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Abstract: The agility of animals, particularly in complex activities such as running,1

turning, jumping, and backflipping, stands as an exemplar for robotic system design.2

Transferring this suite of behaviors to legged robotic systems introduces essential3

inquiries: How can a robot be trained to learn multiple locomotion behaviors4

simultaneously? How can the robot execute these tasks with a smooth transition?5

And what strategies allow for the integrated application of these skills? This6

paper introduces the Versatile Instructable Motion prior (VIM) – a Reinforcement7

Learning framework designed to incorporate a range of agile locomotion tasks8

suitable for advanced robotic applications. Our framework enables legged robots9

to learn diverse agile low-level skills by imitating animal motions and manually10

designed motions with Functionality reward and Stylization reward. While the11

Functionality reward guides the robot’s ability to adopt varied skills, the Stylization12

reward ensures performance alignment with reference motions. Our evaluations of13

the VIM framework span both simulation environments and real-world deployment.14

To our understanding, this is the first work that allows a robot to concurrently learn15

diverse agile locomotion tasks using a singular controller.16

Keywords: Legged Robots, Imitation Learning, Learning from Demonstration17

1 Introduction18

Research efforts have been invested for years in equipping legged robots with agility comparable19

to that of natural quadrupeds. Picture a golden retriever gracefully maneuvering in a park: darting,20

leaping over obstacles, and pursuing a thrown ball. These tasks, effortlessly performed by many21

animals, remain challenging for contemporary legged robots. To accomplish such tasks, robots need22

not only master individual agile locomotion skills like running and jumping but also the capacity23

to adaptively select and configure these skills based on sensory inputs. We regard this kind of24

complicated task requiring highly agile locomotion skills as advanced parkour for legged robots.25

The inherent ability of quadrupeds to smoothly execute diverse locomotion skills across varied tasks26

inspires our pursuit of a control system with a general locomotion motion prior that includes these27

skills. In this direction, we introduce a novel RL framework, Versatile Instructable Motion prior (VIM)28

aiming to endow legged robots with a spectrum of reusable agile locomotion skills by integrating29

existing agile locomotion knowledge.30

Historically, agile gaits[1, 2, 3] for legged robots have been sculpted using model-based or optimiza-31

tion methods. While promising, these methods demand significant engineering input and precise state32

estimation. Learning-based controllers enable robots to walk or run while addressing these limitations,33

although they still fall short of agility. Imitation-based controllers are also proposed to learn from34

motion sequences from animals [4] or optimization methods [5]. Research on incorporating sensory35

information, such as visual observations [6, 7, 8, 9, 10, 11, 12] or elevation maps [13, 14] further36

enables legged robots to traverse complex terrain like stones. In spite of the encouraging results, most37

of these works focus on building a single controller from scratch, even though much of the learned38
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Figure 1: Learning Agile Locomotion Skills from Reference Motions: Our system learns a single instructable
motion prior from a diverse reference motion dataset.

locomotion skills could be shared across tasks. Recent works start building a reconfigurable low-level39

motion prior [15, 16, 17, 18, 19, 20] for downstream applications. However, the previous methods40

failed to make the best use of existing skills to learn diverse locomotion skills with high agility.41

In this work, we focus on building low-level motion prior to utilize existing locomotion skills42

in nature and previous optimization methods, and learn multiple highly agile locomotion skills43

simultaneously, as shown in Figure 1. Even though we cannot fully comprehend the agility of animals44

and lack a unified framework for model-based controls, we recognize that motion sequences offer a45

consistent representation of diverse agile locomotion skills. Our motion prior extracts and assimilates46

a range of locomotion skills from reference motions, effectively mirroring their dynamics. These47

references comprise motion capture (mocap) sequences from quadrupeds, augmented generative48

model sequences complementing mocap data, and optimized motion trajectories. Throughout the49

training phase, we translate varied reference motion clips into a unified latent command space, guiding50

the motion prior to recreate locomotion dynamics based on these latent commands and the robot’s51

inherent state.52

For legged robots, we define a locomotion skill as the ability of the robot to produce a specific53

trajectory. To break down the intricacies of movement, we classify it into two primary facets:54

Functionality and Style. Functionality pertains to the fundamental movement objectives a robot55

aims to achieve, such as advancing forward at a predefined speed. Style, in contrast, delves into56

the specific mechanics of how a robot accomplishes a task. To illustrate, two robots might be57

programmed to progress at an identical speed, but the intricacies of their movement—like step58

size or frequency—might differ considerably. Simultaneously instructing a robot in both these59

domains is nontrivial[21]. Drawing inspiration from how humans learn complicated tasks, especially60

in fields demanding physical prowess like athletics, we identify three core feedback modalities:61

objective performance metrics, qualitative assessments, and granular kinematic guidance. Adopting62

this structured feedback approach, our robot starts with mastering the basic functional objective and63

subsequently turns into refining the detailed locomotion gaits.64

65

66

Figure 2: Real-Robot Trajectory. Our robot exhibits back-flipping skill in the second row by imitating the
reference motion in the first row.

By incorporating diverse reference motions and our reward design, our Versatile Instructable Motion67

prior (VIM) learns diverse agile locomotion skills and makes them available for intricate downstream68

tasks. With our VIM, we enable legged robots to perform Advanced Robotics Parkour in the real69

world. We also evaluate our method in the simulation and real world, as Figure 2. Our method70

significantly outperforms baselines in terms of final performance and sample efficiency.71
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Figure 3: Versatile Instructable Motion prior (VIM): Reference motion encoder maps reference motions into
latent skill space indicating target robot pose and low-level policy output motor command. Reward Design:
Our includes Functionality reward and Style reward.

2 Related Work72

Blind Legged Locomotion: Classical legged locomotion controllers [22, 23, 24, 25, 1, 26] based73

on model-based methods [27, 28, 29, 30, 31, 32, 33] and trajectory optimization [34, 3] have shown74

promising results in diverse tasks with high levels of agility. Nonetheless, these methods normally75

come with considerable engineering tuning for the specific task, high computation requirements76

during deployment, or fragility to complex dynamics. Learning-based methods [6, 35, 13, 36, 37, 38]77

controllers are proposed to offer robust and lightweight controllers for deployment at the cost of78

offline computation. Peng et al. [39] developed a controller producing non-agile life-like gaits79

by imitating animal. Though previous works offer robust or agile locomotion controllers across80

complex environments, these works focus on finishing a single task at a time without reusing previous81

experience. Smith et al. [40] utilize existing locomotion skills to solve specific downstream tasks.82

Vollenweider et al. [41] utilize multiple AMP [42] to develop a controller to solve a fixed task set. In83

this paper, our motion prior captures diverse agile locomotion skills from reference motions generated84

by trajectory optimization and provides them for intricate future downstream tasks.85

Motion Priors: Due to the notorious low sample efficiency and considerable effort required for86

reward engineering of RL, low-level skill pretraining has drawn growing attention in recent years.87

Singh et. al [15] utilize the flow-based model to build an actionable motion prior with motion88

sequences generated by scripts. More recent works [16, 17, 18, 19, 43, 20] focus on building89

low-level motion prior for downstream tasks but fail to include diverse highly agile locomotion90

skills. In this work, we build motion prior with reference motions consisting of mocap sequences,91

synthesized motion sequences, and trajectories from optimization methods and learn multiple highly92

agile locomotion skills with a single controller.93

3 Learn Versatile Instructable Motion Prior94

We present the Versatile Instructable Motion prior (VIM), depicted in Figure 3, designed to acquire a95

wide range of agile locomotion skills concurrently from multiple reference motions. The development96

of our motion prior involves three stages: assembling a comprehensive dataset of reference motions97

sourced from diverse origins, crafting a motion prior that processes varying reference motions and the98

robot’s proprioceptive feedback to generate motor commands, and finally, utilizing an imitation-based99

reward mechanism to effectively train this motion prior.100

3.1 Reference motion dataset101

Our primary objective was to curate a skill set for the robot that covers diverse functions and agility102

levels, equipping it to handle complex downstream tasks. Our dataset encompasses reference motions103

for locomotion skills, including but not limited to canter, pace, walk, trot, turns, backflips, and various104

jumps. These reference motions are derived from:(a) mocap data of quadrupeds, specifically a subset105

from previous work [44], despite its inherent challenges like noise due to the unpredictability of106

animal behavior; (b) synthesized (Syn) motions generated using a generative model [44], aimed at107

enhancing dataset diversity by capturing challenging locomotion actions;(c) motions crafted through108

trajectory optimization methods (Opt).109
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To address the methodology disparities between quadrupeds and our robot, we retarget both mocap110

and synthesized sequences to our robot as Peng et al. [4]. While mocap and synthesized motions111

offer extensive data, not all sequences may be practically achievable by the robot. Thus, our dataset112

is supplemented with motion sequences from trajectory optimization, emphasizing intricate moves113

like jumps and backflips. The comprehensive reference motion list can be found in Table 2. Each114

trajectory in our dataset, represented as (sref
0 , sref

1 , · · · , sref
T ), focuses on the robot’s trunk and joint115

movements, excluding specific motor commands which are absent in the captured and synthesized116

data. We denote the dataset as D = {(sref
0 , sref

1 , · · · , sref
T )i}Ni=1.117

3.2 Motion Prior Structure118

Our motion prior consists of a reference motion encoder, and a low-level policy. Reference motion119

encoder maps varying reference motions into a condensed latent skill space, and low-level policy120

utilizes our imitation reward, reproduces the robot motion given a latent command.121

Reference motion encoder: Our reference motion encoder Eref(·) maps segments of reference motion122

to latent commands in a latent skill space that outline the robot’s prospective movement. These123

segments span both imminent and distant future states, expressed as ŝref
t = {sref

t+1, s
ref
t+2, s

ref
t+10, s

ref
t+30}.124

We model the latent command as a Gaussian distribution N (Eµ
ref(ŝ

ref
t ),Eσ

ref(ŝ
ref
t )) from which we125

draw a sample at each interval to guide the low-level policy.126

To maintain a temporal-consistent latent skill space, our training integrates an information bottle-127

neck [45, 46] objective LAR, where the prior follows an auto-regressive model [47]. Specifically,128

given the sampled latent command for the previous time step zt−1, we minimize the KL divergence129

between the current latent Gaussian distribution and a Gaussian prior parameterized by zt−1,130

LAR(ŝ
ref
t , zt−1) = βKL

(
N (µt, σ

2
t ) ∥ N (αzt−1, (1− α2)I)

)
,

where α = 0.95 is the scalar controlling the effect of correlation, β is the coefficient balancing131

regularization.132

Low-level policy training: Our low-level policy πlow takes latent command zt representing the133

desired robot pose and robot’s current proprioceptive state st as input, and outputs actual motor134

commands at for the robot, where st is encoded with a proprioception encoder Eprop. We train135

low-level policy and reference motion encoder using PPO [48] in an end-to-end manner. Additionally,136

we introduce a motion embedding for the critic to distinguish diverse reference motions. Episodes137

initiate with randomized starting time steps from the dataset to avert overfitting and conclude when138

the root pose tracking error escalates beyond an acceptable range.139

3.3 Imitation Reward for Functionality and Style140

Given the formulation of our motion prior, the robot learns diverse agile locomotion skills with our141

imitation reward and reward scheduling mechanics. Our reward offers consistent guidance, ensuring142

the robot captures both the functionality and style inherent to the reference motion.143

Learning Skill Functionality: To mirror the functionality of the reference motion, we translate the144

root pose discrepancy between agent trajectories and reference motion into a reward. The functionality145

reward rfunc is subdivided into tracking rewards for robot root position rpos
func and orientation rori

func.146

Recognizing the distinct importance of vertical movement in agile tasks, the root position tracking is147

further split into rewards for vertical rpos-z
func and horizontal movements rpos-xy

func .148

rfunc(st, ŝ
ref
t ) = wori

func ∗ rori
func + wpos-xy

func ∗ rpos-xy
func + wpos-z

func ∗ rpos-z
func

The specific formulation of our functionality rewards is provided as follows, which is similar to149

previous work[4].150

rori
func(st, ŝ

ref
t ) = exp

(
−10

∥∥q̂root
t − qroot

t

∥∥2)
151

rpos-xy
func (st, ŝ

ref
t ) = exp

(
−20

∥∥x̂root-xy
t − xroot-xy

t

∥∥2) rpos-z
func (st, ŝ

ref
t ) = exp

(
−80

∥∥x̂root-z
t − xroot-z

t

∥∥2)
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where q, q̂ and x, x̂ denote the root orientation and position from both the robot and reference motion,152

respectively. Notably, in contrast to previous work [4], we allocate a greater emphasis on root height153

in our reward, crucial for mastering agile locomotion skills such as backflips and jumps.154

Learning Skill Style: Capturing the style of a reference motion, in addition to its functionality,155

enriches the application by meeting criteria such as energy efficiency, robot safety, and facilitating156

human-robot interaction. Drawing inspiration from how humans learn - starting by emulating the157

broader style before focusing on intricate joint movements - our robot first mimics the broader158

locomotion style with an adversarial style reward and later refines its technique with a joint angle159

tracking reward.160

Adversarial Stylization Reward: To swiftly encapsulate the style of the locomotion skill, we161

train distinct discriminators Di, i = 1..n for all n reference motions separately to distinguish162

robot transitions from the transition of the specific reference motion[42, 41] and use the output to163

provide high-level feedback to the agent. Specifically, our discriminator is trained with the following164

objective:165

argmin
Di

E
dM
i (s,s′)

(Di(s, s
′)− 1)

2
+ E

dπ
i (s,s

′)
(Di(s, s

′) + 1)
2

where dMi (s, s′), dπi (s, s
′) denote the transition distribution of the dataset and policy for ith reference166

motion respectively.167

For each reference motion, the likelihood from the discriminator is then converted to a reward with:168

radv
style(st, s

′
t) = 1− 1

4
∗ (1−D(st, s

′
t))

2
.

Initially, our adversarial stylization reward provides dense reward and enables the robot to learn a169

credible gait, but it can not provide more detailed instructions as the training proceeds, which leads to170

mode collapse and unstable training.171

Joint Angle tracking Reward: On the other end, joint angle tracking reward [49, 17] provides sparse172

but stable instruction for the robot to mimic the gait of reference motion. Similar to our root pose173

tracking reward, our joint angle tracking reward has the following formulation:174

rjoint
style(st, ŝ

ref
t ) = exp

−5
∑

j∈joints

∥∥∥q̂j
t − qj

t

∥∥∥2
+ exp

−20
∑

f∈feet

∥∥∥x̂f
t − xf

t

∥∥∥2


where qj
t , q̂

j
t are the joint angle of robot and reference motion and eft , ê

f
t are the end-effector positions175

of robot and reference motion.176

When learning diverse agile locomotion skills, only combining the joint angle tracking reward and177

functionality reward leads to the failure of tracking functionality or tracking the style of reference178

motion. Since different locomotion skills are sensitive to different rewards.179

Stylization Reward Scheduling: To take the best of both worlds, we propose to use both adversarial180

stylization reward and joint angle tracking reward with a balanced scheduling mechanism. Consider-181

ing the discriminator as a "coach", we utilize the mean adversarial reward as an indication of how the182

coach is satisfied with the current performance. When it’s not satisfied with the current performance183

of the robot, it provides detailed instruction for the robot to learn. Specifically our stylization reward184

follows:185

rstyle(st, ŝ
ref
t ) = wadv

style ∗ radv
style + wjoint

style ∗ r
joint
style + wadv

style ∗ (1− E
st∈S

(radv
style(s, s

′))) ∗ rjoint
style

With the given formulation, our stylization reward provided dense rewards during the beginning of186

training, enabling the robot to quickly catch the essence of different agile locomotion skills. Our187

stylization reward also provides detailed instruction as the training proceeds, enabling the robot to188

refine its gait and lead to more stable training.189
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Figure 4: Real World Jump Forward Trajectory Comparison: Each row represents a single trajectory
(From top to bottom: Reference Motion, VIM, GAIL, Motion Imitation).

Table 1: Evaluation of Motion Prior in Simulation: We compare Horizontal and Vertical Root Position (Root
Pos (XY), Root Pos (Height)), Root Orientation (Root Ori), Joint Angle, and End Effector Position (EE Pos)
tracking errors and RL objectives of all methods. Our methods outperform all baselines in terms of smaller
tracking errors, higher episodic returns, and longer episode lengths. GAIL baseline shows a smaller root position
tracking error since it can’t follow the reference motion leading to early termination of the episode.

Tracking Error ↓ RL Objectives ↑
Method Root Pos (XY) Root Pos (Height) Root Ori Joint Angle EE Pos Episode Return Episode Length

VIM 1.24±0.62 0.01±0.02 0.11±0.06 0.08±0.06 0.03±0.03 13.313±11.48 166.783±120.217

VIM (w/o Scheduling) 1.28±0.67 0.009±0.0123 0.1±0.06 0.1±0.08 0.05±0.04 13.963±11.395 179.047±121.788

Motion Imitation 1.39±0.66 0.0077±0.0114 0.11±0.05 0.25±0.14 0.14±0.08 9.536±9.049 143.393±114.514

GAIL 1.04±0.86 0.03±0.03 0.13±0.05 0.17±0.1 0.09±0.05 3.586±6.166 54.723±75.984

3.4 Solving Downstream Tasks with Motion Prior:190

For intricate tasks like jumping over gaps, addressing them from scratch presents challenges including191

acquiring necessary agile locomotion skills, such as jumping and running within limited interactions,192

and the intensive engineering needed to harmonize the reward for top-tier tasks while regularizing193

the robot’s motion. With a low-level motion prior, robots can instantly harness existing skills194

encapsulated within the prior and channel their efforts into high-level strategizing. For each distinct195

downstream task, we train a high-level policy πhigh takes the high-level observation ohigh and outputs196

latent command for low-level motion prior to utilize the existing agile locomotion skills: at =197

πlow(πhigh(ohigh,Eprop(st))).198

4 Experiments199

4.1 Evaluation of Learned Motion Priors200

Our system’s proficiency in learning a range of agile locomotion skills from the reference motion201

dataset (discussed in Sec 3.1) is initially assessed.202

Baselines: We benchmark our method against two representative baselines: Motion Imitation [4,203

17, 20] baseline represents a thread of recent works whose imitation rewards are defined solely with204

errors between current robot states and the corresponding reference states. Generative Adversarial205

Imitation Learning (GAIL) baseline represents a thread of recent work [18], whose imitation reward206

is solely provided by the discriminator trained to distinguish trajectories generated by the policy from207

the ground truth reference motions. Given that our reference motions consist only of state sequences,208

they offer less supervision compared to expert action sequences, rendering motion prior learning more209

challenging. Each method trains for 2× 109 iterations across 3 random seeds. Both our technique210

6



Table 2: Evaluation of Motion Prior in Real (Left): We collect representative metrics for different locomotion
skills with corresponding metrics from reference motion. N/A denotes completely failed skills in real. Full
Reference Motion List (Right)

Metrics VIM Motion Imitation GAIL Reference Motion Skill Name Source

Height (Jump While Running) (m) 0.50±0.003 0.42±0.01 0.41±0.04 0.53±0.005 Walk Mocap
Height (Jump Forward) (m) 0.44±0.01 0.42±0.01 0.27±0.006 0.59±0.006 Trot Mocap
Height (Jump Forward (Syn)) (m) 0.52±0.01 N/A N/A 0.55±0.007 Jump while Running Mocap
Height (Backflip) (m) 0.62±0.01 0.49±0.01 N/A 0.60±0.005 Right Turn Mocap
Distance (Jump While Running) (m) 0.48±0.08 0.35±0.02 0.40±0.003 0.56±0.008 Left Turn Mocap
Distance (Jump Forward) (m) 0.76±0.05 0.40±0.01 0.10±0.002 0.82±0.003 Backflip Opt
Distance (Jump Forward (Syn)) (m) 0.49±0.04 N/A N/A 0.54±0.007 Jump Forward (Syn) Syn
Linear Velocity (Pace) (m/s) 0.76±0.01 0.97±0.07 0.50±0.02 0.72±0.05 Left Turn (Syn) Syn
Linear Velocity (Canter) (m/s) 1.49±0.15 N/A N/A 3.87±0.17 Jump Forward Opt
Linear Velocity (Walk) (m/s) 0.90±0.04 0.96±0.06 0.53±0.58 0.97±0.42 Canter Mocap
Linear Velocity (Trot) (m/s) 1.33±0.17 1.05±0.02 0.93±0.01 1.16±0.12 Pace Mocap
Angular Velocity (Left Turn) (rad/s) 1.71±0.04 0.00±0.00 0.91±0.04 1.01±0.05

Angular Velocity (Right Turn) (rad/s) 0.81±0.02 0.62±0.02 0.63±0.05 0.41±0.09

Joint Angle Tracking Error (rad2/joint) 0.10±0.08 0.27±0.16 0.22±0.10 -

and the Motion Imitation baseline adopt identical reward scales for all motion error-tracking rewards.211

Likewise, our approach and GAIL maintain the same scale for adversarial stylization rewards.212

Simulation Evaluation: In the simulation, we measure average imitation tracking errors for various213

agile locomotion skills, episode returns, and trajectory lengths across random seeds. Specifically as214

listed in Table 1, where the tracking error of root pose represents the ability of the robot to reproduce215

the locomotion skill, and the tracking error of joint angle and end effector position represents the216

ability of the robot to mimic the style of reference motion. Our method achieves a similar root217

pose tracking error as the motion imitation baseline with a much smaller joint angle tracking error.218

This shows our method striking a balance between functionality and style, superior to the motion219

imitation baseline that focuses solely on functionality. Meanwhile, the GAIL baseline failed to learn220

the functionality of the reference motions which leads to short episode length and the least episode221

return. We surmise that the GAIL baseline’s inadequacy arises for two main reasons: First, exclusive222

reliance on adversarial stylization reward does not offer temporally consistent guidance throughout223

skill learning due to misaligned rewards across timesteps. Second, the mode collapse issue inherent224

in adversarial training hinders the robot from mastering highly agile skills, such as backflipping. The225

shortcomings of the Motion Imitation baseline may stem from the challenges of balancing different226

terms and selecting suitable hyperparameters when concurrently learning multiple agile locomotion227

skills. Comparing our VIM with and without stylization reward scheduling, we find the former228

exhibits enhanced style tracking performance, underscoring the value of stylization reward scheduling229

in refining robot gait tracking.230

Real World Evaluation: We gauge learned agile locomotion skills in real-world scenarios. Due to the231

lack of precise robot pose, we resort to specific metrics tailored to different locomotion skills, detailed232

in Table 2. For Jump While Running & Jump Forward & Jump Forward (Syn) &233

Backflip, we measure the jumping height and jumping distance. For Pace & Canter &234

Walk & Trot and Left Turn & Right Turn, we measure the linear and angular velocity,235

respectively. Results reveal that our method retains most of the reference motion functionality. The236

only significant deviation, observed in the Canter motion, arises from inherent differences between237

animal movement (its source) and our robot’s capabilities. Even with comparable root pose tracking238

errors in simulations, our method outshines the Motion Imitation baseline in real-world metrics like239

jumping height, distance, and velocity tracking error. This suggests that mirroring the style of the240

reference motion improves sim2real transfer for natural gaits. GAIL baseline struggled to reproduce241

most real-world locomotion skills. A visual comparison of real-world trajectories is available in242

Figure 4, showing our method’s superiority in capturing both motion functionality and style.243

4.2 Evaluation on Downstream Tasks244

Downstream Tasks: Our task suite comprises: Following Command: This involves directing245

the robot to move with specific linear and angular velocities, sampled uniformly between 0 ∼ 2246

m/s and −2 ∼ 2 rads/s. In our motion prior, the robot is trained to move and turn at the reference247

motion’s speed; hence, to follow a command precisely, the high-level policy should smoothly248

interpolate between different speeds. Jump Forward: This task requires the robot to execute a249

jump during a forward run. We have adapted a subset of jumping rewards from CAJun [50] to evaluate250

policy interpolation between jumping and running motions within a fixed timeframe. Following251
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PPO AMP HRL (w AMP) VIMFigure 5: Downstream Tasks Evaluation in Simulation: Solid line and shaded area denote the mean and std
across random seeds. Our system outperforms all baselines on all tasks.
Table 3: Downstream Tasks Evaluation in Real: We compare Following Command + Jump
Forward policies of all methods in real, and N/A denotes completely failed skills in real. Our methods
outperform all baselines in real for most metrics.

Metrics (Vel for Velocity) Ours AMP PPO HRL

Max Linear Vel (m/s) 1.78±0.13 1.74±0.21 1.75±0.26 1.70±0.08

Max Angular Vel (Left) (rad/s) 1.78±0.004 1.07±0.09 2.24±0.05 0.00±0.00

Max Angular Vel (Right) (rad/s) 2.05±0.02 0.83±0.09 1.75±0.19 0.95±0.37

Jump Distance (m) 0.50±0.07 0.00±0.00 N/A N/A
Jump Height (m) 0.50±0.02 0.38±0.01 N/A N/A

Command + Jump Forward: Here, the robot must either jump forward or adjust to changing252

commanded speeds. To optimize episode return, the robot should not only use the agile locomotion253

skills from the reference motion dataset but also develop unobserved skills like executing sharp turns.254

Baselines: Considering the baseline’s subpar performance in low-level motion prior training, we255

compare our system with three representative baselines without pre-trained low-level controller:256

PPO [48]: Demonstrates controllers trained exclusively on downstream task rewards. AMP [42]257

utilize existing reference motion to provide styling reward in an adversarial imitation learning manner258

and learn the policy for the downstream task while mimicking the behavior of reference motions. Jain259

et al.Hierarchical Reinforcement Learning (HRL) adapts from [51] which learns a high-level policy260

sending latent commands to a low-level motor controller. HRL resembles a broad category of prior261

works that decompose temporally extended reasoning into sub-problems [52, 53, 54, 55, 56, 57, 58].262

For a fair comparison, we made modifications like removing the trajectory generator in [51], using263

PPO for AMP and HRL, and supplying full reference motion data to AMP and HRL integrated with264

AMP.265

Evaluation in Simulation & Real World: We train all methods on each downstream task for 4×108266

environment samples with 3 random seeds. The simulation results are detailed in Figure 5, and267

real-world results are provided in Table 3. For the Following Command task, while all methods268

mastered basic locomotion, ours excelled in efficiency and smoothly transitioned between diverse269

linear and angular velocities. The other tasks, Jump Forward and Following Command +270

Jump Forward, demanded advanced jumping abilities, which baselines couldn’t emerge. These271

baseline methods either continuously moved forward, remained grounded when prompted to jump, or272

toppled to evade energy consumption penalties. In contrast, our system seamlessly bridged jumping273

and running actions, securing the highest episode return. Despite providing with a comprehensive274

reference motion dataset, baselines couldn’t harness the skills. This shortcoming possibly stems from275

the challenge of deriving agile locomotion skills from the dataset using only adversarial stylization276

rewards, mirroring the GAIL baseline’s poor performance in low-level motion prior training.277

5 Conclusion278

In this paper, we propose Versatile Instructable Motion prior (VIM) which learns agile locomotion279

skills from diverse reference motions with a single motion prior. Our results in simulation and in the280

real world show that our VIM captures both the functionality and the style of locomotion skills from281

reference motions. Our VIM also provides a temporally consistent and compact latent skill space282

representing different locomotion skills for different downstream tasks. With agile locomotion skills283

in our VIM, complex downstream tasks can be solved efficiently with minimum human effort.284
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