Training Deep Learning Algorithms on Synthetic Forest Images for
Tree Detection
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Fig. 1: Predictions by ResNeXt-101 on synthetic RGB images (top row) and by ResNet—-101 on depth images (bottom row). The models achieve qualitatively good results
under challenging simulated conditions such as light variation, occlusion, instances overlapping and weather effects.

Abstract— Vision-based segmentation in forested environ-
ments is a key functionality for autonomous forestry operations
such as tree felling and forwarding. Deep learning algorithms
demonstrate promising results to perform visual tasks such as
object detection. However, the supervised learning process of
these algorithms requires annotations from a large diversity
of images. In this work, we propose to use simulated forest
environments to automatically generate 43k realistic synthetic
images with pixel-level annotations, and use it to train deep
learning algorithms for tree detection. This allows us to ad-
dress the following questions: i) what kind of performance
should we expect from deep learning in harsh synthetic forest
environments, ii) which annotations are the most important
for training, and iii) what modality should be used between
RGB and depth. We also report the promising transfer learning
capability of features learned on our synthetic dataset by
directly predicting bounding box, segmentation masks and
keypoints on real images.

I. INTRODUCTION

Deep learning gained much attention in the field of
forestry as it can implement knowledge into machines to
tackle problems such as tree detection or tree health/species
classification [I]]. However, deep learning is a data centric
approach that needs a sufficient amount of annotated images
to learn distinctive object features. Creating an image dataset
is a cumbersome process requiring a great deal of time
and human resources, especially for pixel-level annotations.
Accordingly, few datasets specific to forestry exist, and this
limits deep learning applications, as well as task automation
requiring high-level cognition.

In order to avoid hand-annotation and include as many
realistic conditions as possible in images, we propose to fill
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the data gap by creating a large dataset of synthetic images
containing over 43k images, which we name the SYN-
THTREE43K dataset. Based on this dataset, we train Mask
R-CNN [2]], the most commonly-used model for instance
segmentation [I]], and measure its performances for tree
detection and segmentation. Because our simulator allows for
quick annotation, we also experiment with keypoint detection
to provide information about tree diameter, inclination and
felling cut location.

Even though the detection performances obtained on SYN-
THTREE43K will not directly transfer to real world images
because of the reality gap, a result analysis can guide us
towards building an optimal real dataset. Notably, synthetic
datasets can be used to evaluate preliminary prototypes [3],
and sometimes they can improve detection performance
when combined with real-world datasets [3]], [4]]. In that
sense, we shed light on which annotations are the most
impactful on learning, and if adding the depth modality in the
dataset is pertinent. Lastly, we demonstrate the reality gap
by qualitatively testing the model on real images, showing
transfer learning potential.

II. RELATED WORK

Deep learning for tree detection in forestry has demon-
strated success on relatively small real image datasets. For
instance, [5] implement a U-Net architecture to perform
tree specie classification, detection, segmentation and stock
volume estimation on trees. When trained on their (private)
dataset of 3k images, they achieve 97.25 % precision and
95.68 % recall rates. Similarly, IE]] uses a mix of visible and
thermal images to create a dataset of 2895 images extracted
from video sequences, and solely include bounding box
annotations. They trained five different one-shot detectors



on their dataset and achieved 89.84 % precision, and 8§9.37 %
F1-score.

We believe these aforementioned methods could bene-
fit from training on synthetic images. The Virtual KITTI
dataset [3]] is one of the first to explore this approach to train
and evaluate models for autonomous driving applications.
By recreating real-world videos with a game engine, they
generate synthetic data comparable to real data. The models
trained on their virtual dataset show that the gap between
real and virtual data is small, and it can substitute for data
gaps in multi-object tracking. Meanwhile, explore object
detection using a synthetic dataset for autonomous driving,
and they report that training models on realistically rendered
images could produce good segmentations by themselves on
real datasets while dramatically increasing accuracy when
combined with real data. Quantitatively, they improved per-
class accuracy by more than 10 points (and in some cases,
as far as 18.3 points).

Although synthetic datasets cannot completely replace real
world data, multiple works demonstrate that it is a cost-
effective alternative that offers good transferability [3], [4],
[7]. Therefore, developing synthetic forest datasets will po-
tentially improve the current state of tree perception methods
in forestry.

III. METHODOLOGY

In this section, we detail how SYNTHTREE43K was cre-
ated. Then, we describe the deep learning architecture and
backbones, as well as the training details.

A. Simulator and Dataset

SYNTHTREE43K is generated by employing the Unityﬂ
game engine to render realistic virtual forests. This virtual
world generator can be configured via Gaizﬂ to procedurally
terra-form the landscape, texture the terrain and spawn
objects. In this simulation, the forest density is controlled
through various spawn rules such as altitude, terrain slope
and the number of neighbouring objects in a given area.

The forest is populated with realistic tree models from
Nature Manufactureﬂ In order to extend visual variability,
texture on the six tree models is modified to create 17 new,
distinctive tree models. Other object models from Nature
Manufacture are also included in scenes such as grass,
stumps, scrubs and branches.

For additional realism and variety, meteorological condi-
tions are also simulated in this virtual world. We simulate
snow using snow texture, and wet effect using decals. Particle
systems are employed to recreate snowflakes, raindrops or
fog effects. To simulate different moments of the day, we
adjust illumination to morning, daylight, evening and dusk.
The object shadows adapt to illumination cast on the scene.

From each generated scene, we add between 200-1000
images to the dataset. Each image includes bounding box,
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Fig. 3: A general view of a simulated forest environment. In this scene, three terrain
textures are used to simulate moss, roots and mud conditions. The tree models are fir
and beech, accompanied by scrubs, branches, grass and stomps under a morning light
effect.

segmentation mask and keypoint annotations. The pipeline
annotates trees within a 10 m radius from the camera, which
corresponds to the reach of a harvester [8]]. Five keypoints are
assigned per trees to capture the essential information that
an autonomous tree felling system would need: the felling
cut location, diameter and inclination.

Collectively, this pipeline can generate an unlimited
amount of synthetic images with an annotation speed of
approximately 20 frames/minute, for we consider RGB and
depth images as one frame. Overall, SYNTHTREE43K con-
tains over 43k RGB and depth images, and over 162k
annotated trees.

B. Models

The Mask R-CNN architecture is composed of i) a con-
volutional feature extraction backbone, ii) a Region Proposal
Network (RPN), and iii) prediction heads. The original Mask
R-CNN network is slightly adapted for our tree detection
problem, in that, an optional keypoint branch is added to
the prediction head. Therefore, it can be used for classifica-
tion, bounding box regression, segmentation, and keypoint
prediction.

Predictions are made via a two-stage process. In the first
stage, the RPN proposes regions of interests (Rol) from the
feature maps of the backbone. These correspond to a region
that potentially contains a tree. The generation of a Rol
follows along the default nine box anchors, corresponding
to three area-scales (8, 16 and 32) and three aspect ratios
(0.5, 1.0, and 2.0). In our experiment, we employ three
different backbone architectures: ResNet-50, ResNet-101 [9],
and ResNeXt-101 [10]. We use ResNet backbone for feature
extraction as it gives excellent gains in both accuracy and
speed, which we use as a baseline for our results. When
comparing the 50-layer to its 101-layer counterpart, there is
a possibility that they perform similarly when the dataset is
small [2]], yet we expect that using SYNTHTREE43K will be
enough to demonstrate that the 101-layer can outperform the
50-layer. In regards to ResNeXt, it introduces a cardinality



hyper-parameter, which is the number of independent paths,
providing a way to adjust the model capacity without going
deeper or wider. More details about backbone parameters are
provided in [lable

TABLE I. Backbone parameters. The number of learnable parameters (#Params),
computational complexity (GFLOPs) and frames per second (FPS) at inference time
on 800 x 800 images.

Backbone #Params  GFLOPs  FPS
ResNet-50-FPN 25.6M 3.86 18
ResNet-101-FPN 447M 7.58 15

ResNeXt-101-FPN 4 M 7.99 10

Subsequently, RolAlign [2] uses bilinear interpolation to
map the feature maps of the backbone into a 7 x 7 input
feature map within each Rol area. Features from each Rol
then go through the network head to simultaneously predict
the class, box offset, binary segmentation mask, and an
optional binary mask for each keypoint.

C. Training Details

We use Detectron2 [11f] implementations of Mask R-
CNN. It has been shown that pre-training helps regularize
models [12], and facilitate transfer learning to a target
domain [[13]]. Therefore, the Mask R-CNN models employed
in our experiments are pre-trained on the COCO Person Key-
point dataset [[14]], which is a large-scale dataset containing
more than 200k images and 250k person instances labeled
with 17 keypoints per instance. Before training or fine-tuning
the models, the first two convolutional layers of the backbone
are frozen. The hardware for model training and testing is
an NVIDIA RTX-3090-24GB GPU and an Intel Core i9-
10900KF CPU.

To train the model, SYNTHTREE43K is split into three
subsets: 40k in the train set, 1k for the validation set and 2k
in the test set. The model learns from the train set by using
an stochastic gradient descent (SGD) optimizer with a mo-
mentum of 0.9, and a weight decay of 0.0005. During train-
ing, we improve model generalization, and reduce dataset
overfitting by employing data augmentation techniques such
as image resizing, horizontal flipping, sheering, saturation,
rotation, and cropping. No data augmentations are used at
validation and test time. Model overfitting is monitored via
the validation set, which is also used for early stopping.

Depth images are gray scales of 8-bit 1-channel. At train
time, they are converted to 8-bit 3-channel to fit the RGB
format from pre-trained models. In our case, a single image
channel could be possible, but it would require randomly
initiated models, which takes an enormous amount of pre-
training time for backbones such as ResNet and ResNeXt.

Hyperparameter  optimization is conducted for
ResNet-50-FPN only, and these hyperparameters
are used for every model. We use early stopping based
on the highest validation set Average Precision (AP) to
determine when to stop training.

IV. EXPERIMENTAL RESULTS

We base our performance evaluation on the standard
COCO metrics for each task, AP*® and AP™*% we train
Mask R-CNN on our synthetic forest images and com-
pare detection performance between the three backbones
and RGB/Depth modality. We also conduct an analysis of
keypoint prediction by measuring the pixel error of each
predicted keypoint. Lastly, we test detection on real images,
qualitatively demonstrating the reality gap between synthetic
and real images.

A. Tree Detection and Segmentation

Six models, corresponding to all combinations between
the three different backbones and two modalities, are trained
and tested on SYNTHTREE43K. From we observe
that all models trained on the depth modality outperform
models trained on the RGB modality. In fact, the detection
task based on the depth modality improves AP by 9.49 %
on average, even though all of the models were pre-trained
on COCO Person — an RGB dataset. This suggests two
things: 1) that the depth modality helps networks reject trees
located further than our 10 m annotation threshold, and 2)
depth images are possibly easier to interpret. In regard to the
segmentation task, very little gain is obtained by using depth
images instead of RGB, and in the case of ResNeXt-101
it decreases. Surprisingly, the ResNeXt architecture has
more trouble transferring to depth images compared to the
ResNet architecture, which make ResNet—-101 the best
backbone for depth.

On RGB images, we achieve the best detection re-
sults using ResNeXt-101. This is similar to previous
research [10], [15]], and it is a result of the cardinality used
in ResNeXt as it is more effective than going deeper or
wider when the model capacity is increased. The predictions

on synthetic images can be observed in

TABLE II: Results for models trained and tested on SYNTHTREE43K. All models
achieved better performances using the depth modality.

Backbone | Modality | APP®  Apmask | AP50bb  Ap5Q™ask
250 RGB 5520 3113 87.74 69.36
Depth | 66.70  31.52 89.67 70.66
2101 RGB 56.79 31.72 88.51 70.53
Depth | 68.20  31.98 89.89 71.65
<101 RGB 5834  31.77 88.91 71.07
Depth | 63.90  28.86 87.41 68.19

Table III| shows that adding the mask branch consistently
improves AP and AP*P. Comparatively, adding the key-
point branch reduces AP*” and AP™***, These findings align
with [2], as they found that the keypoint branch benefits from
multitask training, but it does not help the other tasks in re-
turn. Better bounding box and keypoint detections can occur
by learning the features specific to segmentation. In fact, a
richer and detailed understanding of image content requires
pixel-level segmentation, which can play an important role in
precisely delimiting the boundaries of individual trees [16].



Fig. 4: Predictions on real images from ResNeXt-101 trained only on synthetic images. We observe that even with the reality gap, the model can still detect trees with high
precision, but suffers from low recall rates.

TABLE III: Impact of multi-task learning on bounding box, segmentation mask, and
keypoints. Results are from ResNexXt-101 on real RGB images.

Tasks APY  Apmask  Apkp
mask-only 59.25 32.65 -

keypoint & mask | 58.34 31.77 80.19

keypoint-only 57.71 - 80.13

B. Keypoint Detection

A keypoint detection analysis based on error in pixels
allows for meaningful and straightforward interpretations of
tree-felling tasks and their error distribution. Therefore, we
compute the pixel error between the ground truth and the

predicted keypoint, and report the results in
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Fig. 5: Keypoint error distributions (in pixels) for our best detection model,
ResNet-101 on depth images. Blue is the horizontal error and orange is the vertical
error distribution for the (a) felling cut keypoint, (b) right and (e) left diameter
keypoint; (¢) middle keypoint and (f) top keypoint. Density map of the felling cut
keypoint is shown in (d).

Our tree detection model achieves a mean error of
5.2 pixels when estimating tree diameters. This accuracy is
promising for automation applications, depending on the dis-
tance between the tree and the camera. Since the conversion
from pixel error to metric error depends on the depth, the
error increases when the tree is further away, and in turn
decreases accuracy.

We observe a significant difference between horizontal and
vertical error, where o, is about three times the value of
o4, for the felling cut, right and left diameter keypoint, and

middle keypoint. We expected a larger o, than o, because
the horizontal keypoint position is either located on the side
or center of the trees. In comparison, the vertical position
of each keypoint is subjectively more difficult to estimate
due to the inability of extracting precise vertical information.
Hence, the difficulty in estimating the o, error greatly
impacts the estimated felling cut position. If it is estimated
too high on the stem, felling the tree will leave behind high
stumps that are against current harvesting practices [17].
Keypoint predictions with high vertical values often occur
when a dense understorey restricts the line of sight to the
tree base. This causes faulty predictions to position above
the understorey, which results in an inappropriate felling cut
height. In practice, a simple solution to this issue is to place
the felling head on the predicted point, and roll it down to
the base [17].

C. Prediction on Real Images

We test the transferability of our model on real images.
Due to the lack of real image datasets for tree detection and
segmentation, the models are not fine-tuned on real images.
Qualitative results can be observed in Visually,
we see that not only bounding boxes are well predicted,
but segmentation masks along with keypoint predictions are
also transferred successfully. The model seems to be more
precise than accurate, which indicates that it is unable to
detect trees that are too different from the ones trained on
in the synthetic dataset. Adding different tree models to our
simulation could help generalize to the real world. Virtual
pre-training is a promising practice given the current data
gap in forestry compared to other domains, like autonomous
driving or industrial automation.

V. CONCLUSION AND FUTURE WORKS

In short, we explored the use of synthetic images to
train deep learning algorithms for tree detection. We pro-
vide quantitative experimental evidence suggesting that the
segmentation task is important and helps to improve both
bounding box and keypoint predictions. Therefore, the cre-
ation of a real image dataset in forestry should include
these annotations. We also show that the depth modality
significantly outperforms the RGB modality in the synthetic



world. Finally, we qualitatively demonstrate that direct trans-
fer to real world images suffer from low accuracy, while the
precision is relatively good. Models publicly availableﬂ

In future works, we plan to evaluate tree detection perfor-
mances on a real images dataset and assess its possible use
in forestry related operations.
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