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Abstract

Retrieval-augmented generation (RAG) improves large lan-
guage models (LLMs) by using external knowledge to
guide response generation, reducing hallucinations. However,
RAG, particularly multi-modal RAG, can introduce new hal-
lucination sources: (i) the retrieval process may select irrel-
evant pieces (e.g., documents, images) as raw context from
the database, and (ii) retrieved images are processed into
text-based context via vision-language models (VLMs) or di-
rectly used by multi-modal language models (MLLMs) like
GPT-4o, which may hallucinate. To address this, we pro-
pose a novel framework to evaluate the reliability of multi-
modal RAG using two performance measures: (i) the rele-
vancy score (RS), assessing the relevance of retrieved entries
to the query, and (ii) the correctness score (CS), evaluating
the accuracy of the generated response. We train RS and CS
models using a ChatGPT-derived database and human evalu-
ator samples. Results show that both models achieve 88%
accuracy on test data. Additionally, we construct a 5000-
sample human-annotated database evaluating the relevancy
of retrieved pieces and the correctness of response statements.
Our RS model aligns with human preferences 20% more of-
ten than CLIP in retrieval, and our CS model matches human
preferences 91% of the time. Finally, we assess various RAG
systems’ selection and generation performances using RS and
CS.

Introduction
Generative models have seen significant improvements with
recent advancements in large language models (LLMs)
(Achiam et al. 2023). Although the generated responses of-
ten reach human-like quality, hallucinations—generating in-
correct or irrelevant responses—remain an issue (Ji et al.
2023). This problem is particularly concerning for ap-
plications where accuracy is critical, such as in medical
evaluations, processing insurance claims, and autonomous
decision-making. The hallucination issue also persists in
vision-language models (VLMs) (Liu et al. 2024; Dai et al.
2023; Lin et al. 2024; Team et al. 2023), which process both
images and user queries to generate text responses. Several
robust VLMs, such as LLaVA (Liu et al. 2024), InstructBLIP
(Dai et al. 2023), and VILA (Lin et al. 2024), exist. However,
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Figure 1: RAG-check example.

these models sometimes produce incorrect responses based
on the provided images and user queries.

On the other hand, retrieval-augmented generation (RAG)
(Lewis et al. 2020) offers a promising solution to improve
the relevance of responses generated by LLMs. RAG sys-
tems enhance LLMs by incorporating external knowledge,
on which the user seeks to base their responses. In a RAG
system, external knowledge such as enterprise data is stored
in a database. When a user submits a query, the RAG
system retrieves a few relevant and similar pieces of data
from the database. The LLM then generates a coherent re-
sponse based on this curated information. This approach
reduces hallucinations by constraining the LLM to gener-
ate responses grounded in the provided external knowledge,
thereby increasing accuracy and relevance. However, in ad-
dition to the possible hallucinations in the response, the
RAG scheme introduces some new sources of hallucinations
during the retrieval process including the selection of the in-
formation pieces and the context generation. During the re-
trieval process, depending on the selection algorithm, RAG
selects a few, say k, entries from the database that have the
highest similarity to the user query. A common approach is
to select the k entries whose embeddings have the highest
cosine similarity to the query embedding, referred to as the
top-k entries. However, this method of selection may not al-
ways retrieve the most relevant data for the user query. The
wrong selection can result in an incorrect response since the
LLM would never see the correct information. We refer to



this as selection-hallucination. Another source of halluci-
nation is during context generation in the RAG scheme. In
particular, multi-modal RAG systems process each selected
piece of information to text and generate a text-based context
by concatenating the text-based context for all the selected
pieces. The text-based context is then provided to the LLM
in the final stage of the RAG system along with the query
to produce the response. For example, if the selected piece
is an image, VLM may be used, say with a prompt “De-
scribe the image” (DTI) to narrate the images into the text,
and it is well-known that VLMs may hallucinate and pro-
duce wrong context in this case. We refer to this as context-
generation-hallucination. In the final stage, LLM may also
hallucinate when producing the response which is referred
to as response-generation-hallucination.

Prior works (Min et al. 2023; Chuang et al. 2024; Bakman
et al. 2024) provide means to evaluate LLMs and measure
the correctness of text-based responses by LLM given a text
query. FactScore (Min et al. 2023) demonstrates that break-
ing long statements into fine-grained atomic statements can
improve the identification of hallucinations. This method al-
lows for more precise verification of each individual state-
ment against the source material. Lookback Lens (Chuang
et al. 2024) detects context hallucination by analyzing the
attention scores of the corresponding LLM. It calculates a
ratio attention scores between query tokens and response to-
kens to identify parts of the response that may not be ad-
equately supported by the context. MARS (Bakman et al.
2024) builds on the idea that some parts of a statement
are more crucial than others in determining hallucination.
The work highlights such important part by assigning more
weight to these significant parts, thereby improving the de-
tection of inaccuracies by focusing on the most relevant
segments. Despite these advancements, a few papers have
specifically addressed hallucination detection in text-based
RAG. Among these, RAGAS (Es et al. 2023) and LlamaIn-
dex evaluation stand out. RAGAS focuses on evaluating the
accuracy and relevance of responses generated by RAG sys-
tems. It assesses how well the retrieved documents support
the generated response and whether the information is cor-
rectly incorporated. RAGAS typically involves human eval-
uators who rate the coherence and factual accuracy of the
responses. LlamaIndex relies on GPT4 (Achiam et al. 2023)
to evaluate the faithfulness of the generated response and
the relevancy of retrieved documents. Note that both RA-
GAS and LlamaIndex are designed for text-based queries
and datasets.

On the other hand, some works have focused on detect-
ing hallucination in VLMs (Gunjal, Yin, and Bas 2024; Jing
et al. 2023; Jiang et al. 2024). The work in (Gunjal, Yin,
and Bas 2024) presents a model inspired by InstructBLIP
to detect hallucinations occurring in single-image scenarios
with user queries. This approach leverages the capabilities
of InstructBLIP to scrutinize the generated responses for in-
accuracies related to the provided image and query. Faith-
Score (Jing et al. 2023) is another tool trained to identify the
correctness of VLM-generated statements with an image in-
put. FaithScore first extracts a comprehensive list of atomic
facts from the generated response, then verifies the accuracy

of these fine-grained atomic facts against the input image.
However, to the best of our knowledge, there are no exist-
ing works that provide hallucination scores specifically for
multi-modal RAG systems, where the contexts include mul-
tiple pieces of multi-modal data (say multiple images) which
is retrieved from a database and then the inference is per-
formed on such retrieved multi-modal context. Multi-modal
RAG systems present unique challenges, as they require in-
tegrating information from various visual sources along with
the text to generate coherent and accurate responses.

Our goal is to develop RAG-check, a method to evaluate
the performance of multi-modal RAG schemes. RAG-check
comprises three main components: (i) First, we design and
train a neural network structure that takes the selected pieces
of data by the RAG scheme by tapping into the internal com-
ponents of a RAG system and producing a relevancy score
(RS) between each selected piece and the query. For exam-
ple, when an image (or text) is selected, RS evaluates how
relevant the retrieved image (or text) is to the user query. By
assigning a relevancy score to each image, we can determine
how well the visual data aligns with the user’s intent and
the specific information requested. (ii) Second, we design
an algorithm to partition the output response by the RAG
into segments, namely spans, and categorize each span. The
span may be defined as statements, phrases, etc. Some spans
may not be scorable, e.g., if it is based on personal opinions
or feelings rather than on facts. Alternatively, a span is not
scorable if it states an analysis say in a conditional statement,
or expresses the uncertainty such as the possibility or prob-
ability of something being true. We label such statements
as “subjective” which have been also referred to as “anal-
ysis” statement type in the prior-art (Gunjal, Yin, and Bas
2024). A span that is not “subjective”, i.e., it is scorable,
is labeled as “objective”. (iii) Third, we design and train a
neural network structure which assesses the correctness of
each objective span in the view of the raw context defined as
the selected pieces of the data by the RAG. We note that in
multi-modal RAG, the raw context may be first converted to
text-based context, e.g., by using VLM for the images, and
then text-based context will be used by an LLM to generate
the response based on the query. Alternatively, the raw con-
text may be directly fed to a MLLM to generate the response
based on the query. Irrespective of the internal structure of
the RAG system, the CS assesses the accuracy of each span
of the generated text with the raw context which include the
original set of the selected pieces. Indeed, the CS measures
how correctly each part of the response reflects the informa-
tion presented in the raw context. By evaluating the correct-
ness of the text spans, we ensure that the generated responses
are not only relevant but also factually accurate based on the
multi-modal data.

The contributions of this paper are as follows: (i) We de-
sign and train a neural network structure to find the RS be-
tween the query and each selected piece of data by RAG
scheme. (ii) We perform partitioning the RAG response into
spans and categorizing each span as “subjective” or “ob-
jective”. The partitioning and categorization is performed
based on developing a dedicated algorithm as well as us-
ing GPT3.5 API. (iii) We design and train a neural network



structure to find the CS between the raw context, i.e., the
selected pieces of information from the database by RAG,
and each objective span of the generated response by RAG.
(iv) In addition to the original training, validation, and test-
ing dataset used for developing CS and RS, we also build a
database containing 5000 samples by gathering human feed-
back (HF) on the RAG selection process and the accuracy of
the RAG output spans. This collected HF was then used to
assess the performance of the designed RS and CS scores
with human evaluation for a RAG system. (v) While CS and
RS can be used to evaluate the reliability of an instance of
the response generated by RAG, we show a different use
of the tools developed in this paper by comparing the aver-
age performance of different RAG systems in terms of the
relevancy of their retrieval and the correctness of their re-
sponses.

Multimodal RAG
A RAG system is composed of a database, namely, enter-
prise database, which is usually pre-processed by partition-
ing the data into pieces and generating an embedding for
each piece. The use of embeddings serves two main pur-
poses: (i) To make a compact representation of each piece
of information in order to enhance the retrieval process. (ii)
To have speedy retrieval usually by using a similarity search
using dot product (i.e., cosine similarity).

In a multi-modal RAG, depending on the type of data, em-
beddings are derived via corresponding encoders. Nonethe-
less, all embeddings should use the same embedding space
in order to facilitate the search. In our work, we use CLIP
embedding space to generate embeddings. Each image in the
dataset is embedded using the CLIP vision encoder (CLIP-
VE), and each piece of the text is embedded using the CLIP
text encoder (CLIP-TE). The same goes for the query. Then,
the cosine similarity is found between the embedding of the
query and the embeddings in the vector database, irrespec-
tive of its original data type.

Based on such preprocessing, a vector database is pro-
duced that is composed of a pair of embeddings and the
reference to each piece of information (original data) in the
enterprise database. The RAG system is also composed of
several blocks which are used during the operation. A se-
lection block retrieves the relevant pieces of the enterprise
data by performing a cosine similarity search using the em-
beddings for each piece of the data. The final stage of the
selection process is determining the raw context which is
composed of the corresponding original pieces of the data
for the top-k entries in terms of the cosine similarity. The
last block of the RAG system is composed of a generation
block which takes the retrieved context and generates a RAG
response based on the query. In multi-modal RAG, this block
may be a MLLM (such as GPT4o), capable of directly han-
dling multi-modal data. Alternatively, this block can consist
of engines that generate a text-based context for each piece
of retrieved data, which is then collectively used as input to
an LLM (such as LLAMA or GPT3.5) to generate the re-
sponse. For instance, if the original data is in text form, it is
used as is, whereas a VLM is employed to convert any im-

Figure 2: RAG scheme structure.

ages into text descriptions. Both “selection block” and “gen-
eration block” are illustrated in Fig. 2.

RAG-Check

Our main objective in RAG-check is to evaluate both the se-
lection process (i.e., how relevant the “retrieved documents”
are to the query) and the generation process (i.e., which parts
of the LLM response are supported by the RAG context).
Note that the generation process comprises response gener-
ation and possibly text-based context generation. In partic-
ular, we introduce two quantitative measures: the relevance
score (RS) and the correctness score (CS) for multi-modal
RAG schemes to determine the performance of the selec-
tion and generation process, respectively. The RS provides
a quantitative measure between zero (least relevant) and one
(most relevant) for each retrieved piece of information. In
order to assess the quality of the generated output in more
details, we break down the generated response by RAG into
smaller pieces, namely spans, and calculate the CS for each
span. Therefore, our RAG-check model consists of three
main blocks: 1) Splitting the RAG-generated response into
spans and categorizing each span as either a subjective or
factual statement. 2) RS model. 3) CS model. Fig. 3 shows
the RAG-check model overlaid on the RAG system model.
Fig. 3 also illustrates an example scenario where the query
“Is beer more popular to drink with pizza or Coca-Cola?”
is submitted to a RAG system, and the RAG selects the 5
most relevant images from the enterprise dataset and pro-
duces a response containing 3 statements. The RS block cal-
culates the relevancy score for each image shown in Fig. 3.
Also, the generated response is broken into 3 spans where
one is “subjective” and the other two are marked with the
respective correctness score calculated by CS block. In the
following, we further explain each of these three blocks of
the RAG-check system.

Figure 3: Overlay of RAG-check structure on RAG block
diagram.



Partition and Categorization
Depending on the type of span that we define (phrase, atomic
statement, sentence, or paragraph), we split the generated
response of the RAG scheme into those spans. We define
atomic statements as full sentences that are self-sufficient in
expressing a meaning without the need to be evaluated along
with another sentence or part of the original text. For exam-
ple, consider the response as: “In the image, the desk is red
and shiny. It is made of wood that is decorated with nice in-
lays.” In breaking down the second sentence in the response,
the personal pronoun “It” has to be replaced with “The desk”
to make this statement self-sufficient without the need to
be evaluated with the first statement. We use GPT3.5 with
a proper prompt to partition the response to atomic state-
ments. The prompt is engineered in a way that whenever it is
needed, the personal pronouns (such as ‘she’, ‘he’, ‘it’, and
‘they’), demonstrative pronouns (such as ‘this’ and ‘that’),
progressive pronouns (such as ‘his’), etc. are replaced with
the proper reference from the original text.

Next, we identify whether the given span is a subjective
statement or an objective statement. A subjective statement
is one that may depend on human feelings, or is subject
to personal viewpoints, experiences, or perspectives. Sub-
jective statements are not scorable and are usually diffi-
cult to infer directly from the image or they are debatable.
We perform an algorithm to label the subjective statements.
In particular, we search for modal verbs (e.g., “could”,
“might”), opinion indicators (e.g., “believe”, “feel”), hedg-
ing phrases (e.g., “it seems,”), uncertain quantifiers (e.g.,
“some”, “many”), adverbs of frequency and degree (e.g.,
“often”, “usually”), judgmental adjectives (e.g., “impor-
tant”, “useful”), conjectures (e.g., “it is possible that”), and
comparisons or preferences (e.g., “better”, “prefer”) in our
algorithm. Note that GPT3.5 may also be used for cate-
gorization of the spans. Nonetheless, we build our system
based on our custom-tailored algorithm since it had better
match with human labeling of the statements as “objective”
and “subjective” based on our evaluation.

Relevance Score (RS) Model
As defined RS provides a measure of relevance between the
query and each piece of the raw context from the enterprise
data. The relevancy in RAG systems is usually measured
through cosine similarity between the embeddings. In this
work, we address multi-modal RAG by focusing on the sim-
ilarity between different data modalities. Specifically, we fo-
cus on text-based queries and enterprise data which consists
of images. We aim to obtain the RS between the query and
each of the raw context (image) from the enterprise database
separately. Therefore, we design and train a model that re-
ceives an image and query as an input and returns a score as
a measure of the relevancy between an image and the query.

Even though the relevancy is measured by cosine sim-
ilarity between the embeddings in RAG, this approach is
arguably not optimal. Based on the current state-of-the-
art, relevancy can be better examined by performing cross-
attention between the query and the image in a transformer
as in Fig. 4. Successive cross-attention units in the trans-

former integrate the query with the information from the im-
age patches, and through training, such structure can outper-
form the use of cosine similarity between the embeddings
of the query and image. Nonetheless, this approach incurs
significant complexity, e.g., the calculation of RS in our de-
sign using the same GPU machine is 35 times slower than
the computation of the cosine similarity. This is the primary
reason that the RAG system relies on cosine similarity to
search the enterprise data (through stored embedding in a
vector database that is produced in a preprocessing stage).

Figure 4: General structure to quantify relevancy of image
to query.

Once the transformer module is designed properly, its out-
put contains valuable information about the relevancy be-
tween the query and the image. At this point, a neural net-
work head is trained to extract this information out of the
produced embedding by the cross-attention module in the
form of a single real number between zero (representing no
relevance) and one (representing complete relevance).

Figure 5: RS model structure.

Hence, to train for RS, we propose the model as shown in
Fig. 5. This model is composed of 5 blocks discussed in the
following in more details. (i) Vision encoder, which encodes
patches of images separately. We use CLIP large as a vision
encoder which has a transformer architecture to encode im-
age patches. (ii) Projector: The embeddings of patches ob-
tained from the vision encoder need to be translated to a
language that is known by the transformer block, and the
projector performs this conversion between the output em-
beddings created by the vision encoder and the input em-
beddings to the transformer. (iii) Tokenization and embed-
ding: Each word in the text query has a corresponding token
that will be mapped to an embedding. Some tokens require
special treatment. For example, if a user query contains a
special image token (<Image>), the token will be replaced
with the embeddings of the patches. If there is no reference
to an image, the system will add image embeddings to the
beginning of user query embeddings. As a result, we have
N + P embeddings in total where N is the number of user
query tokens (with the exception of special tokens) and P
is the total number of patches. The embedding space is d
dimensional. (iv) Transformer block: The entire N +P em-
beddings are processed by the transformer, which contains



L transformer blocks each containing multi-head attention
(MHA) unit with H attention heads and a fully-connected
layers. The attention mechanism in the transformer is used
to find the relation between different patches of image and
user query. The output of the transformer unit is a vector of
N + P embeddings each with dimension d. (v) LM head:
The last generated token by the transformer, i.e., yN+P in
Fig. 5, is an embedding of size d which is given to the LM
head as input. The LM head is a fully connected layer that
maps dimension d to 1 which is trained to represent RS.

Training the entire model from scratch to learn both lan-
guage and the relationship between language and images
requires vast amounts of data and computational power.
Therefore, for the backbone of our system, we leverage the
weights from the current state-of-the-art model. Specifically,
we use LLaVA (Liu et al. 2024) weights, which include
the clip-vit-large-patch14-336p as the vision encoder and
LLAMA (Touvron et al. 2023) as the LLM decoder, to com-
bine the image patches and query tokens. We modify the
final head of LLaVA, which originally converts embeddings
into vocabulary, and replace it with a dedicated head that
maps the LLM embedding dimension d to a 1 (single out-
put). To train the RS model (specifically our head), we use a
training dataset consisting of triplets (I, sp, sn), where I is
the image, sp is a positive statement about the image I, and
sn is a negative statement about the image I. We define RS
model as M. The output of our model with the given state-
ment s is a vector y = M(I, s) of dimension N + P . For
the sake of short notation, we use y−1(I, s) to represent the
last embedding output of the LLM decoder (in Fig. 5) given
an image and a statement. We use the following template in
processing the user query s by the RS model: “Evaluate the
relevancy of the given statement with the image <image>.
Evaluate by either ‘relevant’ or ‘irrelevant’. The statement
is: {s}.”

We use a modified version of the reinforcement learning
with human feedback (RLHF) loss function (Ziegler et al.
2019) to train our RS model. In the original RLHF model,
even though we have data indicating both highly preferable
and less preferable instances, the loss function only ensures
that the highly preferable instance receives a higher score
than the less preferable one and there is no lower or upper
bound of the loss function. However, since we want to assign
a score that falls within the range of [0, 1] for any given
statement and image, we modify the RLHF loss function as
follows:

L = − log (σ (y−1(I, sp))− σ (y−1(I, sn))) , (1)

where σ is our softmax operator. During the inference, given
a pair of (I, q), we can obtain the RS as:

RS = σ (y−1(I, q)) . (2)

Correctness Score (CS) Model
When the RAG response is generated, we apply the partition
mechanism above to break the entire generated response r
into the spans, in here atomic statements {si}Li−1 where L
is the number of spans. For each of the atomic statements,
we use the categorization algorithms mentioned above and

mark the statements as subjective or objective. For objective
statements, we use CS models to obtain its correctness score.
For each atomic statement, the CS model has access to all
retrieved images along with the statement for the correctness
measure evaluation.

In terms of structure, the difference between the CS model
and the RS model is its ability to work with multiple images
rather than a single image. Hence, we exploit VILA instead
of the LLaVA model and to simplify training, we adopt the
weight from the VILA model in Fig. 5 for the CS model.
The reason for this is that LLaVA is not originally trained
on multiple images, which limits its performance when it
makes inferences on multiple images. This in turn affects the
performance of the CS score which is the fine-tuned model
with a dedicated LM head. In contrast, VILA has a similar
structure to the LLaVA model but is trained specifically for
multi-image inference.

The training process for the dedicated LM head in our
CS model is similar to that of the RS model. The template
that we add to the beginning of each statement si is as fol-
lows: “I am giving you k images. Evaluate this statement
with these images and answer by either ‘correct’ or ‘incor-
rect’: {si}”. When there is no reference to a particular piece
of context, CS is found between the statement and the entire
pieces in the raw context. However, in the calculation of CS
for a statement that has particular references to pieces of the
context, CS is found between the statement and only the re-
ferred pieces of the context in the statement. For example, if
an evaluation of the statement: sk = “A boy with a cowboy
hat is riding a white horse in <image1>”, the CS is only
computed by using the template: “I am giving you a state-
ment. Evaluate this statement and answer by either ‘correct’
or ‘incorrect’: sk”, where the embeddings of image1 are in-
serted in the position of the token <image1>.

Numerical Result
In this section, we present numerical results on the train-
ing and evaluation of our proposed RS and CS models. The
intended use case of the RS and CS score in this paper is
to evaluate any particular instances of response invoked by
a query when using a given RAG. In this process, RS as-
sesses the performance of the selection scheme of the RAG
and CS assesses the performance of the generation scheme
(response and possibly combined with context generation)
of the RAG. In the following, we first discuss the training
database, the specifics of the model and hyper-parameters,
and then provide the evaluation results for the RS and CS
models. We also evaluate the matching and alignment of our
proposed scores with the data from human evaluation. We
finally use our score to compare the average performance of
different RAG schemes.

Dataset Specification
In this subsection, we describe the dataset used for training,
validation, and evaluation of the RS and CS models. We cre-
ate and utilize a dataset comprising 121,000 samples par-
titioned randomly for training (101K samples), validation
(10K samples) and evaluation (10k samples). This dataset



is a mixture of two sources: a ChatGPT-derived database
and a database containing human evaluator samples (Gun-
jal, Yin, and Bas 2024). The human evaluator database con-
sists of image-statement pairs from the COCO image dataset
(Lin et al. 2014), where the statements were marked as ei-
ther positive or negative by human evaluators. Additionally,
we task GPT-4o with generating positive and negative state-
ments for an additional 2,000 COCO images. The statements
are then checked by human for accuracy of generation. Since
we aim to use the RLHF loss function for training, These two
datasets (GPT derived and the datasets in (Gunjal, Yin, and
Bas 2024)) are then combined such that each sample in the
final database contains a triplet: an image, a positive state-
ment, and a negative statement. An example of the dataset is
given in the following.

Figure 6: A sample entry of dataset used for training/evalu-
ation.

To evaluate the entire RAG system and measure its align-
ment with human evaluators, we created two datasets (de-
scribed above) by collecting human preferences regarding
both RAG selection and generation processes.

Model and Hyperparameters
For the structure of the RS model, we use “clip-vit-large-
patch14-336” (Radford et al. 2021) as a vision encoder, and
a projector to map the vision encoder output to proper em-
bedding. We use llama-1.5v (Touvron et al. 2023) as a lan-
guage decoder model and replace the language model final
layer head with our custom head which maps from dimen-
sion 4096 to 1. To benefit from the pre-training, we use the
trained weight of the LLaVA model for the vision encoder
projector and language model. We train our RS model on
GPU A100. For the CS model, the vision encoder is Siglip
(Zhai et al. 2023) and the language model is llama-3. Simi-
larly, the last layer of the llama-3 model is replaced with our
custom head which maps a layer of size 4096 to 1 and the
weights are taken from the VILA model. The learning rate
for both training CS and RS models are α = 10−4.

Relevance Score (RS) Performance
To evaluate our RS score, we use test data to determine how
accurately the RS model can detect samples with relevant
text to a given image. Fig. 7 shows the score histogram of
2,000 test samples for either of positive and negative state-
ments. The RS score is a number in interval [0, 1] and it is
not straightforward to evaluate it with respect to an image
and query since the dataset entries are only labeled as ‘rel-
evant’ or ‘irrelevant’. Instead, we can form a RS-labeler by
using a threshold 0 ≤ η ≤ 1 to make a hard decision as ‘rel-
evant/irrelevant’ in order to evaluate its performance based
on the evaluation dataset entries. One may also use the orig-

Figure 7: RS model performance on test data.

inal LLaVA model with the same prompt used by RS model
to form LLaVA-labeler.

Table 1 displays the values for true detection (TD) of rel-
evant samples (denoted as true0) and irrelevant samples (de-
noted as true1), as well as overall accuracy of the labeling
for both RS-labeler with optimized threshold η = 0.7 and
LLaVA-labeler. Table 1 indicates that our model compared
to the original LLaVA has greater confidence in determining
the relevance of the image to the query as the probability of
true detection for both relevant (true0) and irrelevant (true1)
samples and hence the overall accuracy for RS-labeler is
higher.

Table 1: Performance evaluation of scoring models.

Model Accuracy true0 true1
LLaVA 0.724 0.695 0.746
RS model 0.865 0.909 0.831

VILA 0.732 0.710 0.734
CS model 0.875 0.940 0.806

Fig. 8 illustrates the effect of changing the threshold on
true0, true1, and accuracy. As shown, there is a trade-off:
for example, if the threshold is decreased to near 0, almost
all samples are detected as relevant, increasing the probabil-
ity of correctly identifying relevant samples at the expense
of incorrectly labeling irrelevant samples. We optimize the
threshold η where the probabilities of detecting each type of
sample are equal to balance the detection of both relevant
and irrelevant samples. This threshold may be fine-tuned af-
ter training the RS model.

Correctness Score (CS) Performance
Using similar approach as before, we define CS-labeler us-
ing CS score with threshold η = 0.7 and VILA-labeler to
evaluate the performance of CS score based on the eval-
uation dataset. Table 1 shows the evaluation result of CS-
labeler and VILA-labeler in detecting the positive and nega-
tive statements as correct (denoted as true0) and incorrect
(denoted as true1) depending to the given image, respec-
tively. Similar conclusions hold for CS score as Table 1 indi-
cates that CS model has greater confidence in detecting the



Figure 8: RS model trade-off performance in changing
threshold.

correctness of the statement with respect to the given image
in comparison to the original VILA as the probability of true
detection for both correct (true0) and incorrect (true1) sam-
ples and hence the overall accuracy for CS-labeler is higher.

RAG Scores vs Human Evaluation
In this section, we aim to show the alignment between RS
and CS with human evaluators. For RS, we randomly se-
lect 1,000 questions from the test set of the COCO-QA
(Ren, Kiros, and Zemel 2015) dataset. We also gather 1,281
random images from the COCO validation set and use the
CLIP-ViT-large-patch14-334p model to encode both the im-
ages and the selected questions. We obtain the top-5 im-
ages for each question that had the highest cosine similarity
with the encoded query data. We collect human evaluators’
opinions on the relevance of each retrieved image for each
question. Evaluators could choose from five options: un-
sure, no relevance, mild relevance, high relevance, and com-
plete relevance corresponding to a rating 0,1, . . . , 4, respec-
tively. For each question and retrieved image pair, we cal-
culate the relevancy score with different relevancy scoring
algorithms including RS, clip–vit-large-patch14-336, clip-
vit-base-patch16, clip-vit-base-patch32, blip (Li et al. 2022).
The following algorithm was used to assess how well the
human evaluators’ judgments match with relevance scoring
measures: We consider all possible combinations among the
five retrieved images for each question. For each combina-
tion, if any image is marked as ‘unsure’ by the human eval-
uator, we disregard the sample. In cases where there is a dif-
ference in human evaluator’s opinion between two images,
we evaluate how closely the score aligns with this difference.

Specifically, for two nonzero ratings r1 and r2, where
r1 < r2, given two images for a single query, if the score
corresponding to the second image is higher, we consider
this a match and assign a reward r2 − r1. Otherwise, it
is considered unmatched, and the reward is zero. We then
calculate the average reward across all pairs of images for
each question and across all questions. Table 2 shows the
average reward for different scores including RS, clip-vit-
large-patch14, clip-vit-base-patch16, clip-vit-large-patch32,
and BLIP. The result indicates that RS has more than 20%
improvement in average reward in comparison to the other
scores used for relevancy and has a good match with human

evaluator’s opinion.
We use similar methodology to evaluate CS. We use the

same test set of 1,000 questions. We fix the selection scheme
by using the CLIP-ViT-large-patch14-336 as the vision en-
coder and cosine similarity to select the top-5 relevant im-
ages. Next, we employ LLaVA as the VLM and llama-1.5v
as the LLM. The VLM extracts text descriptions from the se-
lected images, while the LLM generates the final response.
To evaluate the responses, we partition the generated re-
sponse into atomic statements using our partitioning algo-
rithm. A human evaluator then assesses each atomic state-
ment for each question, choosing one of three options: cor-
rect, incorrect, or subjective. To measure the alignment be-
tween our proposed CS and human judgment, we calculate
the overlap between our CS and human evaluation. The re-
sults show a 91% match between the CS and the human eval-
uator’s responses.

Table 2: Alignment of RS scores with human evaluators.

Relevance Scoring Method Value
Proposed Relevance Score (RS) 0.879
CLIP-vit-large-patch14-336 0.689
CLIP-vit-base-patch32 0.620
CLIP-vit-base-patch16 0.611
BLIP-large 0.491

Evaluation of Different RAG Schemes
In this section, we use our proposed RS and CS scores to
evaluate the performance of different RAG schemes in terms
of the relevancy of retrieved entries and the correctness of
the generated responses.

RAG Selection Performance: We compare the perfor-
mance of different selection mechanisms in multi-modal
RAG systems. Fig. 9 illustrates the average relevancy score
for each of the top-5 retrieved images across 1,000 test ques-
tions. As shown, when a RAG system uses CLIP models
(clip-vit-large-patch14-336, clip-vit-base-patch32, clip-vit-
base-patch16) as the vision encoder to process the images
and queries, and cosine similarity to select the top-5 images,
the average relevancy of the retrieved images ranges from
41% to 30%. In contrast, when using the RS model to cal-
culate the RS score for all possible query-image pairs before
selecting the top-5 images, the average relevancy scores sig-
nificantly improve, ranging from 89.5% to 71%. However,
using the RS model to score all possible pairs results in a 35×
increase in computation compared to the CLIP dot product,
even when using a GPU (A100). The results show a signifi-
cant improvement in RAG selection performance compared
to using CLIP alone, demonstrating how the RS model can
enhance the RAG system beyond simply evaluating its per-
formance.

RAG Context Generation Performance: We use our
proposed CS to compare various RAG schemes that incor-
porate different VLMs and LLMs, or in general different
MLLMs. For the VLM component, one can select LLaVA or
GPT-4, and for the LLM, options include LLAMA or GPT-
3.5. Alternatively, one can combine both VLM and LLM



Figure 9: Comparison of different RAG selection mecha-
nisms with RS model.

into a single MLLM, such as GPT-4o, to directly gener-
ate responses from retrieved images. Fig. 10 illustrates the
comparison between the five RAG configurations in terms
of context and generation error. The results show that GPT-
4o outperforms the other schemes by approximately 20%,
while the remaining RAG schemes exhibit performance
within the 60-68% range.

Figure 10: Comparison of different RAG context and gener-
ation mechanism with CS model.
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