
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MORA: HIGH-RANK UPDATING FOR PARAMETER-
EFFICIENT FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-rank adaptation (LoRA) is a popular parameter-efficient fine-tuning (PEFT)
method for large language models (LLMs). In this paper, we analyze the impact
of low-rank updating, as implemented in LoRA. Our findings suggest that the
low-rank updating mechanism may limit the ability of LLMs to effectively learn
and memorize new knowledge. Inspired by this observation, we propose a new
method called MoRA, which employs a square matrix to achieve high-rank updat-
ing while maintaining the same number of trainable parameters. To achieve it, we
introduce the corresponding non-parameter operators to reduce the input dimen-
sion and increase the output dimension for the square matrix. Furthermore, these
operators ensure that the weight can be merged back into LLMs, which enables
our method to be deployed like LoRA. We perform a comprehensive evaluation
of our method across five tasks: instruction tuning, mathematical reasoning, con-
tinual pretraining, memory and pretraining. Our method outperforms LoRA on
memory-intensive tasks and achieves comparable performance on other tasks.

1 INTRODUCTION

As the size of language models increases, parameter-efficient fine-tuning (PEFT) Houlsby et al.
(2019) has emerged as a popular technique to adapt these models to specific downstream tasks.
Compared to Full Fine-Tuning (FFT), which updates all model parameters, PEFT modifies only a
small part of the parameters. For example, it can achieve similar performance with FFT by updating
less than 1% of the parameters in some tasks Hu et al. (2021), which significantly reduces the
memory requirements for the optimizer and facilitates the storage and deployment of fine-tuned
models.

Among the existing PEFT methods, Low-Rank Adaptation (LoRA) Hu et al. (2021) is particu-
larly prevalent for LLMs. LoRA enhances performance over other PEFT methods such as prompt
tuning Lester et al. (2021) or adapters Houlsby et al. (2019) by updating parameters via low-rank
matrices. These matrices can be merged into the original model parameters, thereby avoiding ad-
ditional computational costs during inference. There are numerous methods that aim to improve
LoRA for LLMs. However, most methods primarily validate their efficiency based on GLUE Wang
et al. (2018), either by achieving better performance or by requiring fewer trainable parameters. Re-
cent methods Liu et al. (2024); Meng et al. (2024); Zhu et al. (2024) leverage instruction tuning task
such as Alpaca Wang et al. (2024) or reasoning tasks like GSM8K Cobbe et al. (2021) to better eval-
uate their performance on LLMs. However, the diverse settings and datasets used in the evaluation
complicate the understanding of their progression.

In this paper, we conduct a comprehensive evaluation of LoRA across various tasks under the same
settings, including instruction tuning, mathematical reasoning, and continual pretraining. We find
that LoRA-like methods demonstrate similar performance across these tasks and they perform com-
parably to FFT in instruction tuning but fall short in mathematical reasoning and continual pre-
training. Among these tasks, instruction tuning primarily focuses on interacting with the format,
rather than acquiring knowledge and capabilities, which are learned almost entirely during pretrain-
ing Zhou et al. (2024). We observe that LoRA is easily adapted to follow response formats in
instruction tuning but struggles with other tasks that require enhancing knowledge and capabilities
through fine-tuning.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

One plausible explanation for this limitation observed with LoRA could be its reliance on
low-rank updates Lialin et al. (2023). The low-rank update matrix, ∆W , struggles to esti-
mate the full-rank updates in FFT, particularly in memory-intensive tasks like continual pre-
training that require memorizing domain-specific knowledge. Since the rank of ∆W is sig-
nificantly smaller than the full rank, this limitation restricts capacity to store new informa-
tion via fine-tuning. Moreover, current variants of LoRA cannot alter the inherent char-
acteristic of low-rank updates. To validate this, we conducted a memorization task using
pseudo-data to assess the performance of LoRA in memorizing new knowledge. We found
that LoRA performed significantly worse than FFT, even with a large rank such as 256.

(a) LoRA (r = 8) (b) MoRA (r = 256)

Figure 1: An overview of our method compared
to LoRA under same number of trainable param-
eters. W is the frozen weight from model.r repre-
sents the rank in two methods.

Given these observations, we introduce a
method called MoRA, which employs a square
matrix as opposed to low-rank matrices, aim-
ing to maximize the rank in ∆W while main-
taining the same number of trainable parame-
ters. For instance, when utilizing 8 rank with
the hidden size 4096, LoRA employs two low-
rank matrices A ∈ R4096×8 and B ∈ R8×4096,
with rank(∆W ) ≤ 8. Under same number
of parameters, our method uses a square matrix
M ∈ R256×256, with rank(∆W ) ≤ 256, as
depicted in Figure 1. Notably, our method ex-
hibits a greater capacity than LoRA with a large
rank. To decrease the input dimension and in-
crease the output dimension for M , we develop
corresponding non-parameter operators. Fur-
thermore, these operators and M can be sub-
stituted by a ∆W , ensuring our method can be
merged back into LLM like LoRA.

Our contributions are as follows:

1. We introduce MoRA, a novel method that employs a square matrix instead of low-rank
matrices in LoRA to achieve high-rank updating, while maintaining the same number of
trainable parameters.

2. We discuss four kinds of non-parameter operators of MoRA to reduce the input dimension
and increase the output dimension for the square matrix, while ensures that the weight can
be merged back into LLMs.

3. We evaluate MoRA across five tasks: memory, instruction tuning, mathematical reason-
ing, continual pretraining, and pretraining. Our method outperforms LoRA on memory-
intensive tasks and achieves comparable performance on other tasks, which demonstrates
the effectiveness of high-rank updating.

2 RELATED WORK

2.1 LORA

LoRA is one of the most popular PEFT methods for fine-tuning LLM, owing to its broad applica-
bility and robust performance in comparison to other methods. To approximate the updated weight
∆W in FFT, LoRA employs two low-rank matrices for its decomposition. By adjusting the rank
of these two matrices, LoRA can accordingly modify the trainable parameters. As a result, LoRA
can merge these matrices after fine-tuning without incurring the inference latency associated with
FFT. There are many methods to further improve LoRA, particularly for the application in LLMs.
DoRALiu et al. (2024) further decomposes the original weight into magnitude and direction com-
ponents and uses LoRA to update the direction component. LoRA+Hayou et al. (2024) employs
different learning rates for the two low-rank matrices to improve learning efficiency. ReLoRALialin
et al. (2023) integrates LoRA into the LLM during training to increase the rank of the final ∆W .

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 FINE-TUNING WITH LLMS

Despite the impressive performance of LLMs with in-context learning, certain scenarios still ne-
cessitate fine-tuning, which can be broadly categorized into three types. The first type, instruction
tuning, aims to better align LLMs with end tasks and user preferences, without significantly enhanc-
ing the knowledge and capabilities of LLMs Zhou et al. (2024). This approach simplifies the process
of dealing with varied tasks and understanding complex instructions. The second type involves com-
plex reasoning tasks such as mathematical problem-solving Collins et al. (2023); Imani et al. (2023);
Yu et al. (2023), where general instruction tuning often falls short in handling complex, symbolic,
multi-step reasoning tasks. To improve the reasoning abilities of LLMs, the majority of research
focuses on creating corresponding training datasets, either by leveraging larger teacher models like
GPT-4 Fu et al. (2023), or by rephrasing questions along a reasoning path Yu et al. (2023). The
third type, continual pretraining Cheng et al. (2023); Chen et al. (2023); Han et al. (2023); Liu et al.
(2023), aims to enhance the domain-specific capabilities of LLMs. Unlike instruction tuning, it
necessitates fine-tuning to augment the corresponding domain-specific knowledge and capabilities.

However, most variants of LoRA Kopiczko et al. (2023); Lialin et al. (2023); Dettmers et al.
(2024); Zhu et al. (2024) predominantly employ instruction tuning or text classification tasks from
GLUE Wang et al. (2018) to validate their efficacy on LLMs. Given that instruction tuning requires
the least capacity for fine-tuning compared to other types, it may not accurately reflect the effective-
ness of LoRA variants. To better evaluate their methods, recent works Meng et al. (2024); Liu et al.
(2024); Shi et al. (2024); Renduchintala et al. (2023) have employed reasoning tasks to test their
methods. But the training sets used are often too small for LLMs to effectively learn reasoning. For
instance, some methods Meng et al. (2024); Renduchintala et al. (2023) utilize the GSM8K Cobbe
et al. (2021) with only 7.5K training samples. Compare to the SOTA method with 395K training
samples Yu et al. (2023), this small training set achieves worse performance on reasoning and makes
it hard to evaluate the effectiveness of these methods.

3 ANALYSIS THE INFLUENCE OF LOW-RANK UPDATING

The key idea of LoRA Hu et al. (2021) involves the use of low-rank updates to estimate full-rank
updates in FFT. Formally, given a pretrained parameter matrix W0 ∈ Rd×k, LoRA employs two
low-rank matrices to calculate the weight update ∆W :

h = W0x+∆Wx = W0x+BAx (1)

where A ∈ Rr×k and B ∈ Rd×r represent the low-rank matrices in LoRA. To ensure that ∆W = 0
at the beginning of training, LoRA initializes A with a Gaussian distribution and B with zero. Due
to the low-rank decomposition of ∆W into BA, the rank(∆W ) ≤ r. The weight update in LoRA
exhibits a markedly low rank, r ≪ min(d, k), in comparison to the full-rank updating in FFT. Low-
rank updating by LoRA shows on-par performance with full-rank updating in some tasks such as
text classification or instruction tuning Liu et al. (2024); Meng et al. (2024). However, for tasks
like complex reasoning or continual pretraining, LoRA tends to show worse performance Liu et al.
(2023).

Based on these observations, we hypothesize that low-rank updating easily leverages the original
knowledge and capabilities of LLMs to solve tasks but struggles with tasks that require enhancing
the knowledge and capabilities of LLMs.

To substantiate this hypothesis, we examine the differences between LoRA and FFT in terms of
memorizing new knowledge through fine-tuning. In order to circumvent leveraging the original
knowledge of the LLM, we randomly generate 10K pairs of Universally Unique Identifiers (UUIDs),
each pair comprising two UUIDs with 32 hexadecimal values. The task requires the LLM to generate
the corresponding UUID based on the input UUID. For instance, given a UUID such as “205f3777-
52b6-4270-9f67-c5125867d358”, the model should generate the corresponding UUID based on 10K
training pairs. This task can also be viewed as a question-answering task, while the knowledge
indispensable for accomplishing it is exclusively from the training datasets rather than the LLM
itself.

For the training settings, we employ LLaMA-2 7B as base model, utilizing 1,000 pairs
per batch and conducting 100 epochs. For the LoRA, we apply low-rank matrices to
all linear layers and search learning rate from {1e-4,2e-4,3e-4} to enhance performances.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Performance of memorizing
UUID pairs through fine-tuning with FFT
and LoRA.

We conduct the experiment on LoRA using various
ranks r ∈ {8, 16, 32, 64, 128, 256}. For the FFT, we
directly use a learning rate of 3e-5. Based on Figure 2,
we observe low-rank updating are hard to memoriz-
ing new knowledge compared to FFT. Although con-
stantly increasing the rank of LoRA can alleviate this
problem, the gap still exists.

In contrast to the memory task, we also evaluate the
performance gap between LoRA and FFT on instruc-
tion tuning, which merely introduces new knowledge.
Similar to previous results Meng et al. (2024); Zhu
et al. (2024), we also find that LoRA matches the per-
formance of FFT with small rank r = 8 in Table 2.
This indicates that LoRA can easily leverage the orig-
inal knowledge of LLMs by fine-tuning like FFT.

4 METHOD

Based on the above analysis, we propose a new method to alleviate the negative effects of low-
rank updating. The main idea of our method is to utilize the same trainable parameters as much as
possible to achieve a higher rank in ∆W . Consider the pretrained weight W0 ∈ Rd×k. LoRA uses
two low-rank matrices A and B with (d + k)r total trainable parameters for rank r. Under same
trainable parameters, a square matrix M ∈ Rr̂×r̂ where r̂ = ⌊

√
(d+ k)r⌋ can achieve the highest

rank due to r ≪ min(d, k).

To accomplish this, we need to reduce the input dimension and increase the output dimension for
M . Formally,

h = W0x+ fdecomp (Mfcomp (x)) (2)

where fcomp : Rk → Rr̂ denotes the function that decreases the input dimension of x from k

to r̂, and fdecomp : Rr̂ → Rd represents the function that enhances the output dimension from
r̂ to d. Furthermore, these two functions ought to be non-parameterized operators and expected
to execute in linear time corresponding to the dimension. They should also have corresponding
function, fcomp : Rr̂×r̂ → Rr̂×k and fdecomp : Rr̂×k → Rd×k, to transform M into ∆W . For any x,
the following should hold:

fdecomp (Mfcomp (x)) = ∆Wx,∀x ∈ Rk (3)

where ∆W = fdecomp (fcomp (M)). If Eq. 3 holds, M can be losslessly expanded to ∆W based on
fcomp and fdecomp. This allows our method to merge back into the LLM like LoRA.

For the design of fcomp and fcomp, we explore several methods to implement these functions. One
straightforward method is truncating the dimension and subsequently add it in corresponding di-
mension. Formally, this can be represented as:

fcomp (x) = x1:r̂

fdecomp (x) =

[
x
0

]
(4)

and the corresponding ∆W is:

∆W =

[
M 0
0 0

]
(5)

However, this method leads to a significant loss of information during compression and only mod-
ifies a segment of the output by appending a zero vector during decompression. To improve it, we
can share the rows and columns of M to achieve a more efficient compression and decompression.
Formally, this can be represented as:

fcomp (x) =
[∑

j∈gi
xj

]r
i=1

fdecomp (x) =
[
xg̃′

i

]d
i=1

(6)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Here, g and g′ represent predefined groups that share the same row and column in M , respectively.
The j ∈ gi indicates that the j-th dimension belongs to the i-th group in g. The term g̃′i is the reverse
of g′i, referring to the i-th dimension associated with the g̃′i-th group in g′. The corresponding ∆W
is as follows:

∆Wi,j = Mg̃′
i,g̃j

(7)
Sharing rows and columns can be efficient for larger ranks such as r = 128 or r = 256, as only a
few rows or columns in ∆W share a common row or column. For instance, considering to ∆W ∈
R4096×4096 for r = 128, which has r̂ = 1024 and M ∈ R1024×1024. In this situation, only 4 rows
or columns share the same row or column. Conversely, for smaller ranks such as r = 8, where
r̂ = 256, it requires average 16 rows or columns in a group to share the same row or column in M .
It can lead to inefficiencies due to the significant information loss during compression in Eq. 6.

To enhance performance for smaller ranks, we reshape x instead of directly compressing it, to pre-
serve the input information. In this context, fcomp (x) : Rk → Rn×r̂ and fdecomp : Rn×r̂ → Rd.
Corresponding fcomp, fdecomp and ∆W are as follows:

fcomp (x) =
[
x1:r̂ xr̂:2r̂ · · · x(n−1)r̂:nr̂

]
fdecomp (x) = concat(x)

∆W =


M 0 · · · 0
0 M · · · 0
...

...
. . .

...
0 0 · · · M


(8)

where concat(x) refers to concatenate the rows of x into a vector. For simplicity, we omit the padding
and truncation operators in above functions and focus on the case where d = k. In comparison to
sharing columns and rows, this method incurs additional computational overhead by reshaping x
into Rn×r̂ instead of Rr̂. However, given that the size of M is significantly smaller than W0, this
additional computation is very small for rank like 8. For instance, when fine-tuning the 7B model
with rank of 8 (r̂ = 256), this method is only 1.03 times slower than the previous methods.

Inspired by RoPE Su et al. (2024), we can further refine this method by incorporating rotation
operators into fcomp to augment the expressiveness of M by enable it to differentiate between various
xir̂:(i+1)r̂ by rotating them. We can modify Eq. 8 as follows:

fcomp (x) =
[
a1 a2 · · · an−1

]
∆W =


P 1 0 · · · 0
0 P 2 · · · 0
...

...
. . .

...
0 0 · · · Pn−1

 (9)

where ai and P i represent the corresponding values of xir̂:(i+1)r̂ and M post-rotation, respectively.
Following RoPE, we use a r̂× r̂ block diagonal matrix to achieve the rotation. However, our method
use rotation information to enable M distinguish the xir̂:(i+1)r̂ instead of token position in RoPE.
We can define ai and P i as follows:

ai =


Rθ1,i 0 · · · 0
0 Rθ2,i · · · 0
...

...
. . .

...
0 0 · · · Rθ r̂

2
,i

xir̂:(i+1)r̂

P i = M


Rθ1,i 0 · · · 0
0 Rθ2,i · · · 0
...

...
. . .

...
0 0 · · · Rθ r̂

2
,i


(10)

where θj = 10000−2(j−1)/r̂ and Rθj ,i ∈ R2×2 is a rotation matrix:

Rθj ,i =

[
cos iθj − sin iθj
sin iθj cos iθj

]
(11)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5 EXPERIMENT

We evaluate our method on various tasks to understand the influence of high-rank updating. In Sec-
tion 5.1, we evaluate our method with LoRA and our method on memorizing UUID pairs to show
the benefit of high-rank updating on memorizing. In Section 5.2, we reproduce LoRA, LoRA vari-
ants and FFT on three fine-tuning tasks: instruction tuning, mathematical reasoning and continual
pretraining. In Section 5.3, we compare our method with LoRA and ReLoRA on pretraining by
training transformer from scratch.

5.1 MEMORIZING UUID PAIRS

We first compare our method with LoRA and FFT on memorizing UUID pairs to demonstrate im-
provements through high-rank updating. Following the training settings in Section 3, we search
learning rate from {5e-5,7e-5,1e-4} and use decompress and compress functions in Eq. 8, sharing
rows and columns in M . Due to use one matrix M instead of two matrices A and B, we can di-
rectly initialize M with zeros. For the predefined groups g and g′, we group every adjacent r̂ rows
or columns together. The training loss is presented in Figure3. Our method shows significant im-
provements over LoRA with the same number of trainable parameters, benefiting from high-rank
updating. We also report character-level accuracy at various training steps in Table 1. MoRA re-
quires fewer training steps to memorize these UUID pairs compared to LoRA. Compared to FFT,
MoRA with 256 rank can achieve similar performance and both method can memorize all UUID
pairs in 500 steps.

Figure 3: Performance of memorizing UUID
pairs with LoRA and our method on rank 8
and 256.

Rank 300 500 700 900

FFT - 42.5 100 100 100
LoRA 8 9.9 10.0 10.7 54.2
MoRA 8 10.1 15.7 87.4 100
LoRA 256 9.9 70.6 100 100
MoRA 256 41.6 100 100 100

Table 1: Character-level accuracy of memoriz-
ing UUID pairs by generating the value of cor-
responding key in 300, 500, 700 and 900 training
steps.

5.2 FINE-TUNING TASKS

5.2.1 SETUP

We evaluate our method across three fine-tuning tasks for large language models (LLMs): instruction
tuning, mathematical reasoning, and continual pretraining. For these tasks, we select high-quality
corresponding datasets to test both LoRA and our method. In instruction tuning, we utilize Tülu
v2 Ivison et al. (2023), a blend of several high-quality instruction datasets, containing 326k filtered
samples. We assess instruction performance using the MMLU Hendrycks et al. (2020) in both zero-
shot and five-shot settings. For mathematical reasoning, we employ the MetaMath Yu et al. (2023)
with its 395k samples to enhance mathematical reasoning capabilities and also use GSM8K Cobbe
et al. (2021) and MATH Hendrycks et al. (2021) for further evaluation. In continual pretraining,
we adapt an LLM to the biomedicine and finance using PubMed abstracts from the Pile Gao et al.
(2020) and finicial news, complemented by data preprocessing methods from AdaptLLM Cheng
et al. (2023) to boost performance. We report the average performance of corresponding tasks for
continual pretraining. More details can be found in Appendix C.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Instruction Tuning Mathematical Reasoning Continual Pretraining

Method Rank MMLU 0 MMLU 5 GSM8K MATH BioMed. Finance

FFT - 50.6 51.3 66.6 20.1 56.4 69.6
LoRA 8 50.2 51.5 64.6 15.1 52.3 64.0
LoRA+ 8 49.2 51.1 64.1 15.8 52.2 64.9
ReLoRA 8 49.3 50.2 61.5 14.5 46.3 61.0
AsyLoRA 8 50.3 52.2 64.5 15.0 52.5 63.5
DoRA 8 50.2 51.5 64.5 14.6 52.5 63.9
MoRA (Ours) 8 49.7 51.5 64.2 15.4 53.3 67.1
LoRA 256 49.7 50.8 67.9 19.9 54.1 67.3
LoRA+ 256 49.2 51.3 68.2 17.1 54.2 66.7
ReLoRA 256 - - 64.0 18.1 52.9 57.9
AsyLoRA 256 50.1 52.0 66.9 19.3 54.1 66.9
DoRA 256 49.6 51.1 67.4 19.5 54.2 66.0
MoRA (Ours) 256 49.9 51.4 67.9 19.2 55.4 68.7

Table 2: Performance of FFT, LoRA, LoRA variants and our method on instruction tuning, mathe-
matical reasoning and continual pretraining tasks.

5.2.2 BASELINES AND IMPLEMENTS

For LoRA-like methods and MoRA, we conducted experiments at r = 8 and r = 256, and repro-
duce following methods across three tasks: FFT, LoRA, LoRA+ Hayou et al. (2024), AsyLoRA Zhu
et al. (2024), ReLoRA Lialin et al. (2023) and DoRA Liu et al. (2024). LoRA+ enhances the learn-
ing rate of matrix B in LoRA to facilitate efficient feature learning based on theoretical analysis.
We search the corresponding the hyperparameter λ from {2,4}. AsyLoRA also analyzes asymmetry
in the A and B matrices, and we adopted their initialization strategy. ReLoRA proposes a method
to merge low-rank matrices into the model during training to increase the rank of ∆W . we search
merge steps from {1k, 2k} and use 50 steps restarts warmup. DoRA leverages weight decomposition
to enhance performance as a robust baseline. For FFT, we follow the settings proposed by corre-
sponding datasets. For MoRA, we employed rotation operators as outlined in Eq. 9 to implement
compression and decompression for r = 8, and for r = 256, we utilized shared rows and columns as
specified in Eq. 6 and group every adjacent r̂ rows or columns together. The details hyperparameters
about fine-tuning can be found in Appendix A.

5.2.3 RESULTS AND ANALYSIS

We present the results of fine-tuning tasks in Table 2. We report the results of MMLU with zero-
shot and 5-shot settings for instruction tuning, GSM8K and MATH for mathematical reasoning, and
average performance on biomedical tasks and financial tasks for continual pretraining.

MoRA perform on par with LoRA in instruction tuning and mathematical reasoning. Benefit from
high-rank updating to memorize new knowledge, MoRA outperforms LoRA on both biomedical and
financial domains for continual pretraining.

We also find that LoRA variants exhibit similar performances on these fine-tuning tasks as compared
to LoRA. Although AsyLoRA achieves the best performance in instruction tuning, it demonstrates
poor performance in mathematical reasoning. For ReLoRA, merging low-rank matrices during train-
ing can harm performance, particularly at the the high rank like 256.

Consider the difference between three tasks, they show different requirements for fine-tuning ca-
pabilities. For instruction tuning, which does not learn new knowledge from fine-tuning, rank 8
is enough to achieve performance similar to FFT. For mathematical reasoning, rank 8 is unable to
match FFT performance. However, increasing the rank from 8 to 256 can eliminate the performance
gap. For continual pretraining, LoRA with rank 256 still underperforms FFT.

5.3 PRETRAINING

To understand the influence of high-rank updating, we train transformer from scratch on the C4
datasets Raffel et al. (2020). For the model architeture, we use LLaMA-based model with RM-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Pretraining loss at 250M models. (b) Pretraining loss at 1.3B models.

Figure 4: Pretraining loss with LoRA and MoRA on 250M and 1B models from scratch. Both LoRA
and MoRA use same amount of trainable parameters with r = 128. ReMoRA and ReLoRA refer to
merge MoRA or LoRA back to the model during training to increase the rank of ∆W .

SNorm Zhang & Sennrich (2019), SwiGLU Shazeer (2020) and RoPE Su et al. (2024), testing two
sizes: 250M and 1.3B parameters. For the hyperparameters, we use 10k steps, 1024 batch size, 512
sequence length and applying rank r = 128 for LoRA and our methods follow Lialin et al.. We
also leave modules layernorm or embeddings, which do not apply LoRA, unfrozen. To better show
the difference between high-rank and low-rank updating, we reproduce LoRA and other methods
without full-rank training warmup. For MoRA, we use Eq. 6 as compression and decompression
functions by sharing columns and rows.

We also combine merge-and-reint in ReLoRA with our method called ReMoRA by merging M back
into the original parameters during training to increase the rank of ∆W . However, if we directly
merge M with g and g′ in Eq. 6, the final rank of ∆W is unchanged due to the same expand pattern.
To solve this problem, we can change g and g′ after merging to ensure the rank of ∆W increasing.
More details about ReMoRA can be found in Appendix B. For the hyperparameters corresponding
to ReLoRA and ReMoRA, we merge every 2k steps and use 50 steps restarts warmup with optimizer
reseting and jagged scheduler.

250M 1.3B

LoRA 33.40 28.56
MoRA (Ours) 28.54 25.25
ReLoRA 32.19 27.80
ReMoRA (Ours) 26.74 23.34

Table 3: Perplexity on C4 validation dataset.

We show pretraining loss in Figure 4 and cor-
responding perplexity on C4 validation dataset
in Table 3. Our method show better perfor-
mance on pretraining compared to LoRA and
ReLoRA with same amount of trainable pa-
rameters. Benefiting from high-rank updat-
ing, ReMoRA also achieves more improve-
ments on MoRA compared to ReLoRA, which
demonstrates the effectiveness of merge-and-
reint strategy in ReMoRA.

6 ANALYSIS

6.1 INFLUENCE OF DECOMPRESSION AND COMPRESSION

To explore the impact of decompression and compression functions in MoRA, we report the perfor-
mance on GSM8K using various methods: truncation, sharing, decoupling, and rotation in Table 4.
Among these methods, truncation shows the worst performance due to the significant information
loss during compression. Sharing can achieve better performance than truncation by leveraging
the shared rows or columns to preserve the input information. But in the case of r = 8, sharing
shows worse performance than decouple and rotation due to the large number of sharing rows or
columns, as we discussed in Section 4. Rotation is more efficient than decouple, due to the rotation
information can help the square matrix to distinguish the input information.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

fcomp, fdecomp r = 8 r = 256

Truncation Eq. 4 59.5 66.6
Sharing Eq. 6 62.5 67.9

Decouple Eq. 8 63.6 67.8
Rotation Eq. 9 64.2 67.9

Table 4: Influence of decompression and compression functions on r = 8 and r = 256 on GSM8K.

6.2 HIGH-RANK UPDATING

Figure 5: The number of singular val-
ues >0.1 in ∆W on the 250M pretraining
model.

To demonstrate the impact of high-rank updating on
the rank of ∆W , we analyzed the spectrum of singu-
lar values for the learned ∆W on 250M pretraining
250M model. We present the average count of sin-
gular values exceeding 0.1 across all layers for ∆Wq ,
∆Wk, ∆Wv , ∆Wo, ∆Wup, ∆Wdown, and ∆Wgate

in Figure 5 following Lialin et al. (2023). MoRA
and ReMoRA exhibit a substantially higher number
of significant singular values compared to LoRA and
ReLoRA, highlighting the effectiveness of our meth-
ods in increasing the rank of ∆W . We find the quan-
tity of singular values shown in Figure 5 can be cor-
related with the perplexity metrics listed in Table 3.
Moreover, MoRA, without merge-and-reint strategy
in ReLoRA and ReMoRA, can achieve a lower per-
plexity than ReLoRA along with a higher significant
singular values.

6.3 TRAINING SPEED AND MEMORY USAGE

Training Speed Memory Usage

r = 8

LoRA 1.92 16.0GB
MoRA 1.67 16.0GB

r = 256

LoRA 1.56 31.9GB
MoRA 1.54 31.8GB

Table 5: Comparison of training speed
(steps/second) and memory usage with
LoRA and MoRA with rank 8 and 256.

Regarding training time and GPU memory usage, we
benchmark LoRA and MoRA on the same hardware.
For training settings, we run these methods on a sin-
gle GPU with a sequence length of 1024, applying
LoRA and MoRA to all linear layers of the 7B param-
eter model. The results are reported in Table 5. For
r = 256, MoRA uses almost the same time and mem-
ory as LoRA, benefiting from the non-parameterized
operators. Interestingly, we find that MoRA uses even
less GPU memory than LoRA. However, for r = 8,
MoRA employs Eq. 9 to compress and decompress
input features, making it approximately 1.15 times
slower than LoRA during fine-tuning.

7 CONCLUSION

In this paper, we analyze the impact of low-rank updating through LoRA and observe it strug-
gles with memory-intensive tasks, which also limits the performance of current LoRA variants.
To overcome this limitation, we introduce MoRA, a method that utilizes non-parameterized oper-
ators for high-rank updating. Within the MoRA framework, we explore various methods to im-
plement decompression and compression functions. Performance comparisons indicate that MoRA
matches LoRA in instruction tuning and mathematical reasoning, and exhibits superior performance
in continual pretraining and memory tasks. Additionally, we conduct pretraining experiments to
further demonstrate the effectiveness of high-rank updating and show superior results compared to
ReLoRA.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Wei Chen, Qiushi Wang, Zefei Long, Xianyin Zhang, Zhongtian Lu, Bingxuan Li, Siyuan Wang,
Jiarong Xu, Xiang Bai, Xuanjing Huang, et al. Disc-finllm: A chinese financial large language
model based on multiple experts fine-tuning. arXiv preprint arXiv:2310.15205, 2023.

Zhiyu Chen, Shiyang Li, Charese Smiley, Zhiqiang Ma, Sameena Shah, and William Yang Wang.
Convfinqa: Exploring the chain of numerical reasoning in conversational finance question an-
swering. arXiv preprint arXiv:2210.03849, 2022.

Daixuan Cheng, Shaohan Huang, and Furu Wei. Adapting large language models via reading com-
prehension. arXiv preprint arXiv:2309.09530, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Katherine M Collins, Albert Q Jiang, Simon Frieder, Lionel Wong, Miri Zilka, Umang Bhatt,
Thomas Lukasiewicz, Yuhuai Wu, Joshua B Tenenbaum, William Hart, et al. Evaluating lan-
guage models for mathematics through interactions. arXiv preprint arXiv:2306.01694, 2023.

Franck Dernoncourt and Ji Young Lee. Pubmed 200k rct: a dataset for sequential sentence classifi-
cation in medical abstracts. arXiv preprint arXiv:1710.06071, 2017.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Specializing smaller language
models towards multi-step reasoning. In International Conference on Machine Learning, pp.
10421–10430. PMLR, 2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Tianyu Han, Lisa C Adams, Jens-Michalis Papaioannou, Paul Grundmann, Tom Oberhauser,
Alexander Löser, Daniel Truhn, and Keno K Bressem. Medalpaca–an open-source collection
of medical conversational ai models and training data. arXiv preprint arXiv:2304.08247, 2023.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. LoRA+: Efficient Low Rank Adaptation of Large
Models. 3, 2024. URL http://arxiv.org/abs/2402.12354.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398, 2023.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep
Dasigi, Joel Jang, David Wadden, Noah A Smith, Iz Beltagy, et al. Camels in a changing cli-
mate: Enhancing lm adaptation with tulu 2. arXiv preprint arXiv:2311.10702, 2023.

10

http://arxiv.org/abs/2402.12354


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What dis-
ease does this patient have? a large-scale open domain question answering dataset from medical
exams. Applied Sciences, 11(14):6421, 2021.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. Pubmedqa: A dataset
for biomedical research question answering. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 2567–2577, 2019.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki Markus Asano. Vera: Vector-based random
matrix adaptation. arXiv preprint arXiv:2310.11454, 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Stack more lay-
ers differently: High-rank training through low-rank updates. arXiv preprint arXiv:2307.05695,
2023.

Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris Cheng, Nathaniel Pinckney, Rongjian Liang,
Jonah Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet Bayraktaroglu, et al. Chipnemo:
Domain-adapted llms for chip design. arXiv preprint arXiv:2311.00176, 2023.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353, 2024.

Macedo Maia, Siegfried Handschuh, André Freitas, Brian Davis, Ross McDermott, Manel Zarrouk,
and Alexandra Balahur. Www’18 open challenge: financial opinion mining and question answer-
ing. In Companion proceedings of the the web conference 2018, pp. 1941–1942, 2018.

Pekka Malo, Ankur Sinha, Pekka Korhonen, Jyrki Wallenius, and Pyry Takala. Good debt or bad
debt: Detecting semantic orientations in economic texts. Journal of the Association for Informa-
tion Science and Technology, 65(4):782–796, 2014.

Xiangdi Meng, Damai Dai, Weiyao Luo, Zhe Yang, Shaoxiang Wu, Xiaochen Wang, Peiyi Wang,
Qingxiu Dong, Liang Chen, and Zhifang Sui. Periodiclora: Breaking the low-rank bottleneck in
lora optimization. arXiv preprint arXiv:2402.16141, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-lora: Enhacing parameter effi-
ciency of lora with weight tying. arXiv preprint arXiv:2311.09578, 2023.

Julio Cesar Salinas Alvarado, Karin Verspoor, and Timothy Baldwin. Domain adaption of named
entity recognition to support credit risk assessment. In Ben Hachey and Kellie Webster (eds.),
Proceedings of the Australasian Language Technology Association Workshop 2015, pp. 84–90,
Parramatta, Australia, December 2015. URL https://aclanthology.org/U15-1010.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Shuhua Shi, Shaohan Huang, Minghui Song, Zhoujun Li, Zihan Zhang, Haizhen Huang, Furu Wei,
Weiwei Deng, Feng Sun, and Qi Zhang. Reslora: Identity residual mapping in low-rank adaption.
arXiv preprint arXiv:2402.18039, 2024.

Ankur Sinha and Tanmay Khandait. Impact of news on the commodity market: Dataset and results.
In Advances in Information and Communication: Proceedings of the 2021 Future of Information
and Communication Conference (FICC), Volume 2, pp. 589–601. Springer, 2021.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

11

https://aclanthology.org/U15-1010


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring
the state of instruction tuning on open resources. Advances in Neural Information Processing
Systems, 36, 2024.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prab-
hanjan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model
for finance. arXiv preprint arXiv:2303.17564, 2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sáez de Ocáriz Borde, Rickard Brüel
Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and Justin Solomon.
Asymmetry in low-rank adapters of foundation models. arXiv preprint arXiv:2402.16842, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A HYPERPARAMETERS

We report the hyperparameters in Table 6. The hyperparameters for Tülu v2 and MetaMath are
following their papers Yu et al. (2023); Ivison et al. (2023). Additionally, we search for the opti-
mal learning rate for LoRA across different tasks and report the best performance. We are able to
reproduce the results in Yu et al. (2023); Ivison et al. (2023) with LoRA and even achieve better
performance. For the hyperparameters of MoRA, we remove the α parameter from LoRA and use
the same hyperparameters, except for the learning rate. The learning rate selection for MoRA with
Eq. 6 may differ from that of LoRA. Due to the shared rows and columns in Eq. 6, MoRA exhibits
a larger gradient norm, so we employ a smaller learning rate.

Dataset Method r α LR LR Scheduler Warmup Epochs Batch size fcomp , fdecomp

Tülu v2

FFT - - 2e-5 cosine 500 2 128 -
LoRA-like 8 16 {1e-4,2e-4,3e-4} cosine 500 2 128 -

MoRA 8 - {1e-4,2e-4,3e-4} cosine 500 2 128 Eq. 9
LoRA-like 256 128 {1e-4,2e-4,3e-4} cosine 500 2 128 -

MoRA 256 - {3e-5,5e-5,7e-5} cosine 500 2 128 Eq. 6

MetaMath

FFT - - 2e-5 cosine 300 3 128 -
LoRA-like 8 16 {1e-4,2e-4,3e-4} cosine 300 3 128 -

MoRA 8 - {1e-4,2e-4,3e-4} cosine 300 3 128 Eq. 9
LoRA-like 256 128 {1e-4,2e-4,3e-4} cosine 300 3 128 -

MoRA 256 - {3e-5,5e-5,7e-5} cosine 300 3 128 Eq. 6

BioMed./Fiance

FFT - - 3e-5 linear 150 1 128 -
LoRA-like 8 16 {3e-4,4e-4,5e-4} linear 150 1 128 -

MoRA 8 - {3e-4,4e-4,5e-4} linear 150 1 128 Eq. 9
LoRA-like 256 128 {3e-4,4e-4,5e-4} linear 150 1 128 -

MoRA 256 - {5e-5,7e-5,1e-4} linear 150 1 128 Eq. 6

Table 6: Hyperparameters for fine-tuning on three datasets.

B IMPLEMENTATION OF REMORA

We introduce detial implementation of ReMoRA in pretraining. In this case, we simply define
two kinds of g. The first kind is grouping every adjacent r̂ rows or columns together following
the defined in fine-tuning, the first groups can be represented as {1, 2, . . . , r̂}. The second kind is
grouping every neighboring k of the rows or columns together, the first groups can be represented as
{1, 1+k, . . . , 1+ r̂k}. We propose a example code about compression and decompression functions
in Algorithm 1 and 2. After merging, we can change the group type from 0 to 1 or 1 to 0.

Algorithm 1 Compression
1: function COMPRESS(x, r̂, type)
2: # x ∈ Rbsz×l×k: Input tensor
3: # y ∈ Rbsz×l×r̂: Output tensor
4: # type ∈ {0, 1}: Group type 0 or 1
5: padding x to make k divisible by r̂
6: if type = 0 then
7: y = x.view(bsz, l, k/r̂, r̂).sum(dim=2) # first type of group
8: else
9: y = x.view(bsz, l, r̂, k/r̂).sum(dim=3) # second type of group

10: end if
11: return y
12: end function

C DOWNSTREAM TASKS OF CONTINUAL PRETRAINING

For biomedcine, we use PubMedQA Jin et al. (2019), RCT Dernoncourt & Lee (2017), USMLE Jin
et al. (2021), and selecting biomedicine subjects from MMLU to evaluate the performance. For fi-
nance, following BloombergGPT Wu et al. (2023),we use ConvFinQA Chen et al. (2022), NER Sali-
nas Alvarado et al. (2015), Headline Sinha & Khandait (2021), FiQA SA Maia et al. (2018) and
FPB Malo et al. (2014). We report the detail performance of these tasks following:

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 2 Decompression
1: function DECOMPRESS(x, r̂, type)
2: # x ∈ Rbsz×l×r̂: Input tensor
3: # y ∈ Rbsz×l×d: Output tensor
4: # type ∈ {0, 1}: Group type 0 or 1
5: if type = 0 then
6: y = repeat(x, d/r̂, dim=2) # first type of group
7: else
8: y = repeat-interleave(x, d/r̂, dim=2) # second type of group
9: end if

10: truncate y to Rbsz×l×d

11: return y
12: end function

r PubMedQA USMLE BioMMLU RCT Avg.
FFT - 74.1 41.2 47.5 62.7 56.4
LoRA 8 73.1 34.9 45.3 54.9 51.9
MoRA 8 73.3 34.7 45.3 59.9 53.3
LoRA 256 73.8 39.7 46.0 56.9 54.1
MoRA 256 74.4 40.4 46.1 60.6 55.4

Table 7: Performance on biomedical tasks.

r ConvFinQA FiQA
SA

Headline NER FPB Avg.

FFT - 44.4 78.8 82.3 68.1 74.3 69.6
LoRA 8 44.5 76.2 72.4 61.6 65.1 64.0
MoRA 8 45.8 76.6 76.3 68.9 68.2 67.1
LoRA 256 41.4 78.3 83.0 66.8 66.7 67.3
MoRA 256 47.7 76.3 83.4 68.0 68.1 68.7

Table 8: Performance on finicial tasks.

14


	Introduction
	Related Work
	LoRA
	Fine-Tuning with LLMs

	Analysis the Influence of Low-rank Updating
	Method
	Experiment
	Memorizing UUID Pairs
	Fine-tuning Tasks
	Setup
	Baselines and Implements
	Results and Analysis

	Pretraining

	Analysis
	Influence of Decompression and Compression
	High-rank Updating
	Training Speed and Memory Usage

	Conclusion
	Hyperparameters
	Implementation of ReMoRA
	Downstream Tasks of Continual Pretraining

