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Abstract

Machine learning is becoming an increasingly valuable tool in mathematics, en-
abling one to identify subtle patterns across collections of examples so vast that they
would be impossible for a single researcher to feasibly review and analyze. In this
work, we use graph neural networks to investigate quiver mutation—an operation
that transforms one quiver (or directed multigraph) into another—which is central
to the theory of cluster algebras with deep connections to geometry, topology, and
physics. In the study of cluster algebras, the question of mutation equivalence is of
fundamental concern: given two quivers, can one efficiently determine if one quiver
can be transformed into the other through a sequence of mutations? Currently,
this question has only been resolved in specific cases. In this paper, we use graph
neural networks and AI explainability techniques to discover mutation equivalence
criteria for the previously unknown case of quivers of type D̃n. Along the way, we
also show that even without explicit training to do so, our model captures structure
within its hidden representation that allows us to reconstruct known criteria from
type Dn, adding to the growing evidence that modern machine learning models are
capable of learning abstract and general rules from mathematical data.

1 Introduction

Examples play a fundamental role in the mathematical research workflow. Exploration of a large
number of examples builds intuition, supports or disproves conjectures, and points towards patterns
that are later formalized as theorems. While computer-aided calculations have long played an
important role in mathematics research, modern machine learning tools (e.g., deep neural networks)
have only recently begun to be more broadly applied. In this work, we show that a graph neural
network trained to classify quivers into mutation equivalence classes learns representations that
align with known mathematical theory. Where theory is unknown, we demonstrate how the model’s
representations can guide the discovery and proof of new mathematics.

Introduced by Fomin and Zelevinsky in [19], quiver mutation is a combinatorial operation on quivers
(directed multigraphs) that arises from the notion of a cluster algebra. Identifying whether two
quivers are mutation equivalent is generally a hard problem [29]. In some cases, such as type A or
type D quivers, there exist results [5, 31] that characterize mutation equivalence classes in terms of
structural conditions on the quiver. We train a graph neural network (GNN) to accurately classify
quivers into one of six different mutation equivalence classes: types A, D, E, Ã, D̃, and Ẽ. Through a
careful application of explainability tools and exploration of hidden activations, we find that the GNN
extracts features from type D quivers that align with the known characterization of [31]. Pushing this
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Figure 1: Average cross-entropy loss (left) and classification accuracy (right) on train and test sets
across 10 trials of training. Testing accuracy is consistently higher than training accuracy, perhaps
due to the absence of class Ẽ in the test set and the fact that Ẽ8 = E9 in the train set.

further, we are able to use the same analysis of hidden activations to prove an explicit characterization
of type D̃ quivers (Theorem 3.1), which was not known previously.

2 Quivers and quiver mutation

In their work on cluster algebras [19], Fomin and Zelevinsky introduce the notion of matrix mutation
on skew-symmetric integer matrices. Skew-symmetric matrices and matrix mutations can be inter-
preted combinatorially as quivers and quiver mutations, which are the central objects of our study. In
this section, we summarize quivers and quiver mutations. For further background, see Appendix A.1.

Definition 2.1. A quiver Q is a directed multigraph with no loops or 2-cycles. The number of parallel
edges between a pair of vertices is represented by a positive integer weight.

Definition 2.2. The mutation of a quiver Q at a vertex j is the quiver µj(Q) obtained by performing
the following: (i) For each path i→ j → k in Q, add an edge i→ k. (ii) Reverse all edges incident
to j. (iii) Remove all 2-cycles created from the previous two steps.

Two quivers Q and Q′ are mutation equivalent if Q′ can be obtained from Q by a sequence of
mutations. For any vertex j in a quiver Q, mutation at j is an involution: µj(µj(Q)) = Q. The set of
quivers mutation equivalent to a quiver Q is called the mutation class of Q.

We consider the mutation classes of quivers that are of simply laced Dynkin type or affine Dynkin
type. These quivers have no parallel edges, and their underlying undirected graphs are shown in
Fig. 7 in Appendix A. Quivers of type D and type D̃ are the focus of our explainability analysis, but
all the quivers shown in Fig. 7 are included in our training and test sets.

The machine learning task: Train a classifier Φ to predict the mutation class of a quiver of type
A, D, E, Ã, D̃, or Ẽ. Because prior work has characterized quiver mutation classes based on the
presence of particular subgraphs, we adapt the most expressive GNN architecture for recognizing
subgraphs to support directed edges with edge attributes [22, 33]. We describe our network Φ as a
4-layer Directed Graph Isomorphism Network with Edge features (DirGINE). Each hidden layer
has width 32, and the output layer has width 6, since there are 6 classes. We will train Φ on quivers
with 6, 7, 8, 9, and 10 nodes, and test on quivers with 11 nodes. Our model achieves high accuracy
(99.2%) on the test set (Fig. 1). More details are provided in Appendix B.1.

2



3 Extracting characterizations of mutation classes

In this section, we present our main result: a characterization of the mutation class of type D̃n−1

quivers, obtained by probing our trained GNN. Characterizations of the mutation class of type An

and type Dn quivers are known [5, 31], but to our knowledge, the type D̃n−1 case was previously
unknown.
Theorem 3.1. The mutation class of class D̃n−1 quivers isMD̃

n−1, the collection of quivers of paired
types together with Types V, Va, Vb, V’, Va’, Vb’, VI, and VI’ (as described in Appendix D).

The discovery of the precise types in Theorem 3.1 was aided by insights from edge attributions and
latent space clustering in our GNN. The proof that the characterization in Theorem 3.1 is complete
follows from a similar argument used by Vatne [31] to decompose quivers of type Dn.

3.1 Recovering a known characterization

We developed and validated our explainability techniques by recovering the known characterization
of quivers of type An and type Dn. The type An quivers consist of all quivers that are mutation
equivalent to the quiver (6) in Appendix C. Buan and Vatne gave a combinatorial characterization of
all quivers in this mutation class, which we refer to byMA

n .
Theorem 3.2 (Buan and Vatne [5]). A quiver is inMA

n if and only if: (i) All cycles are oriented
3-cycles. (ii) Every vertex has degree at most four. (iii) If a vertex has degree four, two of its edges
belong to the same 3-cycle, and the other two belong to a different 3-cycle. (iv) If a vertex has degree
three, two of its edges belong to a 3-cycle, and the third edge does not belong to any 3-cycle.

Vatne’s classification [31] of the mutation classMD
n of type Dn quivers builds upon the quivers

inMA
n . Each quiver inMD

n decomposes into a collection of subquivers joined by gluing certain
vertices known as connecting vertices. A vertex c is a connecting vertex if c is either degree one, or if
c is degree two and part of an oriented 3-cycle.
Theorem 3.3 (Vatne [31]). The quivers inMD

n are divided into four subtypes shown in Fig. 2, where
Γ, Γ′, and Γ′′ denote subquivers that are in mutation classMA

k for some integer k.

Figure 2: Types I, II, III, and IV inMD
n , from left to right. The subquivers Γ, Γ′, and Γ′′ are type A,

and c, c′, and c′′ are connecting vertices. Unoriented edges may be oriented in either direction.

Since GNNs are capable of recognizing subgraphs and structural patterns as expressively as the
classical Weisfeiler-Lehman graph isomorphism test [33, 34], we conjectured that our performant
GNN model captured the same subtype motifs identified by human mathematicians. Using the
explanation method PGExplainer described in Appendix B.3, we investigated type Dn quivers in
relation to Vatne’s characterization. In Fig. 3, darker edges are more important for predicting type
Dn quivers, while lighter edges are less important. Subquivers of types I, II, III, and IV in Vatne’s
characterization are given high attribution.

Fig. 3 strongly suggests that our GNN recognizes the same subtypes as in Vatne’s characterization.
However, one should be careful in this interpretation, as there is substantial literature showing that it is
easy to misinterpret post-hoc explainability methods [21, 23]. Thus, we also examine the embeddings
of type Dn quivers in the model’s latent space. We use principal component analysis (PCA) to reduce
the dimension of the embedding from the model width of 32 to 2 dimensions for visualization. The
resulting graph embeddings, plotted in Fig. 4, show a clear separation of the different subtypes. In
fact, the layer 3 embeddings in the original 32-dimensional embedding space can be separated by a
linear classifier with 99.7± 0.0% accuracy. Subtypes I through IV are not labeled in the training data,
so this analysis provides strong evidence that a GNN is capable of re-discovering the same abstract,
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Figure 3: Edge attributions from PGExplainer on type D11 quivers of each subtype (from left to
right, Type I, Type II, Type III, Type IV). The masked prediction is the GNN prediction when highly
attributed edges are removed.

Figure 4: PCA of latent space embeddings for mutation class D quivers colored by subtypes.

general characterization rules that align with known theory. Furthermore, explainability methods
such as PGExplainer can be leveraged to extract these rules from the model.

3.2 Additional experiment: label-flipping

To see how the model is using the type D-specific subquivers from Theorem 3.3, we examine
the model’s predictions when the vertices identified by PGExplainer are removed. If the model is
primarily keying into the type D motif, removing this should result in a quiver of type A.

We find that across all 32, 066 test examples from type D, a plurality (14,916 or 46.5%) of the
predictions flip to A, as we would expect if it was using the characterization from Theorem 3.3. Of
the remaining examples, most (14,238 or 44.4% of the total) flip to a predicted class of E, with
the next-largest being D (no flip) at 2,581 or 8.0%. Finally, 264 quivers (0.08%) flip to Ã, while
67 quivers (0.02%) flip to D̃. None of the predictions flip to Ẽ. We believe the large number
of flips to E is due to the PGExplainer attributions for type D being inexact, perhaps because
PGExplainer generalizes imperfectly or because some edges may not contribute positively to D but
rather contribute negatively to other classes. As a result, many of the quivers where we remove
highly attributed edges may be out-of-distribution for the model. Since type E is the only class which
contains mutation-infinite quivers, it is perhaps not surprising that the model would predict these
out-of-distribution quivers are of type E.

3.3 Discovering a new characterization

This explainability workflow is then applied to type D̃n−1, where no known characterization existed.
Compared to type Dn, the mutation class of D̃n−1 quivers contains many more diverse subtypes
and combinations of motifs. Careful analysis of edge attributions in the D̃n−1 led to our discovery
of paired types along with novel subtypes V, Va, Vb, V’, Va’, Vb’, VI, VI’. Based on our strategy
in Section 3, we plot PCA reductions of the latent space in Fig. 5. We can see that the quivers that
do not correspond to paired subtypes, colored as “Other”, separate clearly into two clusters in layer
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Figure 5: PCA reductions of latent space embeddings for mutation class D̃10 quivers colored by what
we call paired types and “Other” (see Appendix D).

Figure 6: PCA of clustered layer 3 latent space embeddings for quivers inMD̃
10 not of paired type

(middle), with selected examples from each cluster (left, right). Edges are colored by PGExplainer
attributions. The quiver on the left is of Type V while the quiver on the right is of Type VI.

3. By isolating these quivers and performing k-means clustering with k = 2, the model guides our
characterization of the remaining class D̃ subtypes. Fig. 6 shows examples from each cluster. (More
examples are given in Appendix E.) See Appendix D for further details of the discovery process and
Appendix D.4 for a rigorous proof of Theorem 3.1.

4 Conclusion

In this work, we analyzed a graph neural network trained to classify quivers into one of 6 different
mutation equivalence classes. Using explainability techniques, we provided evidence that the model
learns prediction rules that align with existing theory for type Dn quivers. Moreover, our result
emerged from the model in an unsupervised manner—the model is not given any subtype labels,
and yet is able to identify relevant subquivers that characterize type Dn quivers. Applying the same
explainability techniques to an unknown case, we discovered and proved a characterization of the
mutation class of D̃n−1 quivers, a case which had not previously been described in this manner.
Our work contributes to the growing evidence that machine learning can be a valuable tool in the
mathematician’s workflow by identifying novel patterns in mathematical data.
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A Additional background

A.1 Cluster algebras

Quivers and quiver mutations are central in the combinatorial study of cluster algebras, which is a
relatively new but very active research area, with connections to diverse areas of mathematics. This
section provides a very high-level description of how the quiver mutation problem fits within the
broader context of cluster algebras.

A cluster algebra is a special type of commutative ring that is generated (in the algebraic sense) via
a (possibly infinite) set of generators that are grouped into clusters. A cluster algebra may have
finitely or infinitely many generators, but the size of each cluster is always finite and fixed. A cluster
algebra is said to be of rank n if each of the clusters contains n generators, called cluster variables.
These clusters are related via an exchange property which tells us how to transform one cluster to
another [19]. It turns out that there is a nice combinatorial interpretation of this transformation when
we interpret clusters as quivers with each generator corresponding to a vertex in the quiver. Then
quiver mutation describes this exchange of cluster variables. In this setting, the mutation equivalence
problem asks when two clusters generate the same cluster algebra.

In [20], Fomin and Zelevinsky gave a complete classification of cluster algebras for which there are a
finite number of cluster variables. Such algebras are called finite type. Amazingly, they correspond
exactly to the Cartan-Killing classification of semisimple Lie algebras. Their result says that a
quiver associated to a cluster algebra of finite type must be mutation equivalent to an orientation of a
Dynkin diagram. However, this result does not give an algorithm for checking whether a quiver is of
finite type. To answer this question, Seven [28] gave a full description of the associated quivers by
computing all minimal quivers of infinite type. Since then, several other researchers have provided
explicit characterizations of particular mutation classes of quivers [4, 5, 31]. Our main result follows
these: we give an explicit characterization of quivers of type D̃n, akin to the characterization of
quivers of type Dn given in [31].

Remark A.1. Some authors designate some vertices in a quiver to be mutable (that is, eligible for
mutation), and frozen otherwise (corresponding to frozen variables in a cluster). Frozen vertices may
not be mutated at, nor may any incident arrows be created, deleted, or reversed. However, in this
paper, all vertices are always mutable.

Definition A.2. We say a quiver Q is mutation-finite if its mutation class [Q] is finite, and mutation-
infinite otherwise.

Definition A.3. Given a starting quiver Q, the mutation depth of a quiver Q′ ∈ [Q] (with respect to
Q) is the minimum number of mutations required to obtain Q′ from Q.

Quivers of type D̃n are mutation-finite, meaning they have a finite mutation equivalence class.
Mutation-finite quivers and their associated cluster algebras are of interest to many cluster algebraists.
Felikson, Shapiro, and Tumarkin [14] gave a description of the mutation-finite quivers in terms
of geometric type (those arising from triangulations of bordered surfaces), the E6, E7, E8 Dynkin
diagrams and their extensions, and two additional exceptional types X6 and X7 identified by Derksen
and Owen [13]. Specifically, they showed that mutation-finite quivers must either be decomposable
into certain blocks or contain a subquiver which is mutation equivalent to E6 or X6. It is worth noting
that classification in the mutation-finite setting has proven to be more challenging than in the finite
setting. The classification of mutation-finite cluster algebras in the case with no frozen variables was
achieved nearly a decade after Fomin and Zelevinsky classified finite cluster algebras [14, 15], and
the general case was solved only last year [16].

A.2 Mathematics and machine learning

Machine learning has recently gained traction as a tool for mathematical research. Mathematicians
have leveraged its ability to, among other things, identify patterns in large datasets. These emerging
applications have included some within the field of cluster algebras. For instance, in [7], Cheung
et al. train machine learning models to classify semi-standard Young tableaux (SSYT) according
to whether or not they correspond to a cluster variable in a Grassmannian cluster algebra, and if so,
which cluster algebra the SSYT corresponds to. Based on the behavior of these models, Cheung et al.
then pose a number of conjectures regarding SSYT and cluster algebras. Most similar to our own
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An . . . Ãn . . .

Dn . . . D̃n . . .

E6 Ẽ6

E7 Ẽ7

E8 Ẽ8

Figure 7: Simply laced Dynkin diagrams and their extensions.

En . . .
1 2 3 4 5 n− 1

n

Figure 8: Coxeter-Dynkin diagram for En, n ≥ 6. Quivers of type En are only mutation-finite for
n = 6, 7, 8, 9.

work, Bao et al. [3] and Dechant et al. [11] also study mutation using machine learning tools. Unlike
our work, this research does not aim to establish new theorems around mutation equivalence classes,
focusing rather on the performance of models on different versions of this problem. As such, their
work does not apply any explainability methods to their models. Though unrelated to cluster algebras,
Davies et al. [9] take an approach similar to the one taken here: using machine learning to guide
mathematicians’ intuition. They focus on two questions: one related to knot theory and one related to
representation theory.

Due to the existence of unambiguous ground truth and known algorithmic solutions, there has
also been renewed interest in using mathematical tasks to better analyze how machine learning
models learn tasks at a mechanistic level, including the emergence of reasoning in large models.
For example, in [8], the authors use group operations to investigate the question of universality in
neural networks. Group multiplication is also used in [30] to investigate the grokking phenomenon.
The idea of mechanistic interpretability—explaining model behavior by identifying the role of small
collections of neurons—is also demonstrated in [36], where Zhong et al. are able to recover two
distinct algorithms from networks trained to perform modular arithmetic, and [25], where Liu et al.
find evidence that a network trained to predict the product of two permutations learns group-theoretic
structure.

B Model and training details

Graph neural networks (GNNs), introduced in [12, 24], are a class of neural networks which operate
on graph-structured data via a message-passing scheme. Given an (attributed) graph G = (V,E)
with node features xv ∈ Rp for each node v ∈ V and euv ∈ Rq for each edge (u, v) ∈ E, each layer
of the network updates the node feature by aggregating the features of its neighbors. Because prior
work has characterized quiver mutation classes based on the presence of particular subgraphs, we
use the most expressive GNN architecture for recognizing subgraphs [33]. To this end, we adopt a
version of the graph isomorphism network (GIN) introduced in [33] and modified in [22] to support
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1 2 3 4 5 6 7 8 9

10

Figure 9: Default orientation of E10 in Sage. Mutation depth is assessed with respect to this
orientation for generating data in Sage.

edge features. Since quivers are directed graphs, we adopt a directed message-passing scheme with
separate message-passing functions along each orientation of an edge. We refer to our architecture
as a Directed Graph Isomorphism Network with Edge features (DirGINE), and denote the network
itself by Φ. Formally, the ℓ-th layer is given by

x(ℓ)
v = ReLU

W (ℓ)x(ℓ−1)
v +

∑
(u,v)∈E

φ
(ℓ)
in

(
x(ℓ−1)
u , euv

)
+

∑
(v,w)∈E

φ
(ℓ)
out

(
x(ℓ−1)
w , evw

) (1)

where W (ℓ) is an affine transformation and φ
(ℓ)
in and φ

(ℓ)
out are feedforward neural networks with 2

fully connected layers. Because we wish to classify graphs, we use sum pooling. That is, in the final
layer L we can assign a vector to the entire graph G by adding the vectors associated with each vertex
in the layer. We write

Φ(G) = Φ(L)(G) =
∑

v∈V (G)

x(L)
v . (2)

The expressive power of graph neural networks is intimately connected to the classical Weisfeiler-
Lehman (WL) graph isomorphism test [32]. Given an undirected graph with constant node features
and no edge features, a graph neural network cannot distinguish two graphs which are indistinguish-
able by the WL test [33], and graph neural networks are able to count some (but not all) substructures
[6]. In our case, operating on directed graphs with edge features slightly enhances the expressive
power of our network. As we saw in Section 3, the ability to distinguish substructures is crucial to
their application in classifying quiver mutation classes.

B.1 Model training

We train a 4-layer DirGINE GNN to classify quivers into six mutation classes: A, D, E, Ã, D̃, and
Ẽ. Each hidden layer has width 32, and the output layer has width 6, since there are 6 classes. The
training data is generated with Sage [27] and consists of

• All quivers of types A, D, Ã, and D̃ on 7, 8, 9, and 10 nodes.

• All quivers of type Ẽ. (Type Ẽ is only defined for 7, 8, and 9 nodes, corresponding to
extended versions of E6, E7, and E8, respectively. All quivers of type Ẽ are mutation-finite.)

• All quivers of type E for n = 6, 7, 8. (The Dynkin diagram E9 is the same as the extended
diagram Ẽ8.) Type E is only mutation-finite for n = 6, 7, 8. and coincides with Ẽ8 for
n = 9.

• Quivers of type E10 up to a mutation depth of 8, with respect to Sage’s standard orientation
for E10 (Fig. 9). (While type E is mutation finite for n ≤ 9, E10 is mutation-infinite).

The test set consists of quivers on 11 nodes. We use the full mutation classes of A11, Ã10, D11 and
D̃10, and again generate quivers up to a mutation depth of 8 for E11. The number of quivers of each
size from each class can be found in Table 1 in Appendix B.2. Note that type Ẽ is absent from the
test set, because Ẽ is not defined for 11 nodes.

We train with the Adam optimizer for 50 epochs with a batch size of 32 using cross-entropy loss
with L1 regularization (γ = 5× 10−6) using an Nvidia RTX A2000 Laptop GPU. Fig. 1 shows the
average cross-entropy loss and classification accuracy by epoch across 10 trials. We take the best
epoch from training, achieving 99.2% accuracy on the test set.
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Note that while the differences between the train and test set (particularly the absence of type Ẽ
from the test set) might be problematic if our goal was to simply assess whether a machine learning
model can differentiate between quivers of different mutation types, our primary goal is to extract
mathematical insights from the features the model learns for types D and D̃. As such, for this work
the test set was mostly used as a guide for when a model was sufficiently performant to justify the
application of explainability tools. Ultimately, all our results are justified with mathematical proofs.
As the test accuracy above suggests, this model learned to be highly accurate at classifying these
particular mutation classes.

B.2 Data generation

Quivers were generated using Sage [27]. For training and inference, each quiver was converted
to PyTorch Geometric [17]. Following the representation convention in Sage, k parallel edges are
represented by a single edge with edge attribute (k,−k), and each vertex is initialized with constant
node feature. Table 1 shows the number of quivers of each class and size generated.

Train
n An Dn En Ãn−1 D̃n−1 Ẽn−1

7 150 246 416 340 146 132
8 442 810 1,574 1,265 504 1,080
9 1,424 2,704 — 4,582 1,868 4,376

10 4,522 9,252 10,906 16,382 6,864 —
Test

11 14,924 32,066 24,060 63,260 25,810 —

Table 1: Number of quivers of each type and size in train and test sets.

B.3 Explaining GNNs

In order to extract mathematical insight from a trained GNN model Φ, we require a way to explain its
predictions by identifying the substructures that are responsible for its predictions. That is, for each
graph G, we wish to identify a small subgraph GS such that Φ(G) ≈ Φ(GS). While a number of
post-hoc explanation methods exist for GNNs, most fall into one of two categories:

(i) Gradient-based methods use the partial derivatives of the model output with respect to input
features. A larger gradient is assumed to mean that a feature is more important.

(ii) Perturbation-based methods observe how the model’s predictions change when features are
removed or distorted. Larger changes indicate greater importance.

We use the GNN explanation method PGExplainer [26], a perturbation-based method which trains a
neural network g to identify important subgraphs. For the input graph G, the explanation network
operates on each edge (u, v). Using the final node embeddings of u and v as well as any edge features
euv , g produces an attribution

ωuv = g(x(L)
u , x(L)

v , euv). (3)
Here g is implemented as an MLP followed by a sigmoid function to ensure that 0 ≤ ωuv ≤ 1. Then
rather than produce a “hard” subgraph as our explanation, the attribution matrix Ω = (ωij) can be
seen as a “soft” mask for the adjacency matrix A(G). That is, instead of providing a binary 0-1
attribution for each edge, PGExplainer provides an attribution ωij ∈ [0, 1]. We then use the weighted
graph with adjacency matrix Ω⊙A(G) for GS (where Ω⊙A(G) is the elementwise product).

PGExplainer follows prior work [35] in interpreting GS as a random variable with expectation
Ω = E[A(GS)], where each edge (i, j) is assigned a Bernoulli random variable with expectation ωij .
PGExplainer then attempts to maximize the mutual information I(Φ(G), GS). However, because
this is intractable in practice, the actual optimization objective is

min
Ω

CE(Φ(G),Φ(GS)) + α∥Ω∥1 + βH(Ω). (4)
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Here CE(Φ(G),Φ(GS)) is the cross-entropy loss between the predictions Φ(G) and Φ(GS), ∥Ω∥1
is the L1-norm of Ω,

H(Ω) = −
∑

(i,j)∈E

∑
(i,k)∈E

[(1− ωij) log(1− ωik) + ωij log(ωik)], (5)

and α and β are hyperparameters. The ∥Ω∥1 term acts as a size constraint, penalizing the size of
the selected GS . The H(Ω) term acts as a connectivity constraint, penalizing instances where two
incident edges are given very different attributions. By training a neural network to compute Ω,
PGExplainer allows us to generate explanations for new graphs very quickly, as well as take a more
global view of the model behavior.

While PGExplainer’s effectiveness is mixed across different comparisons [1, 2], it has been shown to
be effective at providing model-level substructure explanations for graph classification tasks. For
example, when applied to a GNN trained on the MUTAG dataset [10] to predict the mutagenicity of
molecules, PGExplainer is regularly able to identify that the model predicts mutagenicity based on
the presence of nitro (NO2) groups [26]. As we will see in Section 3, the ability of PGExplainer to
identify explanatory graph motifs makes it suitable for our purposes. To analyze our trained DirGINE,
we train PGExplainer’s internal neural network on 1000 randomly selected instances from the training
set for 5 epochs with hyperparameters α = 2.5 and β = 0.1.

C Characterizing quiver mutation classes

In this section, we provide additional details around extracting the characterization of class Dn quivers
from our model. Appendix C.1 provides mathematical background used by [31] in Theorem 3.3.
Section 3.2 details an additional experiment we performed to probe our GNN model.

C.1 Preliminaries

We will use the following well-known lemma (see, e.g., [31]):
Lemma C.1. If quivers Q1 and Q2 have the same underlying graph T (that is, the graph obtained
by forgetting the orientation of edges), where T is a tree, then Q1 and Q2 are mutation equivalent.

This lemma is helpful because it allows us to talk about the mutation classes of a simply laced Dynkin
diagram, ignoring edge orientations. In particular, we can use (6) and (7) as starting orientations for
types A and D, respectively.

1 2
. . .

n− 1 n (6)

1 2
. . .

n− 2

n− 1

n

(7)

Our main classes of concern (types An, Dn, and D̃n) are of geometric type, meaning they can be
associated with triangulations of bordered, possibly punctured surfaces. Consequently, quivers in
these classes can all be decomposed into collections of subgraphs known as blocks [15].
Definition C.2. A block is one of five graphs shown in Fig. 10, where each vertex is either an outlet
or a dead end [18]. A connected quiver Q is block-decomposable if it can be obtained by gluing
together blocks at their outlets, such that each vertex is part of at most two blocks. Formally,

1. Take a partial matching of the combined set of outlets (no outlet may be matched to an outlet
from the same block);

2. Identify the outlets in each pair of the matching;
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3. If the resulting quiver contains a pair of edges which form a 2-cycle, remove them.
Lemma C.3 (Vatne [31]). Let Γ ∈MA

n , n ≥ 2, and let c be a connecting vertex for Γ. Then there
exists a sequence of mutations on Γ such that: (i) µc does not appear in the sequence (that is, we
do not mutate at c); (ii) The resulting quiver is isomorphic to (6); (iii) Under this isomorphism, c is
mapped to 1.

BI BII BIIIa BIIIb BIV BV

Figure 10: Blocks of type I-V introduced by [18]. Open circles denote outlets, which may be
identified with at most one outlet from another block. Closed circles represent dead ends, which may
not be identified with any other vertex.

D The mutation class of D̃n quivers

In this section, we use our trained model and explainability techniques to discover a characterization
of the mutation class of D̃n quivers. Such a characterization was previously unknown. Similar to
Vatne’s classification of the mutation class of Dn quivers, our classification consists of different
subtypes, where each subtype is a collection of blocks and subquivers inMA orMD glued along
connecting vertices. However, there are many more subtypes compared to the type D case, so we
find it convenient to organize them into families: what we call paired types, quivers with one central
cycle, and quivers with two central cycles.

We first describe the paired types and the role of explainability techniques in devising our characteri-
zation. Then we describe the quivers with one central cycle, which include six subtypes: V, Va, Vb,
V’, Va’, Vb’, and the quivers with two central cycles, which include two subtypes: VI and VI’. To
show that this collection is the mutation class of D̃n, we will adopt the strategy of [31] by showing
that each type is mutation equivalent to (8) and then showing that this set of quivers is closed under
quiver mutation.

D.1 Paired types and PCA reductions of latent space embeddings

Applying Lemma C.1, we may choose an arbitrary orientation of the extended Dynkin diagram D̃n.
It will be convenient to begin with the orientation in (8), viewing it as two quivers Q1 and Q2 of type
D (7) connected at their roots by a connecting vertex c.

0

1

2
. . .

c
. . .

n− 2

n− 1

n

(8)

From the orientation in (8) it is immediately clear that by mutating Q1 and Q2 independently without
mutating c, we can obtain any pair of subtypes of type D. Because the placement of c is arbitrary,
we see that many type D̃n quivers can be described by two of the type D subtypes characterized in
Theorem 3.3 which share a type A piece Γc. We will refer to such quivers as Types I-I, I-II, I-III,
etc., and collectively as paired types. (See Fig. 13 in Appendix E for diagrams of all paired types.) It
remains, then, to identify the quivers in this mutation class which not are of paired type.

While a human mathematician could conceivably discover the same characterization of D̃ quivers
simply by beginning with (8) and exhaustively performing mutations, the mutation class of D̃ quivers
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admits many diverse subtypes compared to classes A or D. This increased complexity creates
some difficulty (and perhaps more importantly, tedium) in examining examples manually. By taking
advantage of machine learning, we are able to quickly organize examples into distinct families to
examine.

Based on our strategy in Section 3, we plot PCA reductions of the latent space in Fig. 5. We can see
that the quivers that do not correspond to paired subtypes, colored as “Other”, separate clearly into
two clusters in layer 3. By isolating these quivers and performing k-means clustering with k = 2,
the model guides our characterization of the remaining class D̃ subtypes. Fig. 6 shows examples
from each cluster. (More examples are given in Appendix E.) Examining the quivers in each cluster
suggests that the remaining subtypes can be separated by the number of Type IV-like central cycles.
We begin with quivers that have one central cycle.

D.2 One central cycle

Types V, Va, Vb. Type V quivers resemble Type IV quivers of class D, but one edge in the central
cycle is part of a BIV block. In the diagram below, this is the edge α : a → b. Note that d and d′

are dead ends in BIV. That is, no larger subquiver may be attached to d and d′. Mutating Type V at
d produces the subtype Type Va, which is similar, but the block BIV is replaced with an oriented
4-cycle, as shown below. Mutating type Va at d′ produces the subtype Type Vb, which is similar
to (9) except the block BIV is reversed. Mutating again at d creates a quiver isomorphic to Type Va
by swapping d and d′, and finally mutating once more at d′ results in Type V again. Notice that the
choice of d and d′ is arbitrary.

Type V.

a bα

d

d′

c

Γ

c′

Γ′

(9)

Type Va.

a b

d

d′

c

Γ

c′

Γ′

(10)

Type Vb.

a b

d

d′

c

Γ

c′

Γ′

(11)

Types V’, Va’, Vb’. The rest of this cluster consists of the following types, which we call V’, Va’,
and Vb’ as they are related to each other by an analogous sequence of mutations. That is, starting
from V’, performing the sequence of mutations µd, µd′ , µd, µd′ yields Types Va’, Vb’, Va’, V’, in
that order. Moreover, µc converts each of Type V’, Va’, Vb’ into a corresponding Type V, Va, or Vb
quiver, respectively. The Type V’ to Type V case is shown in Fig. 11.

Type V’

a b

d d′

c

Γ

(12)

Type Va’

a b

d d′

c

Γ

(13)

Type Vb’

a b

d d′

c

Γ

(14)

To see that these types are mutation equivalent to (8), it suffices to show that Type V is mutation
equivalent to one of the paired types, which we show in Lemma D.1.
Lemma D.1. Type V quivers (9) are mutation equivalent to (8).
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Proof. We mutate at vertex a. There are several cases. Recall from Theorem 3.3 that a spike refers to
an oriented triangle on the central cycle.

If the central cycle is of length > 3, there are two subcases:

(a) If there is a spike at vertex c, then the resulting quiver is of Type II-IV, where the vertices c
and a are playing the roles of c and c′′ in Figure 13, respectively, and b plays the role of c′′.

(b) Otherwise, the resulting quiver is of Type I-IV, where d and d′ are the pair of dead ends.

If the central cycle is length 3, say a triangle a→ b→ v → a, then there are four subcases, depending
on the presence of spikes on the central cycle:

(a) If the central cycle has no additional spikes, then µa yields a Type I-I quiver.

(b) If a is part of a spike but b is not, then the result is a Type I-II quiver, where b and v are the
pair of dead ends on the Type I side and d, d′ are the dead ends in the BIV block in the Type
II side.

(c) If a is not part of a spike but b is then the result is Type I-III, where d and d′ are the pair of
dead ends in the Type I side.

(d) If both a and b are parts of spikes, then the result is Type II-III with dead ends d, d′ in the
BIV block in the Type II side.

Corollary D.2. Quivers of Types Va (10) and Vb (11) are mutation equivalent to (8).
Corollary D.3. Type V’ quivers (12) are mutation equivalent to (8).
Corollary D.4. Quivers of Types Va’ (13) and Vb’ (14) are mutation equivalent to (8).

a b

d d′

c

Γ Γ′

µc
a b

d d′

c

Γ Γ′

Figure 11: Performing µc to convert between a quiver of Type V’ (left) and Type V (right). Note that
in the Type V quiver, the central cycle is a→ c→ b→ a, so the vertex c is not a connecting vertex
as it is in 9.

This completes the description of new types with one central cycle.

D.3 Two central cycles

The other cluster, consisting of quivers with two central cycles, consists of the following:

Type VI. Quivers of Type VI consist of two Type IV quivers which share one vertex c among both
central cycles, and are further joined by two edges that create oriented triangles for which c is a
vertex. These oriented triangles can be seen as shared spikes among both central cycles. In (15), we
color one central cycle blue and one red for clarity. The central cycles may be any length ≥ 3.

15



c

v2

v4

v1

v3

Γ

µc c

v2

v4

v3

v1

Γ

Figure 12: Performing µc on a quiver of Type VI’ (left).

Type VI’. In Type VI, the shared connecting vertex c is not allowed to be a connecting vertex
for a larger subquiver of Type A in general. However, there is one exception to this when both
central cycles are triangles and have no additional spikes. The result is a block BV whose outlet is a
connecting vertex for a type A subquiver Γ. We refer to this as Type VI’. Notice that if the quiver has
only five vertices, then Γ is only one vertex, in which case there is no difference between Types VI
and VI’.
Type VI.

c

Γ′

Γ′′′

Γ

Γ′′

(15)

Type VI’.

c

Γ

(16)

Again, to show that these are mutation equivalent to (8), it suffices to reduce to the paired types.

Lemma D.5. Type VI quivers (15) are mutation equivalent to (8).

Proof. If both central cycles are of length > 3, then mutating at vertex c results in a quiver Type
IV-IV. If a central cycle is of length 3, then µc turns that central cycle into a subquiver of Type I or
Type III, depending on whether or not that central cycle does not have or does have a third spike,
respectively.

Lemma D.6. Type VI’ quivers (16) are mutation equivalent to (8).

Proof. By Lemma C.3, we may mutate so that c has in-degree 0 and out-degree 1 in Γ. Then mutating
at vertex c results in a quiver of Type I-II (cf. Fig. 12).
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D.4 Proof of Theorem 3.1

Proof. From the preceding lemmas we know that these types are mutation equivalent to the quiver
in (8), so we need only prove that these types are exhaustive by showing thatMD̃

n is closed under
quiver mutation.

We will begin with the paired types. Suppose that Q ∈ MD̃
n is the union of two quivers Q1, Q2 ∈

MD whose intersection Γc is inMA. If Γc ∈MA
k for k > 1, then any mutation can affect the type

of at most one of Q1 or Q2 and hence by Theorem 3.3 results in a quiver of (possibly different) paired
type. Thus in what follows we assume that Γc is a single vertex c. Moreover, we need only consider
mutating at c, since a mutation anywhere else can only convert Q from one paired type to another.

In the casework below, when a type V quiver has a central cycle of length 3 and only 7 edges, we
will refer to it as minimal type V. Similarly, a minimal type VI quiver is a type VI quiver where both
central cycles are length 3.

Type I-I. Because we assume Γc is a single vertex c, the underlying graph of this quiver is the star
graph on 5 vertices, rooted at c. Mutating at c depends on the number of arrows to and from c. If c
has indegree 4 or outdegree 4, then µc simply reverses every arrow. If c has indegree 3 or outdegree
3, then µc produces a minimal Type V quiver. If c has indegree 2 and outdegree 2, then µc produces
Type VI (or VI’, since they are the same when there are only 5 vertices).

Type I-II. Let c′ denote the connecting vertex opposite c in the block BIV in the Type II subquiver,
and a, b denote the endpoints of the Type I arrows. Then if Q contains the paths a → c → c′ and
b→ c→ c′ or c′ → c→ a and c′ → c→ b, then µc yields another Type I-II quiver. If Q has c→ c′

with c → a and c → b, or if Q has c′ → c with a → c and b → c the result is Type VI’. If Q has
a→ c and c→ b (or vice versa) then the result is Type V (regardless of the orientation of the BIV

block.

Type I-III. If the Type I arrows are of the same orientation with respect to c, then µc results in a
quiver of Type V. Otherwise, the result is Type VI.

Type I-IV. If the Type I arrows are of the same orientation with respect to c, then µc results in a
quiver of Type V. Otherwise, the result is Type VI.

Type II-II. Let c′, c′′ denote the connecting vertices opposite c in the BIV blocks in the Type II
subquivers Q1 and Q2, respectively. Then if the arrows are oriented c′ → c → c′′ (or the reverse)
then µc yields a quiver of Type VI’ where the connecting vertex c is glues the BV block to an oriented
triangle. Otherwise µc yields another Type II-II quiver.

Type II-III. Mutating at c yields a Type V quiver (regardless of the c− c′ orientation).

Type II-IV. Mutating at c yields a Type V quiver (regardless of the c− c′ orientation).

Type III-III. Mutating at c yields a Type VI quiver with two central cycles of length 3.

Type III-IV. Mutating at c yields a Type VI quiver.

Type IV-IV. Mutating at c yields a Type VI quiver.

Having finished the paired types, we turn our attention to our newly identified types.

Type V. In the proof of Lemma D.1, we showed that mutating at a stays inMD̃, producing a quiver
of paired type in all cases. In Appendix D.2, we showed that mutating at d (and d′ by symmetry)
produces a Type Va quiver. If we mutate at b, we bifurcate into the same cases as when mutating at
a in Lemma D.1, and in fact obtain the same types. Now, if the central cycle is of length > 3, then
we are done, as mutating anywhere along the central cycle will simply shrink the central cycle by 1,
leaving us with another quiver of Type V. However, suppose the central cycle is of length 3, given by
a

α−→ b→ v → a. Then we must consider µv , which yields Type V’. (In this manner, Type V’ can be
seen as the result of shrinking the central cycle to length 2, which we then remove because digons are
prohibited.) Here the subquiver Γ is a single vertex if there are no additional spikes, a single directed
edge if there is one spike, and an oriented triangle if there are two spikes.

Type Va. We know from Appendix D.2 that µd and µd′ yield Types V and Vb, respectively.
Continuing, µa and µb both yield Type VI. If the central cycle (sans α) is length > 3, then we are
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done. Otherwise, we consider the case where we have a vertex v with b→ v → a and compute µv,
which we see yields Type Va’.

Type Vb. From Appendix D.2 we see that µd and µ′
d yield Type Va. Mutating at a or b yields Type

Vb again, simply moving the reversed arrow around the central cycle with the associated d, d′. Finally,
we are done unless the central cycle is an unoriented triangle a ← b → v → a, in which case we
must consider µv , which yields Type Vb’.

Type V’. We know the mutations µd and µd′ yield Type Va’. The mutations µa and µb yield Type
VI’. Finally, we know that mutating at c yields Type V from Corollary D.3 (see Fig. 11).

Type Va’. As we have seen, µd yields Type V’ and µd′ yields Type Vb’. The mutations µa and
µb both result in Type Va’ by cyclically permuting (a, b, d) forwards and backwards, respectively.
Finally, µc yields Type Va.

Type Vb’. The mutations µd and µd′ yield Type Va’. Mutating at a or b produces an automorphism
which swaps a and d with b and d′, respectively, so µa and µb yield Type Vb’ again. Finally, mutating
at c yields Type Vb.

Type VI. From Lemma D.5 we know that µc yields a paired type. Call the two central cycles C1 and
C2. If we mutate at any vertex which is not adjacent to c, the result is still Type VI, as the mutation
affects the relevant cycle C1 or C2 as a Type IV subquiver, and cannot break C1 or C2. Suppose
then that we mutate at a vertex v which is adjacent to c and suppose, without loss of generality, that
v ∈ C1. Then µv simply moves v from C1 to C2, resulting in Type VI, unless C1 is a triangle, in
which case the result is Type Va.

Type VI’. Since c is a connecting vertex in Γ, it has degree at most 2. If c has degree 1 in Γ, µc yields
Type I-II, and if c has degree 2 in Γ, µc yields Type II-II. Any other mutation in Γ cannot change the
type, so it remains only to check the vertices adjacent to c. Mutating at any results in Type V’.

Thus we have shown thatMD̃ is closed under quiver mutation. This completes the proof.
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E Additional figures

Type I-I.

Γ
c′c

Type I-II.

Γ
c′ c′′c

Γ′

Type I-III.

Γ
c′ c′′c

Γ′

Type I-IV.

Γ
c′c

Q′

Type II-II.

c c′

Γ Γ′
c′′ c′′′

Γ′′

Type II-III.

c c′

Γ Γ′
c′′ c′′′

Γ′′

Type II-IV.

c c′

Γ Γ′
c′′

Q′

Type III-III.

c c′

Γ Γ′
c′′ c′′′

Γ′′

Type III-IV.

c c′

Γ Γ′
c′′

Q′

Type IV-IV.

c
Q′ Γ

c′

Q′′

Figure 13: All paired types. Unoriented edges may have any orientation. Circles indicate oriented
cycles. Here Γ, Γ′, Γ′′ are subquivers of Type A, and Q′ is a subquiver of Type D-IV for which c, c′,
or c′′ is part of a spike. Notice that we may have Γ ∈MA

1 with c = c′, but Q′ and Q′′ must contain
at least two edges in addition to the ones shown.
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Figure 14: Randomly selected quivers from the orange (left) cluster in Fig. 6, which consists of
quivers of Types V, Va, Vb, V’, Va’, Vb’.

Figure 15: Randomly selected quivers from the blue (right) cluster in Fig. 6, which consists of quivers
of Types VI and VI’.
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