 0.193 0.274 0.198 0.285 0.198 0.299 0.162 0.272
PEMS03 (192) 0.148 0.248 0.146 0.264 0.418 0.523 0.197 0.300 0.198 0.299 0.221 0.299 0.201 0.288 0.231 0.328 0.471 0.513
PEMS03 (336) 0.191 0.279 0.217 0.315 0.344 0.431 0.222 0.318 0.234 0.330 0.238 0.313 0.218 0.304 0.254 0.351 0.542 0.548
PEMS03 (720) 0.142 0.248 0.245 0.306 0.440 0.509 0.325 0.406 0.279 0.344 0.285 0.353 0.304 0.392 0.331 0.413 0.597 0.610
PEMS04 (96) 0.092 0.193 0.117 0.216 0.268 0.383 0.141 0.253 0.121 0.217 0.215 0.299 0.221 0.320 0.209 0.301 0.116 0.232
PEMS04 (192) 0.100 0.198 0.132 0.250 0.583 0.604 0.189 0.310 0.165 0.279 0.238 0.331 0.195 0.294 0.228 0.323 0.436 0.482
PEMS04 (336) 0.107 0.207 0.139 0.256 0.341 0.434 0.196 0.309 0.175 0.290 0.265 0.355 0.226 0.318 0.252 0.343 0.432 0.483
PEMS04 (720) 0.109 0.209 0.157 0.271 0.422 0.468 0.209 0.327 0.221 0.331 0.306 0.391 0.246 0.344 0.294 0.377 0.523 0.538
PEMS08 (96) 0.138 0.213 0.168 0.249 0.977 0.774 0.212 0.276 0.170 0.225 0.337 0.322 0.183 0.236 0.318 0.326 0.253 0.302
PEMS08 (192) 0.197 0.224 0.247 0.284 0.569 0.503 0.289 0.313 0.269 0.295 0.343 0.361 0.273 0.305 0.325 0.344 0.703 0.619
PEMS08 (336) 0.298 0.313 0.306 0.328 0.565 0.471 0.324 0.338 0.303 0.324 0.352 0.349 0.335 0.332 0.374 0.362 0.831 0.685
PEMS08 (720) 0.304 0.250 0.321 0.340 0.583 0.515 0.359 0.369 0.342 0.351 0.403 0.387 0.369 0.376 0.411 0.415 0.936 0.716
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Figure 6. Additional Visualization of the VAR Synthetic Task with a Random Datapoint in the Validation Set.
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Figure 7. Visualization of the 2 temporal influence paths from step 124 to step 128 for the two input time series variable for the datapoint
shown above, where even-numbered steps represent endogenous tokens and odd-numbered steps represent exogenous tokens.

Preprocessing:
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Table 4. Full results of the ablation studies of the SAMoVAR module structure. The MSE and MAE of the test set are reported. The best
results are bolded and the second best are underlined.

Models SAMoVAR w/ Wk w/o D−1 w/o QV Norm

Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 (96) 0.357 0.394 0.362 0.396 0.360 0.395 0.370 0.403
ETTh1 (192) 0.398 0.419 0.419 0.434 0.404 0.430 0.423 0.441
ETTh1 (336) 0.422 0.442 0.431 0.447 0.436 0.455 0.442 0.461
ETTh1 (720) 0.427 0.451 0.441 0.467 0.435 0.461 0.450 0.478
ETTm1 (96) 0.278 0.339 0.284 0.341 0.282 0.343 0.285 0.346
ETTm1 (192) 0.318 0.367 0.327 0.371 0.322 0.373 0.334 0.379
ETTm1 (336) 0.359 0.396 0.368 0.400 0.363 0.397 0.373 0.403
ETTm1 (720) 0.401 0.413 0.405 0.421 0.408 0.426 0.409 0.427

Table 5. Full results of the ablation studies of the number of heads and dimension. The MSE and MAE of the test set are reported. The
best results are bolded and the second best are underlined.

Models Heads=4,dim=16 Heads=4,dim=16 Heads=4,dim=16 Heads=4,dim=16

Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 (96) 0.357 0.394 0.357 0.395 0.363 0.398 0.365 0.401
ETTh1 (192) 0.398 0.419 0.403 0.424 0.415 0.426 0.418 0.431
ETTh1 (336) 0.422 0.442 0.436 0.449 0.435 0.449 0.439 0.452
ETTh1 (720) 0.427 0.451 0.429 0.452 0.433 0.454 0.431 0.453
ETTm1 (96) 0.278 0.339 0.281 0.343 0.280 0.341 0.283 0.346
ETTm1 (192) 0.318 0.367 0.322 0.369 0.322 0.371 0.323 0.373
ETTm1 (336) 0.359 0.396 0.362 0.399 0.364 0.401 0.365 0.401
ETTm1 (720) 0.401 0.413 0.404 0.413 0.406 0.414 0.406 0.414
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Figure 8. Additional Visualization of the VAR Synthetic Task with a Random Datapoint in the Validation Set.
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Figure 9. Visualization of the 2 temporal influence paths from step 124 to step 128 for the two input time series variable for the datapoint
shown above, where even-numbered steps represent endogenous tokens and odd-numbered steps represent exogenous tokens.

• LU Matrix Generation: Creating the invertible matrix D via LU decomposition is independent of sequence length L,
with complexity O(Hd2) per layer.

Per-Layer Operations (for each attention layer l = 1, . . . , Lattn):

1. Linear Projections: Computing query Q(l) and value V(l) projections costs O(LD2).
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Table 6. Full results of the ablation studies of different number of layers / intermediate points in temporal influence paths. The MSE and
MAE of the test set are reported. The best results are bolded and the second best are underlined.

Models l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 (96) 0.368 0.400 0.356 0.393 0.357 0.394 0.360 0.397 0.362 0.397 0.360 0.395 0.357 0.394 0.358 0.394
ETTh1 (192) 0.409 0.431 0.402 0.424 0.398 0.419 0.400 0.421 0.400 0.422 0.400 0.424 0.406 0.426 0.400 0.423
ETTh1 (336) 0.464 0.475 0.439 0.453 0.422 0.442 0.428 0.449 0.439 0.455 0.440 0.450 0.429 0.444 0.426 0.445
ETTh1 (720) 0.440 0.464 0.445 0.462 0.427 0.451 0.428 0.452 0.451 0.465 0.454 0.466 0.440 0.454 0.456 0.476
ETTm1 (96) 0.287 0.344 0.280 0.341 0.278 0.339 0.286 0.344 0.288 0.347 0.285 0.343 0.287 0.342 0.290 0.349
ETTm1 (192) 0.325 0.369 0.322 0.368 0.318 0.367 0.327 0.371 0.329 0.372 0.331 0.373 0.331 0.375 0.332 0.374
ETTm1 (336) 0.365 0.398 0.364 0.397 0.359 0.396 0.366 0.401 0.366 0.400 0.368 0.402 0.371 0.405 0.372 0.403
ETTm1 (720) 0.407 0.419 0.403 0.416 0.401 0.413 0.400 0.417 0.401 0.415 0.408 0.424 0.407 0.426 0.409 0.430

Table 7. Effect of Different Random Seeds on the Results of SAMoVAR. The results show that there is almost no difference across five
runs with different seeds, demonstrating the stability of SAMoVAR with respect to random initialization.

Models Seed=2023 Seed=2024 Seed=2025 Seed=2026 Seed=2027

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 (96) 0.356 0.393 0.357 0.394 0.357 0.394 0.358 0.395 0.357 0.395
ETTh1 (192) 0.401 0.421 0.397 0.42 0.398 0.419 0.404 0.422 0.401 0.419
ETTh1 (336) 0.424 0.446 0.421 0.441 0.422 0.442 0.423 0.449 0.425 0.452
ETTh1 (720) 0.429 0.454 0.431 0.449 0.427 0.451 0.425 0.452 0.428 0.453
ETTm1 (96) 0.279 0.34 0.279 0.339 0.278 0.339 0.278 0.34 0.277 0.338
ETTm1 (192) 0.317 0.367 0.318 0.367 0.318 0.367 0.317 0.367 0.319 0.368
ETTm1 (336) 0.359 0.397 0.358 0.396 0.359 0.396 0.359 0.398 0.361 0.397
ETTm1 (720) 0.401 0.413 0.402 0.413 0.401 0.413 0.403 0.414 0.4 0.412
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Figure 10. Additional Visualization of the VAR Synthetic Task with a Random Datapoint in the Validation Set.
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Figure 11. Visualization of the 2 temporal influence paths from step 124 to step 128 for the two input time series variable for the datapoint
shown above, where even-numbered steps represent endogenous tokens and odd-numbered steps represent exogenous tokens.

2. Cumulative State Update: The recursive computation

Wt = Wt−1 +Kt ⊗ V
(l)
t

incurs a complexity of O(Hd2) per timestep, totaling O(LHd2) = O(LD2/H) across all timesteps.

3. Output Computation: Calculating
Yt = Q

(l)
t ⊗Wt

also results in O(LD2/H).
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Table 8. Comparison of computational costs. This comparison utilizes the data format of ETTh1 to construct model inputs. LI is set to
512 for the baselines, 1024 for VAR-based models, and the other hyper-parameters for every model are set according to their default
configurations.

Models SAMoVAR LinTrans FixedVAR
Metric FLOPs Params FLOPs Params FLOPs Params

LP = 96 43.31M 157.3K 50.37M 181.9K 35.74M 196.5K
LP = 192 25.24M 175.9K 29.08M 200.4K 21.11M 215K
LP = 336 18.44M 199.6K 20.99M 224.1K 15.69M 238.7K
LP = 720 11.38M 272.6K 12.63M 297.2K 10M 311.8K

Models Encformer PatchTST iTransformer
Metric FLOPs Params FLOPs Params FLOPs Params

LP = 96 1.328G 1.646M 180.9M 1.841M 42.39M 1.923M
LP = 96 1.442G 1.647M 215.5M 3.414M 42.66M 1.935M
LP = 96 1.613G 1.648M 267.5M 5.773M 43.07M 1.954M
LP = 96 2.068G 1.65M 405.9M 12.07M 44.15M 2.003M
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Figure 12. Additional Visualization of the VAR Synthetic Task with a Random Datapoint in the Training Set.
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Figure 13. Visualization of the 2 temporal influence paths from step 124 to step 128 for the two input time series variable for the datapoint
shown above, where even-numbered steps represent endogenous tokens and odd-numbered steps represent exogenous tokens.

4. Structural Transformation:

Yt,transformed = einsum(′bhd, hde→ bhe′, Yt,D
−1)

similarly requires O(LD2/H).

Overall Complexity: Summing up each attention layer’s operations, each layer requires O(LD2). Given that the number
of attention layers Lattn is constant with respect to sequence length, the overall computational complexity is thus O(LD2),
clearly linear with respect to the sequence length L.

Therefore, SAMoVAR Attention achieves linear complexity in sequence length.

A.7.2. CLARIFICATION ON COMPUTATIONAL EFFICIENCY

We further clarify the computational efficiency results presented in Table 8. The values for FLOPs (floating-point operations)
and parameter counts were calculated consistently across all compared models using the ETTh1 dataset. Specifically,
all baseline models were evaluated using an input length of LI = 512, while linear-attention-based models (including
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SAMoVAR) were evaluated using LI = 1024. All other hyperparameters strictly followed the original ETTh1 dataset
configurations. For linear attention variants (including SAMoVAR), we set the hidden dimension as d = ⌊32

√
C⌋, resulting

in d = 64 for the ETTh1 dataset with C = 7. This setting naturally reduces the number of parameters compared to
baseline models (PatchTST/iTransformer), which typically use higher dimensions (128/256). SAMoVAR further optimizes
computational costs by eliminating the key projection matrices and sharing the output matrices Wo, leading to fewer FLOPs
compared to standard linear-attention-based Transformers. FixedVAR, despite containing more parameters due to a fixed
weight per lag, avoids the computational overhead associated with dynamically generated weights, resulting in lower FLOPs
than standard linear-attention Transformers.

A.8. Theoretical Analysis of Robust Path Pruning: Bounded Dot-Product via RMSNorm

Proposition. Applying RMSNorm to query and value vectors bounds the magnitudes of the dot-products in temporal
influence paths, thus preventing numerical instability in SAMoVAR.

Proof. We first recall that the query q
(l)
t and value vectors v(l)

i are normalized by RMSNorm as:

q
(l)
t = RMSNorm(x

(1)
t W(l)

q ), v
(l)
i = RMSNorm(x

(1)
i W(l)

v ),

where RMSNorm is defined as:
RMSNorm(y) =

y√
1
d

∑d
j=1 y

2
j

⊙ g.

Then, the absolute value of their dot-product can be bounded as follows:

|v(l)⊤
i q

(l)
t | =

∣∣∣∣∣∣
d∑

j=1

v
(l)
i,jq

(l)
t,j

∣∣∣∣∣∣ ≤ ∥v(l)
i ∥2∥q

(l)
t ∥2 ≈ ∥g(l)

v ∥2∥g(l)
q ∥2.

Given that the gain parameters g are typically initialized with small values, e.g., g ∼ N (0, 1/d), the resulting upper bound
is approximately 1. Thus, for a given temporal influence path spanning l layers:

|P(l)
t,j,i1,...,il−1

| = |v(l)⊤
i1

q
(l)
t | · |v

(l−1)⊤
i2

q
(l−1)
i1
| · · · |v(1)⊤

j q
(1)
il−1
| ≤ 1.

In practice, these dot-products are smaller than one, ensuring numerical stability and preventing gradient explosion during
training.

A.9. Theoretical Analysis of Robust Path Pruning: Orthogonality Probability in High Dimensions

Proposition. As the dimension d increases, randomly initialized vectors become increasingly orthogonal with high
probability, naturally pruning irrelevant temporal influence paths in SAMoVAR.

Proof. Consider two normalized random vectors q̂, v̂ ∈ Rd, each component initialized independently from a symmetric
distribution with mean zero and finite variance. The dot-product of these vectors is given by:

q̂⊤v̂ =

d∑
i=1

q̂iv̂i.

By the central limit theorem, as d→∞, the distribution of the dot-product converges to a Gaussian distribution:

q̂⊤v̂
d→∞−−−→ N

(
0,

1

d

)
.

Given a small threshold ϵ > 0, we can compute the probability that the absolute value of their dot-product is below ϵ:

P (|q̂⊤v̂| < ϵ) ≈ 2Φ
(
ϵ
√
d
)
− 1,
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where Φ denotes the cumulative distribution function of the standard Gaussian distribution.

As dimension d increases, this probability approaches 1, implying that with high probability, random vectors become nearly
orthogonal. For temporal influence paths defined as:

P
(l)
t,j,i1,...,il−1

= (v
(l)⊤
i1

q
(l)
t )(v

(l−1)⊤
i2

q
(l−1)
i1

) · · · (v(1)⊤
j q

(1)
il−1

),

the probability of any path having small or near-zero magnitude grows with dimension, thus naturally ”pruning” irrelevant
paths. During training, important paths are enhanced by gradient-based updates, selectively preserving informative temporal
influence patterns.
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