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Abstract

Many probabilistic inference and learning
tasks involve summations over exponentially
large sets. Recently, it has been shown that
these problems can be reduced to solving a
polynomial number of MAP inference queries
for a model augmented with randomly gener-
ated parity constraints. By exploiting a con-
nection with max-likelihood decoding of bi-
nary codes, we show that these optimizations
are computationally hard. Inspired by iter-
ative message passing decoding algorithms,
we propose an Integer Linear Programming
(ILP) formulation for the problem, enhanced
with new sparsification techniques to improve
decoding performance. By solving the ILP
through a sequence of LP relaxations, we get
both lower and upper bounds on the parti-
tion function, which hold with high probabil-
ity and are much tighter than those obtained
with variational methods.

1. Introduction

Discrete probabilistic graphical mod-
els (Wainwright & Jordan, 2008; Koller & Friedman,
2009) are often defined up to a normalization factor
involving a summation over an exponentially large
combinatorial space. Computing these factors is an
important problem, as they are needed, for instance,
to evaluate the probability of evidence, rank two
alternative models, and learn parameters from data.
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Similar high-dimensional discrete integrals also arise
when computing expectations with respect to the
model, e.g. of a sufficient statistic for parameter
learning. Unfortunately, computing these discrete
integrals exactly in very high dimensional spaces
quickly becomes intractable, and approximation
techniques are often needed. Among them, sam-
pling and variational methods are the most popular
approaches. Variational inference problems are
typically solved using message passing techniques,
which are often guaranteed to converge to some local
minimum (Wainwright & Jordan, 2008), but without
guarantees on the quality of the solution found.
Markov Chain Monte Carlo (Jerrum & Sinclair, 1997;
Madras, 2002; Wei & Selman, 2005) are asymptot-
ically correct, but the number of samples required
to obtain a statistically reliable estimate can grow
exponentially in the worst case.

Recently, Ermon et al. (2013) introduced a new tech-
nique called WISH which comes with provable (proba-
bilistic) guarantees on the approximation error. Their
method combines combinatorial optimization tech-
niques with the use of universal hash functions to
uniformly partition a large combinatorial space, origi-
nally introduced by Valiant and Vazirani to study the
Unique Satisfiability problem and later exploited by
Gomes et al. (2006a;b) for solution counting. Specif-
ically, they show that one can obtain the intractable
normalization constant (partition function) of a graph-
ical model within any desired degree of accuracy, by
solving a polynomial number of MAP queries for the
original graphical model augmented with randomly
generated parity constraints as evidence. Although
MAP inference is NP-hard and thus also intractable,
this is a significant step forward as counting problems
such as estimating the partition function are #-P hard,
a complexity class believed to be significantly harder



Discrete Integration

than NP.

In this work, we investigate the class of MAP infer-
ence queries with random parity constraints arising
from the WISH scheme. These optimization prob-
lems turn out to be intimately connected with the
fundamental problem of maximum likelihood decod-
ing of a binary code (Vardy, 1997; Berlekamp et al.,
1978). We leverage this connection to show that
the inference queries generated by WISH are NP-
hard to solve and to approximate, even for very sim-
ple graphical models. Although generally hard in
the worst case, message passing and related linear
programming techniques (Feldman et al., 2005) are
known to be very successful in practice in decoding
certain types of codes such as low density parity check
(LDPC) codes (Gallager, 1962). Inspired by the suc-
cess of these methods, we formulate the MAP infer-
ence queries generated by WISH as Integer Linear
Programs (ILP). Unfortunately, such queries are typ-
ically harder than traditional decoding problems be-
cause they involve more complex probabilistic models,
and because universal hash functions naturally give
rise to very “dense” parity constraints. To address
this issue, we propose a technique to construct equiv-
alent but sparser (and empirically easier to solve) par-
ity constraints. Our ILP formulation with sparsifica-
tion techniques provides very good lower bounds on
the partition function, while at the same time provid-
ing also upper bounds based on solving a sequence of
LP relaxations. These upper bounds are much tighter
than those obtained by tree decomposition and con-
vexity (Wainwright, 2003).

2. Problem Statement and Assumptions

We consider a discrete probabilistic graphical
model (Wainwright & Jordan, 2008) with n = |V |
random variables {xi, i ∈ V } where each random
variable xi takes values in a finite set Xi. We consider
a factor graph representation for a joint probability
distribution over elements x ∈ X = X1 × · · · × Xn

(also referred to as configurations)

p(x) =
1

Z

∏

α∈I

ψα({x}α) (1)

This is a compact representation for p(x), which is
defined as the product of potentials or factors ψα :
{x}α 7→ R

+, where I is an index set and {x}α ⊆ V
a subset of variables the factor ψα depends on. Z is
a normalization constant known as partition function
ensuring the probabilities sum up to one. Formally the

partition function Z is defined as

Z =
∑

x∈X

∏

α∈I

ψα({x}α) =
∑

x∈X

w(x) (2)

where for compactness we have introduced a weight
function w : X → R

+ that assigns to each configura-
tion x ∈ X its unnormalized probability, namely

w(x) =
∏

α∈I

ψα({x}α) (3)

Computing the partition function Z is a #-P com-
plete, intractable problem because it generalizes #-
SAT. However, the partition function is a key property
of a graphical model, needed e.g. to actually evaluate
the probability of a configuration x under p.

2.1. Parameter Learning

Many algorithms for maximum-likelihood learning of
parameters in graphical models involve estimating the
gradient of the log-likelihood. The gradient is given
by the difference between the empirical mean param-
eters (according to the data) and the mean param-
eters, i.e. expected value of the sufficient statistics
according to the model. Computing a mean parame-
ter

∑

x φ(x)p(x) for a sufficient statistic φ is generally
intractable because it involve a sum over an exponen-
tially large set of items as in (2), although with a dif-
ferent weight function w′(x) , φ(x)p(x).

In this paper, we will focus on approximate techniques
to estimate and bound weighted sums over exponen-
tially large sets of items. For simplicity, we consider
the case of binary variables where xi ∈ Xi = {0, 1}.
The general case can be encoded using a bit represen-
tation and binary variables.

3. Background

This paper extends previous work by Ermon et al.
(2013) who introduced an algorithm called WISH to
estimate the partition function (2). WISH is a ran-
domized approximation algorithm that gives a con-
stant factor approximation of Z with high probability.
It involves solving a polynomial number of MAP in-
ference queries for the graphical model conditioned on
randomly generated evidence based on hashing.

3.1. The WISH Algorithm for Discrete

Integration

The basic idea behind WISH is to (implicitly) ran-
domly partition the space of all possible configura-
tions by universally hashing configurations into 2m



Discrete Integration

buckets. This step is achieved using randomly gen-
erated parity constraints of the form Ax = b mod 2,
which may also be viewed as logical XOR opera-
tions acting on the binary variables of the problem:
Ai1x1⊕Ai2x2⊕· · ·⊕Ainxn = bi. A combinatorial op-
timization solver is then used to find a configuration
with the largest weight within a single bucket. This
corresponds to solving a MAP query, i.e., solving an
optimization problem subject to (randomly generated)
parity constraints. By varying the number of buckets
and repeating the process a small number of times, this
strategy provably yields an estimate of the intractable
normalization factor (2) within any desired degree of
accuracy, with high probability and using only a poly-
nomial number of MAP queries. For completeness, we
provide the pseudocode for WISH as Algorithm 1.

Although MAP inference itself is an NP-hard prob-
lem, this strategy is still desirable considering that
computing Z is a #P-hard problem, a complexity
class believed to be even harder than NP. In prac-
tice, Ermon et al. (2013) showed that the resulting
MAP inference can be solved reasonably well using
a state-of-the-art MAP inference engine called Toul-
bar (Allouche et al., 2010), which was extended with
custom propagators for parity constraints.

Algorithm 1 WISH (w : Σ→ R
+, n = log2 |Σ|, δ, α)

T ←
⌈

ln(n/δ)
α

⌉

for i = 0, · · · , n do

for t = 1, · · · , T do

Sample hash function hiA,b : Σ→ {0, 1}
i, i.e.

sample uniformly A ∈ {0, 1}i×n, b ∈ {0, 1}i

wt
i ← maxσ w(σ) subject to Aσ = b mod 2

end for

Mi ← Median(w1
i , · · · , w

T
i )

end for

Return M0 +
∑n−1

i=0 Mi+12
i

Theorem 1 ((Ermon et al., 2013)). For any δ > 0,
positive constant α ≤ 0.0042, WISH makes Θ(n lnn/δ)
MAP queries and, with probability at least (1−δ), out-
puts a 16-approximation of Z =

∑

σ∈X w(σ).

Further, even if the MAP instances in the inner loop
of Algorithm 1 are not solved to optimality, the out-
put of the algorithm using suboptimal MAP solutions
is an approximate lower bound for Z (specifically, no
more than 16Z) with probability at least (1 − δ). If
suboptimal solutions are within a constant factor L of
the optimal, then the output is a 16L-approximation
of Z with probability at least (1 − δ) (Ermon et al.,
2013). Similarly, if one has access to upper bounds

to the values of the MAP instances, the output of the
algorithm using these upper bounds is an approximate
upper bound (specifically, at least 1/16Z) for Z with
probability at least (1− δ).

4. Connections with Coding Theory

For a problem with n binary variables, WISH requires
solving Θ(n log n) optimization instances. If these
optimizations could be approximated (within a con-
stant factor of the true optimal value) in polynomial
time, this would give rise to a polynomial time algo-
rithm that gives, with high probability, a constant fac-
tor approximation for the original counting problem.
Note that this is a reasonable assumption, because
perhaps the most interesting #-P complete counting
problems are those whose corresponding decision prob-
lem are easy, e.g. counting weighted matchings in a
graph (computing the permanent). A natural ques-
tion arises: are there interesting counting problems
for which we can approximate maxσ w(σ) subject to
Aσ = b mod 2 in polynomial time?

To shed some light on this question, we show a connec-
tion with a decision problem arising in coding theory:

Definition 1 (MAXIMUM-LIKELIHOOD DECOD-
ING). Given a binary m × n matrix A, a vector
b ∈ {0, 1}m, and an integer w > 0, is there a vec-
tor z ∈ {0, 1}n of Hamming weight ||z||1 ≤ w, such
that Az = b mod 2?

As noted in (Vardy, 1997), Berlekamp, McEliece,
and van Tilborg (Berlekamp et al., 1978) showed that
this problem is NP-complete with a reduction from 3-
DIMENSIONAL MATCHING. Further, Stern (Stern,
1993) and Arora, Babai, Stern, Sweedyk (Arora et al.,
1993) proved that approximating within any constant
factor the solution to MAXIMUM-LIKELIHOOD DE-
CODING is also NP-hard.

These hardness results restrict the kind of problems we
can hope to solve in our setting, which is more general.
In fact, we can define a graphical model with factors
ψi(xi) = exp(−1) if xi = 1, ψi(xi) = 1 if xi = 0. Let
S = {x ∈ {0, 1}n : Ax = b mod 2}. Then

max
x∈S

w(x) = max
x∈S

n
∏

i=1

ψi(xi) = exp

(

max
x∈S

n
∑

i=1

logψi(xi)

)

= exp

(

max
x∈S
−H(x)

)

= exp

(

−min
x∈S

H(x)

)

where H(x) is the Hamming weight of x. Thus,
MAXIMUM-LIKELIHOOD DECODING of a binary
code is a special case of MAP inferences subject par-
ity constraints, but on a simple (disconnected) factor
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graph with potentials acting only on single variable
nodes. Intuitively, in the context of coding theory,
there is a variable for each transmitted bit, and fac-
tors capture the probability of a transmission error on
each bit. Thus there are no interactions between the
variables, except for the ones introduced by the parity
constraints Ax = b mod 2, while in our context we
allow for more complex probabilistic dependencies be-
tween variables specified as in Eq. (1). We therefore
have the following theorem:

Theorem 2. Given A ∈ {0, 1}m×n, b ∈ {0, 1}m, and
w(x) as in Eqn. (3), the optimization problem

max
x∈{0,1}n

logw(x) subject to Ax = b mod 2

is NP-hard to solve and to approximate within any con-
stant factor.

5. Integer Programming Formulation

The NP-hard combinatorial optimization problem
maxσ w(σ) subject to Aσ = b mod 2 can be formu-
lated as an Integer Program (Bertsimas & Tsitsiklis,
1997). This is a promising approach because In-
teger Linear Programs and related Linear program-
ming (LP) relaxations have been shown to be a
very effective at decoding binary codes by Feldman
et. al (Feldman et al., 2005). Further, the empiri-
cally successful iterative message-passing decoding al-
gorithms are closely related to LP relaxations of cer-
tain Integer Programs, either because they are di-
rectly trying to solve an LP or its dual like the
MPLP and TRWBP (Globerson & Jaakkola, 2007;
Sontag et al., 2008; Wainwright, 2003), or attempt-
ing to approximately solve a variational problem
over the same polytope like Loopy Belief Propaga-
tion (Wainwright & Jordan, 2008).

5.1. MAP Inference as an ILP

For simplicity, we consider the case of binary
factors (pairwise interactions between vari-
ables), where equation (3) simplifies to w(x) =
∏

i∈V ψi(xi)
∏

(i,j)∈E ψij(xi, xj) for some edge set E.

Rewriting in terms of the logarithms θ = logψ, the
unconstrained MAP inference problem can be stated
as maxx∈{0,1}n

∑

i∈V θi(xi) +
∑

(i,j)∈E θij(xi, xj)

which can be written as an Integer Linear Program
using binary indicator variables {µi, i ∈ V } and
{µij(xi, xj), (i, j) ∈ E, xi ∈ {0, 1}, xj ∈ {0, 1}} as
follows (Wainwright & Jordan, 2008):

max
µi,µij(xi,xj)

∑

i∈V

θi(1)µi + θi(0)(1− µi) +

∑

(i,j)∈E

∑

xi,xj

θij(xi, xj)µi,j(xi, xj)

subject to ∀i ∈ V, (i, j) ∈ E,
∑

xj∈{0,1} µi,j(0, xj) =

1 − µi; ∀i ∈ V, (i, j) ∈ E,
∑

xj∈{0,1} µi,j(1, xj) = µi;

∀i ∈ V, (i, j) ∈ E,
∑

xi∈{0,1} µi,j(xi, 0) = 1 − µj ; ∀i ∈

V, (i, j) ∈ E,
∑

xi∈{0,1} µi,j(xi, 1) = µj .

5.2. Parity Constraints

We now present an encoding for the parity constraints
Aσ = b mod 2, defining the so called parity poly-

tope over σ ∈ R
n. Let J be the set of parity con-

straints (one entry per row of A). Let N (j) be the
set of variables the j-th parity constraint depends on,
namely the indexes of the non-zero columns of the j-th
row of A . We’ll refer to |N (j)| as the length of the
j-th XOR.

Yannakakis (Yannakakis, 1991) introduced the fol-
lowing compact representation which requires only
O(n3) variables and constraints, where n is the num-
ber of variables. For each constraint j, define Tj =
{0, 2, · · · , 2⌊|N (j)|/2⌋} as the set of even numbers be-
tween 0 and |N (j)|. For all j ∈ J and for all k ∈ Tj
we have a binary variable αj,k ∈ {0, 1}. For all j ∈ J
and for all k ∈ Tj and for all i ∈ N (j) we have a bi-
nary variable zi,j,k ∈ {0, 1}, 0 ≤ zi,j,k ≤ αj,k. Then
the following constraints are enforced: ∀i ∈ V, j ∈
N (i), µi =

∑

k∈Tj
zi,j,k ; ∀j ∈ J ,

∑

k∈Tj
αj,k = 1 ;

∀j ∈ J , ∀k ∈ Tj ,
∑

i∈N (j) zi,j,k = kαj,k.

5.3. Solving Integer Programs

Solving ILPs typically relies on solving a sequence of
Linear Programming (LP) relaxations obtained by by
relaxing the integrality constraints. The solution to
the relaxation provides an upper bound to the origi-
nal integer maximization problem. Since LP can be
solved in polynomial time, using Theorem 1 and fol-
lowing remarks we have a polynomial time method
to obtain approximate upper bounds on the partition
function which hold with high probability, although
without tightness guarantees.

IP solvers such as IBM CPLEX solve a sequence of
LP relaxations based on branching on the problems’s
variables, iteratively improving the upper bound and
keeping track of the best integer solution found, until
lower and upper bounds match. Thus, one advantage
of using an IP solver over standard Message Passing
techniques is that the upper and lower bounds improve
over time, and it is guaranteed to eventually provide
an optimal solution for the original integer problem.
In Figure 1(a) we plot the upper bound reported by
CPLEX as a function of runtime for a random 10× 10
Ising model with mixed interactions. It’s clear that
there is quickly a dramatic improvement over the value
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Figure 1. Bounds on MAP inference subject to parity constrains obtained from the ILP formulation.

of the basic LP relaxation, which is the value reported
by CPLEX around time zero.

5.4. Inducing Sparsity

As we have shown, solving MAP inference queries sub-
ject to parity constraints is hard in general. However,
adding parity constraints can sometimes makes the op-
timization easier. For example, when A is the iden-
tity matrix, enforcing Aσ = b mod 2 corresponds to
fixing the values of all variables and leads to a triv-
ial optimization problem. Empirically, sparse con-
straints, such as the ones used in low density parity
check (LDPC) codes from Gallager (Gallager, 1962),
tend to be much easier to solve. Unfortunately, con-
structions to create pairwise independent hash func-
tions require constraints of average length n/2.

In this paper we propose to rewrite the constraints in
a form that is equivalent, i.e. defines the same set of
solutions, but is easier to solve. Specifically, given a
a set of parity constraints specified through matrices
A, b we look for matrices A′, b′ that define the same
set of solutions, namely {x ∈ {0, 1}n : Ax = b} = {x ∈
{0, 1}n : A′x = b′} but are much sparser. We propose
to use two approaches:
1) Perform Gauss-Jordan elimination on [A|b] to con-
vert [A|b] to reduced row echelon form.
2) Try all combinations of up to k rows r1, · · · , rk of
[A|b], and if their sum r1⊕· · ·⊕ rk is sparser than any
of the ri, substitute ri with r1 ⊕ · · · ⊕ rk.
Both techniques are based on elementary row oper-

ations and therefore are guaranteed to maintain the
solution set S and to improve sparsity.

In Figure 1(b) we show the median upper and lower
bounds found by CPLEX for several randomly gen-
erated constraints on a random 10 × 10 Ising grid
model with mixed interactions. We run CPLEX for

10 minutes with and without sparsification, report-
ing the best upper and lower bounds found. We see
that without any preprocessing (NoPre) CPLEX fails
at finding any integer solution when there are more
than 15 parity constraints. Performing Gauss-Jordan
elimination (Diag) significantly improves both the up-
per bound and the lower bound. The effect is par-
ticularly significant for a large number of constraints,
when the reduced row echelon form of A is close to the
identity matrix. Adding the additional greedy substi-
tution step (DiagGreedy, looking at all combinations
of up to k = 4 rows) slightly improves the quality of
the upper bound, but the lower bound significantly de-
grades. Therefore, for the rest of the paper we will use
only Gauss-Jordan elimination preprocessing.

6. Experiments

We evaluate the performance of WISH augmented
with CPLEX to solve the ILP formulation of the MAP
queries. All the optimization instances are solved in
parallel on a compute cluster, with a timeout of 10
minutes on Intel Xeon 5670 3GHz machines with 48GB
RAM. We use Gauss-Jordan elimination to preprocess
the parity constraints to improve the quality of the LP
relaxations. We evaluate the lower bound and upper
bound estimates for the partition functions of M ×M
grid Ising models for M ∈ {10, 15}, with random in-
teractions (positive and negative) and external field
f ∈ {0.1, 1.0}. Specifically, there are M2 binary vari-
ables, with single node potentials ψi(xi) = exp(fixi)
and pairwise interactions ψij(xi, xj) = exp(wijxixj),
where wij ∈R [−w,w] and fi ∈R [−f, f ].

We compare with Loopy BP (Murphy et al., 1999)
which estimates Z, Tree Reweighted BP (Wainwright,
2003) which gives a provable upper bound, and the
Mean Field approach (Wainwright & Jordan, 2008)
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Figure 2. Results on spin glasses grids.

which gives a provable lower bound. We use the im-
plementations in the LibDAI library (Mooij, 2010) and
compare with ground truth obtained using the Junc-
tion Tree method (Lauritzen & Spiegelhalter, 1988).

Figure 2 shows the error in the resulting estimates,
together with the upper and lower bounds obtained
with WISH using CPLEX. We immediately see that
our lower bounds are highly accurate (error close to
0), which means that the lower bounds provided by
CPLEX for the ILPs must be close to optimality. Simi-
larly good lower bounds can also be obtained using the
original WISH algorithm (Ermon et al., 2013). How-
ever, the original WISH (without LP relaxations) does
not provide upper bound guarantees, only the TRWBP
approach does. Specifically, the original WISH algo-
rithm with Toulbar (Allouche et al., 2010) provides an
upper bound only upon proving optimality for all op-
timization instances in the inner loop. In contrast, the
ILP formulation provides us with anytime and gradu-
ally improving upper bounds based on LP relaxations
(cf. Figure 1(a)), often well before it can actually solve
the problems to optimality (which might not be pos-
sible on larger instances) or, in principle, even before

it can find a feasible solution. Figure 2 shows that our
upper bounds are significantly tighter than the ones
obtained using TRWBP in the hard weights region.
Further, our ILP approach is guaranteed to eventu-
ally give an accurate answer, within a constant factor,
given enough time. In contrast, message passing tech-
niques are usually quite fast (if they converge) but do
not provide better results with more runtime.

7. Conclusion

Leveraging a connection with max-likelihood decoding
of binary codes, we showed that the MAP inference
queries generated by WISH are in general not poly-
nomial time solvable or even approximable. On the
positive side, this led to the use of an ILP formulation
for the problem, inspired by iterative message passing
decoding. To increase the practicality of the ILP ap-
proach, we sparsified parity constraints while preserv-
ing their desirable properties. Finally, we showed that
by solving a sequence of LP relaxations we can obtain
not only very accurate lower bounds but also upper
bounds that are much tighter than the ones provided
by tree decomposition and convexity.
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