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ABSTRACT

Large Language Models (LLMs) excel at code generation, yet their outputs often
contain subtle bugs, for which effective test cases are a critical bottleneck. Existing
test generation methods, whether based on prompting or supervised fine-tuning, rely
on static datasets. This imposes a “fixed-difficulty ceiling”, fundamentally limiting
their ability to uncover novel or more complex bugs beyond their training scope. To
overcome this, we introduce ATGEN, a framework that trains a test case generator
via adversarial reinforcement learning. ATGEN pits a test generator against an
adversarial code generator that continuously crafts harder bugs to evade the current
policy. This dynamic loop creates a curriculum of increasing difficulty challenging
current policy. The test generator is optimized via Reinforcement Learning (RL) to
jointly maximize “Output Accuracy” and “Attack Success”, enabling it to learn a
progressively stronger policy that breaks the fixed-difficulty ceiling of static training.
Extensive experiments demonstrate that ATGEN significantly outperforms state-
of-the-art baselines. We further validate its practical utility, showing it serves as
both a more effective filter for Best-of-N inference and a higher-quality reward
source for training code generation models. Our work establishes a new, dynamic
paradigm for improving the reliability of LLM-generated code1.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in code generation (Wang
& Chen, 2023; Jiang et al., 2024; Wang et al., 2025; Huang et al., 2024), tackling a wide range
of programming tasks (Etsenake & Nagappan, 2024; Nijkamp et al., 2023; Li et al., 2024; 2025).
However, the code they produce is often imperfect, containing subtle bugs and logical flaws (Tambon
et al., 2025; Dou et al., 2024). A critical bottleneck in improving code quality through automated
debugging is the scarcity of high-quality test cases that can effectively identify these errors (Dikici &
Bilgin, 2025). While human-written tests are the gold standard, their manual creation is laborious
and does not scale, creating a pressing need for automated test case generation. (Alagarsamy et al.,
2024; Chen et al., 2024a)

Initial efforts to automate test case generation based on LLMs have explored two main avenues:
prompting of LLMs (Chen et al., 2022; Schäfer et al., 2023) and supervised fine-tuning (Prasad et al.,
2025). One line of work involves prompting general-purpose LLMs to generate test cases based
on the problem description and a given code snippet. Concurrently, more specialized approaches,
exemplified by recent work like UTGen (Prasad et al., 2025), have utilized Supervised Fine-Tuning
(SFT) (Shen, 2024) on pre-collected static datasets of code-test pairs. These methods aim to prompt or
train a model to generate test cases with their inherient learning apability, and have shown promising
initial results in this domain.

However, the unique nature of test case generation for LLM-written code presents a complex challenge
that these existing approaches are ill-equipped to handle. An effective test case should satisfy two
objectives (Prasad et al., 2025): 1) Output Accuracy (Ueda & Tsukada, 2021; Yang et al., 2024b),
ensuring the test’s (input, output) pair is correct with respect to the problem’s specification. This
involves a process of deriving outputs from inputs, which is inherently a complex reasoning task.
Previous methods directly prompt or train on pre-collected static input-output pairs, which not only

1The resources of this work are made available at https://anonymous.4open.science/r/ATGen-ACEB.
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imposes a performance ceiling but also limits the model’s generalization across diverse coding tasks.
2) Error-triggering (Zhong et al., 2024; Ceccato et al., 2015), or we call Attack Success, meaning
ensuring the test can successfully trigger a flaw in a buggy code. This objective is inherently dynamic;
its difficulty is dictated by the subtlety of the flaws in the buggy code it confronts. However, prior
methods relying on static training data train the test generator on a fixed collection of buggy codes,
where the types and difficulties of bugs are predetermined. Consequently, this approach imposes a
fixed-difficulty ceiling on the test generator’s capabilities, making the model unprepared to discover
novel, more complex bugs, ultimately limiting its effectiveness as code generators become more
sophisticated.

This paper provide a unique perspective on this problem. The idea is to put the test generator in an
adversarial loop to train with the code generator. The code generator could provide adversarial code
that challenges the current test generator’s capability constantly. As the test generator improves, it
forces the code generator to produce more subtle and complex bugs to evade detection. These new,
harder-to-find bugs, in turn, serve as a dynamic curriculum that pushes the test generator beyond its
current capabilities, effectively breaking the fixed-difficulty ceiling inherent in static methods.

In light of this, we introduce ATGEN (Adversarial Test Generator), a novel framework that trains
a test generator via Reinforcement Learning (RL) within an adversarial loop. We leverage RL to
move beyond static mimicry, allowing the generator to learn to reason from trial-and-error and learn
a dynamic policy that explicitly optimizes the trade-off between output accuracy and attack success.
To break the fixed-difficulty ceiling, we introduce an adversarial code generator into that RL process
that creates a dynamic curriculum. Instead of training on a fixed set of bugs, our test generator is
continuously challenged by new, “hard” buggy code that is specifically generated to evade detection
by the current policy. This adversarial setup forces the test generator to constantly improve and
uncover progressively more subtle flaws. Our main contributions can be summarized as follows:

• We propose a novel RL-based framework for test generation that trains a test case generator to reason
and dynamically navigate the optimization of output accuracy and attack success, outperforming
static prompting and SFT approaches.

• We introduce an adversarial training paradigm where the test generator is trained against a code
generator, enabling it to discover more complex and subtle code flaws than with a static dataset.

• We demonstrate the practical utility of ATGEN in both the inference and training of code generation,
showing that its generated tests serve as both a more effective filter for Best-of-N inference and a
higher-quality reward source for RL-based code generator training.

Extensive experiments show that ATGEN significantly outperforms strong baselines. Our method
demonstrates a superior ability to balance its core objectives, especially on difficult problems,
establishing a new and more effective paradigm for automated test generation.

2 RELATED WORK

Automated Test Case Generation with LLMs The advent of Large Language Models (LLMs)
has shifted the focus of automated test case generation from traditional structural coverage (Huang
et al.; Wu et al., 2025; Zhang et al., 2023) to addressing the unique logical flaws in AI-generated
code (Huang et al.; Wu et al., 2025; Zhang et al., 2023). These modern approaches primarily fall
into two categories: prompting-based methods (Chen et al., 2022; 2024b; Yang et al., 2024a) and
fine-tuning-based methods (Prasad et al., 2025). Modern approaches fall into two main categories:
prompting-based (Chen et al., 2022; 2024b; Yang et al., 2024a) and fine-tuning-based methods (Prasad
et al., 2025). Prompting-based methods (Chen et al., 2024b) leverage prompt engineering to guide
general models like GPT-4 (Achiam et al., 2023), but are often limited by their unspecialized reasoning
capabilities. In contrast, fine-tuning-based methods train specialized models on curated datasets. The
most direct precursor, UTGen (Prasad et al., 2025), uses Supervised Fine-Tuning (SFT) to balance
generating bug-revealing inputs (“attack rate”) with predicting correct outputs (“output accuracy”).
However, these approaches are fundamentally constrained by their reliance on static data. UTGen,
for instance, is limited by its static training dataset, which prevents it from adapting to find novel or
more complex bugs beyond what it has already seen.

2
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Reinforcement Learning for Code-related Tasks Reinforcement Learning (RL) has emerged as
a powerful paradigm for code-related tasks, using feedback from the execution environment (e.g.,
unit tests) to optimize models beyond standard supervised learning. A significant line of work has
applied RL to improve code generation. Approaches like CodeRL (Le et al., 2022) and others (Pan
et al., 2023; Gou et al., 2023; Pan et al., 2024) established the viability of using unit test feedback
as a reward signal, while Deepseek-R1 (Guo et al., 2025) demonstrated that RL can enhance an
LLM’s general reasoning and coding abilities. More recently, RL has been applied to automated
program repair. Frameworks such as Repair-R1 (Hu et al., 2025) co-optimize test generation and
bug repair, while others like Repairity (Tang et al., 2025) use feedback from an LLM judge. These
works highlight the power of RL in training agents that modify code. In contrast, ATGEN aims to
create a powerful, standalone test generator. Instead of learning a policy to write correct code against
a fixed verifier, ATGEN learns a policy to explore the input space to falsify a given program, thereby
providing a high-quality reward signal for any downstream agent.

3 PRELIMINARIES

In this work, we focus on the task of automated test case generation. Formally, given a code
problem description Q and a potentially faulty code implementation Cbuggy, the goal is to train
a test generator, represented by a policy πθ, to generate a unit test include input x and output y,
Tgen = (x, y) = πθ(Q,Cbuggy). An effectively generated test case must satisfy two key objectives:

• Output Accuracy: The generated output y must be correct with respect to the problem description
Q. This is formally verified by checking if y = Cgold(x), where Cgold is a ground-truth code
solution.

• Attack Success: The generated test case must reveal the flaw in the faulty code, meaning the
execution of Cbuggy on input x does not yield the correct output y, i.e., Cbuggy(x) ̸= y.

It is evident that successfully accomplishing this task demands a level of reasoning capability compa-
rable to that required in code generation. The model must directly predict the output corresponding to
a given input, which necessitates a thorough understanding of the input–output mapping—precisely
the objective of code or program synthesis. Moreover, unlike standard code generation, test generation
requires analyzing a potentially buggy code snippet and producing targeted test cases to expose its
flaws. This places an additional requirement on the model: the ability to identify subtle code errors.
In summary, the key challenges lie in enhancing the model’s reasoning capacity for this task and
equipping it with the capability to “attack” buggy code with subtle defects.

4 ATGEN

We propose ATGEN, an adversarial reinforcement learning framework that trains a robust test
generator through a dynamic, self-improving curriculum. As illustrated in Figure 1, our framework is
composed of two interconnected part: an RL-based Test Generator Training part that optimizes
the test generator, and an Adversarial Code Generation part that dynamically creates challenging
training data.

4.1 RL-BASED TEST GENERATOR TRAINING

RL Formulation. The core training of our framework is a test generator trained via reinforcement
learning so that the model can learn to optimize output accuracy and attack success rate directly. We
formalize this process as follows:

• State (st): The state is a tuple consisting of the problem description and the current buggy code,
st = (Q,Cbuggy).

• Action (at): The action is the generated test case, an I/O pair at = Tgen = (x, y).

• Policy (πθ): The test generator is modeled as a stochastic policy πθ(at|st), parameterized by θ,
which we aim to optimize.

3
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Figure 1: The overall architecture of the ATGEN framework. The top panel shows the core RL
training loop: the test generator (policy) receives a state (Q,Cadver) and generates a test case Tgen
(action). It then receives a multi-component reward. The bottom panel shows the adversarial data
generation loop: a code generator is tasked to sample a new, harder adversarial code Cadver that passes
the current Tgen but fails against a ground-truth test suite Tgold. This new Cadver is then fed back into
the training loop, creating a dynamic curriculum.

At each step, the policy model (test generator) attempts to produce an action in the form of a test case
(i.e., an input-output pair), based on the given question and the buggy code. The goal is for this test
case to be both valid and capable of triggering faulty behavior in the buggy code, such as causing it
to crash or produce incorrect output. Upon receiving the reward signal, the test generator updates its
policy by computing the loss according to the chosen reinforcement learning algorithm. In this work,
we employ GRPO (Shao et al., 2024), an actor-only method that eliminates the need for a separate
critic model, thereby reducing computational and memory overhead.

Test Generation Reward Function. To effectively guide the policy, we design a multi-component
reward function Rt that explicitly captures the desired properties of a good test case. As shown in the
top panel of Figure 1, the total reward is a weighted sum of three components:

• IO Acc Reward Racc: It represents the correctness of the IO pair, which is calculated by executing
a gold code Cgold on the generated input x and comparing it to the generated output y.

• Attack Reward Rattack: It is positive if the buggy code Cbuggy fails on the generated test case,
either raising an execution error or output differently from the generated output. It can only be
required when the IO pair is correct.

• Format Reward Rformat: To active the model’s thinking ability, referencing Deepseek-R1’s (Guo
et al., 2025) training format setting, the reasoning process and answer are enclosed within <think>
and </think> and <answer> and </answer> tags, respectively.

The final reward is a weighted sum of multiple rewards:

Rt = wacc ·Racc + wattack ·Rattack + wformat ·Rformat, (1)

where the weights w are hyperparameters that balance the different objectives during training.

4.2 ADVERSARIAL CODE GENERATION

While the reinforcement learning framework allows the test generator to directly optimize for output
accuracy and attack success, its true potential is constrained by the static nature of the buggy codes
it trains on. Training on a fixed collection of bugs, where difficulties are predetermined, imposes
the fixed-difficulty ceiling inherent in prior methods. An agent trained in such a static environment
cannot learn to overcome novel, more complex challenges. To break this ceiling and unlock the full
potential of RL, the training environment itself must evolve alongside the agent. To this end, ATGEN
incorporates an adversarial loop to dynamically generate a curriculum of increasingly challenging
buggy code, ensuring the test generator is continuously pushed beyond its current capabilities.

4
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The Adversarial Process. As shown in the bottom panel of Figure 1, this part functions as a data
augmentation engine that creates “hard” training instances dynamically for our test generator. For
a given problem Q and a test case Tgen produced by our current policy, we prompt a separate code
generator model. This generator is tasked with producing a new adversarial code, Cadver, that satisfies
two critical conditions:

• It must remain incorrect, so that it is a buggy code for the test generator to attack, meaning it fails
against the full ground-truth test suite, ∃(x′, y′) ∈ Tgold s.t. Cadver(x

′) ̸= y′.

• It must pass the generated test case Tgen, meaning Cadver(x) = y. This ensures the new bug is not
detectable by the current test generator’s generation.

This process generates buggy code that is specifically designed to be challenging for the current
iteration of the test generator.

Unconditional and Adaptive Modes. There are two primary strategies for obtaining Cadver from
the code generator. A straightforward approach is to directly instruct the generator to produce code
that satisfies the adversarial criteria (i.e., passing a specific generated test while remaining globally
incorrect). While this method is computationally inexpensive, it risks introducing a distributional shift;
the bugs in the resulting code are deliberately engineered rather than being natural bugs. Training on
such synthetic artifacts could mislead the test generator into learning to detect artificial, rather than
realistic flaws.

Therefore, we adopt a more robust, sampling-based approach. In this paradigm, we provide the code
generator with only the problem description Q and sample multiple code potential solutions. From
this pool of naturally generated outputs, we filter for instances that coincidentally meet the adversarial
criteria. This ensures that the resulting Cadver contains authentic bugs, providing a more realistic and
challenging training curriculum for the test generator.

However, the significant computational cost of sampling for every training instance motivates a
more nuanced strategy. We therefore propose and evaluate two distinct modes for adversarial data
generation:

• Unconditional Mode: We unconditionally generate a new adversarial code Cadver via sampling to
replace the original buggy code Cbuggy for every instance in the training batch, making every Cbuggy
replaced by Cadver.

• Adaptive Mode: To improve efficiency, we conditionally trigger the sampling process. A new
Cadver is generated only if the current test generator can already successfully attack the original
Cbuggy. If the original bug is already challenging enough to evade detection, we reuse it, conserving
computational resources for cases where they are most needed.

Dynamic Curriculum. These newly generated, harder pairs of (Q,Cadver) then replace the original
(Q,Cbuggy) to the training data pool for the test generator. This creates a self-improving ecosystem
where, as the test generator becomes more adept at finding certain types of bugs, the adversarial code
generator is forced to select code with more subtle and complex flaws. This dynamic curriculum
ensures that the test generator is continuously challenged and learns to identify a wider and more
difficult range of programming errors than would be possible with a static dataset.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We train and evaluate our test generator on a subset of 3000 problems from
APPS (Hendrycks et al., 2021) and Codeforces (MatrixStudio, 2024). We used GPT-4o-mini (OpenAI,
2024) to sample buggy codes for each problem, creating a training set of 16,822 and a test set of 911
(Question, buggy code) pairs. To analyze performance on bugs of varying subtlety, we partitioned this
benchmark into Easy, Medium, and Hard tiers based on an initial evaluation of bug-finding difficulty.
We use Qwen2.5-7B-Instruct (Qwen et al., 2024) to initially attack them by generating test cases.
Then we rank them by attack success rate, and then divide the ranked set into three equal parts. For

5
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each problem, we keep a ground-truth solution (Cgold) to verify the correctness of generated test case
outputs and a suite of human-written tests (Tgold) to validate the incorrectness of adversarial code.

Baselines. We compare ATGEN against two categories of methods:

• Prompting-based Methods: We evaluate large language models that have demonstrated strong
general reasoning and coding abilities. This includes GPT-4o (Hurst et al., 2024), GPT-4o-
mini (OpenAI, 2024), GPT-4-turbo (Achiam et al., 2023), instruction-tuned versions of the Qwen2.5
series (Qwen et al., 2024) and Qwen3 series (Yang et al., 2025). These models are prompted to
generate test cases without any specific fine-tuning for the task.

• Supervised Fine-Tuning (SFT) Method: We include UTGen (Prasad et al., 2025), the state-of-
the-art SFT-based approach for unit test generation. We evaluate both the 3B and 7B parameter
versions of UTGen to provide a comprehensive comparison against prior specialized methods.

Evaluation Metrics. We assess performance using two primary metrics:

• IO Accuracy (%): The percentage of generated test cases (x, y) that are correct, i.e., y = Cgold(x).

• Attack Rate (%): The percentage of test cases that are first confirmed correct (passes the IO
Accuracy check) and then causes a buggy code to fail, either by crashing or producing an incorrect
output (i.e., Cbuggy(x) ̸= y).

Implementation Details. Our ATGEN framework is built on Qwen2.5-3B-Instruct and Qwen2.5-
7B-Instruct (Qwen et al., 2024) backbones, using the veRL (Sheng et al., 2025) framework with
GRPO as the RL algorithm. The adversarial code generation loop uses GPT-4o-mini (OpenAI, 2024)
as a separate code generator to produce challenging buggy code samples. All reward components
wacc, wattack, wformat are weighted equally. And if not specified, we use adaptive mode for ATGEN for
our analysis experiments.

5.2 MAIN RESULTS: ADVERSARIAL TRAINING FOR TEST CASE GENERATION

We present the main results in Table 1. Our findings consistently demonstrate the superiority of our
proposed methods:

ATGEN Framework Establishes a New State-of-the-Art. Our ATGEN establishes a new state-
of-the-art, significantly outperforming existing methods in both IO Acc and Attack Rate. Our
best-performing model, using the Qwen2.5-7B-Instruct backbone, achieves a nearly 60% relative
improvement in Attack Rate over the strongest proprietary baseline, GPT-4-turbo, and is more than
twice as effective at finding bugs as the prior method, UTGen (7B) (36.99% vs. 16.24%). These
results demonstrate the high effectiveness of combining RL with a dynamic adversarial curriculum.

Reinforcement Learning Provides a Major Performance Leap. To isolate the benefits, we also
evaluated a non-adversarial version of our framework. Even this simplified model on its own
constitutes a major advance over prior work, which may be due to the stimulation of the model’s
reasoning ability by RL training (Yue et al., 2025; Xie et al., 2025). This substantial performance
leap validates that using RL to directly optimize for bug detection and output correctness is a far
more effective paradigm than static fine-tuning.

Different Modes Achieve Superiority Depending On Backbone Models. Our Unconditional and
Adaptive modes show that the optimal strategy is determined by the scale of the backbone model. For
the larger 7B model, the targeted curriculum of the Adaptive mode is more effective at maximizing
the Attack Rate. Conversely, for the smaller 3B model, the Unconditional mode’s constant stream of
diverse challenges yields a higher Attack Rate. This suggests that while more capable models benefit
from focused challenges, less capable ones may learn varied attack patterns more effectively from a
continuous curriculum.

5.3 ANALYSIS OF THE ACCURACY-ATTACK TRADE-OFF

To understand the accuracy-attack trade-off, we introduce Input Attack Rate metric. It is cal-
culated by taking the generated input, pairing it with the ground-truth output from a gold

6
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Method
Total Easy Medium Hard

IO Acc Attack Rate IO Acc Attack Rate IO Acc Attack Rate IO Acc Attack Rate
(%) (%) (%) (%) (%) (%) (%) (%)

Baselines
GPT-4o 34.02 20.63 24.42 19.47 35.85 23.02 41.77 19.40
GPT-4-turbo 41.16 23.38 34.32 26.73 42.10 23.35 47.03 20.06
GPT-4o-mini 34.57 17.23 27.72 21.12 35.19 17.76 40.78 12.82
Qwen2.5-3B-Instruct 14.05 6.58 15.51 12.21 16.12 5.26 10.52 2.30
Qwen2.5-7B-Instruct 26.56 14.37 23.43 19.80 28.28 15.78 27.96 7.56
Qwen2.5-32B-Instruct 35.01 21.62 29.70 24.09 36.51 24.01 38.81 16.77
Qwen3-4B 28.64 16.79 27.39 22.44 32.23 17.76 26.31 10.91
Qwen3-8B 38.19 22.72 38.28 33.66 39.80 23.35 36.51 11.18
Qwen3-32B 37.87 17.89 32.01 25.08 41.18 18.09 40.46 10.52
UTGen (3B) 22.83 12.29 23.10 18.81 25.00 12.92 20.39 5.26
UTGen (7B) 31.83 16.24 28.71 22.77 32.56 17.43 34.21 8.55
Ours (Backbone: Qwen2.5-3B-Instruct)
ATGEN (w/o Adver) 66.95 29.96 67.98 40.92 68.09 29.93 64.80 19.07
ATGEN (Unconditional) 68.93 32.38 68.64 42.90 73.35 32.89 64.80 21.38
ATGEN (Adaptive) 70.36 30.95 68.31 40.92 73.68 32.56 69.07 19.40
Ours (Backbone: Qwen2.5-7B-Instruct)
ATGEN (w/o Adver) 71.56 34.02 71.62 47.85 73.63 35.85 69.40 18.42
ATGEN (Unconditional) 74.97 34.57 70.95 47.19 79.27 36.84 74.67 19.73
ATGEN (Adaptive) 74.42 36.99 76.23 51.15 79.60 38.81 67.43 21.05

Table 1: Intrinsic evaluation of test case generation methods on a subset of APPS and Codeforces
benchmarks. Our RL-trained models, ATGEN, significantly outperform SFT-based (UTGen) and
prompting baselines. Best results in each column for our methods are in bold.

code, and then checking if this corrected IO pair successfully fails the buggy code. It mea-
sures a generated input’s raw bug-finding capability, which reveals a fundamental trade-off:
test inputs effective at finding bugs (high Input Attack Rate) are often corner cases, making
it difficult for the model to predict their correct output, thus leading to lower IO Accuracy.

Reward Configuration IO Acc (%) Attack Rate (%) Input Attack Rate (%)
IO Acc + Input Attack 44.67 30.07 62.56
Attack Rate Only 67.72 29.74 47.53
Three Combined 65.64 30.29 47.09

Table 2: Analysis of different reward configurations for our
non-adversarial RL model, ATGEN (w/o Adver). Results
highlight the trade-off between IO Accuracy and the raw
attacking potential of generated inputs (Input Attack Rate).

Trade-off by Different Reward Set-
tings. We first investigate whether
this trade-off can be navigated by sim-
ply engineering the reward function.
We trained variants of ATGEN (w/o
Adver) with different reward composi-
tions: one that rewards only the final,
correct and valid attack (Attack Rate
Only); one that jointly rewards output

correctness and raw input attack capability (IO Acc + Input Attack); and a balanced version with all
reward components (Three Combined).

The results, presented in Table 2, reveal a clear and informative trade-off. When explicitly rewarding
for Input Attack Rate, the model achieves the highest score on that metric but at a significant cost
to its IO Accuracy. Conversely, the configuration rewarding only the final Attack Rate yields the
highest IO Accuracy. This suggests the model learns that a prerequisite for achieving the final attack
reward is to first generate a correct I/O pair, thus adopting a more conservative but accurate strategy.
Most importantly, across all configurations, the final usable Attack Rate remains largely stagnant at
around 30%. This indicates that while reward engineering can shift the model’s focus, it does not
fundamentally enhance its ability to generate tests that are attacking and correct. This limitation
motivates the need for a more advanced, adversarial training paradigm, which we explore next.

Better Trade-off by ATGEN. To rigorously evaluate the impact of adversarial training, we analyze
the performance of ATGEN and its non-adversarial counterpart across various training configurations.
We pick key configurations of GRPO, such as the number of samples per optimization step (e.g.,
128 vs. 64) and the GRPO group generation number (e.g., 6 vs. 8). A smaller sample count per
optimization step corresponds to a more “online” learning setting. The results, presented in Table 3.

For the non-adversarial model ATGEN (w/o Adver), it is forced into a suboptimal trade-off under
different training dynamics, often sacrificing IO Accuracy for a higher Input Attack Rate, illustrating
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that without a dynamic curriculum, pushing the model to find more challenging inputs can severely
degrade its ability to predict correct outputs.

Table 3: Comparison of IO Accuracy and Input Attack Rate
across different hyperparameter configurations. The pro-
posed ATGEN framework demonstrates a clear performance
improvement over its non-adversarial counterpart.

Hyperparameter Set Metric ATGEN (w/o Adver) ATGEN ∆

(128, 6) IO Accuracy (%) 71.56 74.09 +2.53
Input Attack Rate (%) 46.87 47.99 +1.12

(64, 6) IO Accuracy (%) 73.76 74.96 +1.20
Input Attack Rate (%) 47.63 49.17 +1.54

(64, 8) IO Accuracy (%) 69.59 75.30 +5.71
Input Attack Rate (%) 49.06 47.85 -1.21

In contrast, the full ATGEN frame-
work consistently establishes a supe-
rior performance frontier. In the (128,
6) and (64, 6) configurations, ATGEN
simultaneously improves both met-
rics, delivering a clear win-win. Most
tellingly, in the (64, 8) setting where
the baseline falters, ATGEN demon-
strates its robust balancing capability.
It achieves a massive +5.71% absolute
gain in IO Accuracy while keeping the

Input Attack Rate highly competitive. This shows that the dynamic adversarial loop prevents the
model from overfitting to a single metric, enabling it to learn a more generalizable policy.

5.4 DOWNSTREAM APPLICATION: ENHANCING CODE GENERATION

To assess the practical utility of our trained test generators, we evaluate their effectiveness in both the
inference and training of code generation.

ATGEN as a Best-of-N Filter. We evaluate our test generator’s utility for inference in a Best-
of-N setting on the APPS dataset. For each problem, we sample N candidate solutions and use
the test generator to create a suite of ktest unit tests. The candidate code with the highest pass rate
against this suite is selected, and its final performance is measured on a private ground-truth test set.
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Figure 2: Performance comparison of different
test generation models in a Best-of-N code gen-
eration setting. ATGEN (Adaptive) achieves the
best performance and significantly closes the gap
to the theoretical Human Expert upper bound.

Figure 2 shows the average pass@1 of the se-
lected code. The results clearly demonstrate that
our adversarially trained model, ATGEN (Adap-
tive), is the most effective automated filter, con-
sistently outperforming all baselines. At a cost-
efficient setting of ktest = 10, using ATGEN
(Adaptive) achieves a final pass@1 of 35.00%,
surpassing the UTGen baseline (30.67%) by over
4.3 absolute points and significantly closes the
gap to the theoretical Human Expert upper bound
(38.33%).

Crucially, the plot also reveals that ATGEN’s
peak performance is achieved with a small num-
ber of generated tests. The performance curves
for our models remain largely stable as ktest in-
creases beyond 10. We attribute this to the RL
objective, which optimizes the generator to find a
single, high-impact, bug-revealing test case. Con-
sequently, generating more tests for the same

candidate yields no improvements. This demonstrates that ATGEN is not only a powerful verifier
but also remarkably compute-efficient, requiring only a few generated tests to reliably select the best
candidate from a large pool.

ATGEN as an RL Reward Source for Code Generation. Beyond inference, a powerful test
generator can provide a reward signal for training code models with RL. Pioneer work like Deepseek-
R1 (Guo et al., 2025) has shown that RL, using pass rates on ground-truth test cases as a reward, can
dramatically enhance a model’s coding ability. However, this approach is limited to problems where
a factual test suite already exists. This raises a critical question: can a high-quality generated test
suite serve as an effective proxy for RL-based code generation training?

To investigate this, we train a Qwen2.5-3B-Instruct code generator via RL, using reward signals
from three different test generators: ATGEN (Adaptive), the baseline UTGen (7B), and a prompted
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Figure 3: Final pass@1 performance of a Qwen2.5-3B-Instruct code generator after being trained via
RL with rewards provided by different test generators. Using our ATGEN-7B as the reward source
yields a substantially stronger final code generator compared to using baseline test generators.

Qwen2.5-7B-Instruct. The resulting code generators are then evaluated on the APPS and Codeforces
benchmarks. The results presented in Figure 3 show that the code generator trained with rewards from
our ATGEN-7B significantly outperforms the models trained using UTGen or Qwen2.5-7B-Instruct
cross both benchmarks. This confirms that a high-quality, adversarially trained test generator can
effectively proxy human-written test suites in an RL loop, opening a new avenue for improving code
models where ground-truth tests are unavailable

5.5 ANALYSIS OF ADVERSARIAL SAMPLING ATTEMPTS

To understand the impact of adversarial pressure, we conduct an ablation study on the maximum
number of sampling attempts used to find an adversarial code. Intuitively, the more retires, the more
likely an adversarial code could be sampled. We evaluate the performance of our ATGEN-7B model
with sampling retries set to 10, 20, and 30.

Table 4: Impact of varying the maximum sampling
retries for adversarial code. Increasing retries en-
hances the adversarial ratio and input attack rate but
reduces IO accuracy.

Max Sampling Adversarial Code IO Accuracy Input Attack Rate
Retries Ratio (%) (%) (%)

10 17.1 74.09 47.96
20 23.0 (↑) 72.99 (↓) 49.50 (↑)
30 23.7 (↑) 70.69 (↓) 49.94 (↑)

The results, presented in Table 4, reveal two
key insights. First, increasing sampling at-
tempts boosts the proportion of adversarial
code found, but with diminishing returns. As
shown in the “Adversarial Code Ratio” col-
umn, a increase from 20 to 30 results in only
a marginal improvement on adversarial code
ratio. This suggests that as the test generator
becomes more adept, the pool of easily discov-
erable adversarial examples shrinks, making

it harder to find new ones even with more attempts. Second, in ATGEN, the adversarial code ratio
controls the trade-off between the model’s attack capability and its correctness. While the raw bug-
finding potential (Input Attack Rate) consistently improves, the model’s ability to produce correct
outputs (IO Accuracy) steadily declines. These findings highlight that increasing is not a monolithic
improvement. A moderate number of retries appears to provide a sweet spot, effectively boosting the
model’s attack capabilities without catastrophically impacting its output accuracy.

6 CONCLUSION
This paper introduces ATGEN, a novel framework that trains the test case generator using adversarial
reinforcement learning. By creating a dynamic curriculum of challenging bugs, ATGEN learns
to produce highly effective test cases that significantly outperform prior methods reliant on static
datasets. Our experiments validate ATGEN’s superiority and demonstrate its practical utility as a
powerful filter for selecting correct code and as a high-quality reward source for training more capable
code generation models. This work not only establishes a more effective paradigm for automated
debugging but also presents a core adversarial RL framework that is, in principle, generalizable to a
broader range of code and reasoning-related challenges.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Saranya Alagarsamy, Chakkrit Tantithamthavorn, and Aldeida Aleti. A3test: Assertion-augmented
automated test case generation. Information and Software Technology, 176:107565, 2024.

Mariano Ceccato, Alessandro Marchetto, Leonardo Mariani, Cu D Nguyen, and Paolo Tonella.
Do automatically generated test cases make debugging easier? an experimental assessment
of debugging effectiveness and efficiency. ACM Transactions on Software Engineering and
Methodology (TOSEM), 25(1):1–38, 2015.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022.

Jingyi Chen, Lei Yan, Shikai Wang, and Wenxuan Zheng. Deep reinforcement learning-based
automatic test case generation for hardware verification. Journal of Artificial Intelligence General
science (JAIGS) ISSN: 3006-4023, 6(1):409–429, 2024a.

Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jianwei Yin. Chatunitest: A
framework for llm-based test generation. In Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineering, pp. 572–576, 2024b.

Sena Dikici and Turgay Tugay Bilgin. Advancements in automated program repair: a comprehensive
review. Knowledge and Information Systems, pp. 1–47, 2025.

Shihan Dou, Haoxiang Jia, Shenxi Wu, Huiyuan Zheng, Weikang Zhou, Muling Wu, Mingxu Chai,
Jessica Fan, Caishuang Huang, Yunbo Tao, et al. What’s wrong with your code generated by large
language models? an extensive study. arXiv preprint arXiv:2407.06153, 2024.

Deborah Etsenake and Meiyappan Nagappan. Understanding the human-llm dynamic: A literature
survey of llm use in programming tasks. arXiv preprint arXiv:2410.01026, 2024.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
Critic: Large language models can self-correct with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. arXiv preprint arXiv:2105.09938, 2021.

Haichuan Hu, Xiaochen Xie, and Quanjun Zhang. Repair-r1: Better test before repair. arXiv preprint
arXiv:2507.22853, 2025.

Dong Huang, Jie M Zhang, Qingwen Bu, Xiaofei Xie, Junjie Chen, and Heming Cui. Bias testing
and mitigation in llm-based code generation. ACM Transactions on Software Engineering and
Methodology, 2024.

Linghan Huang, Peizhou Zhao, Huaming Chen, and Lei Ma. Large language models based fuzzing
techniques: A survey (2024). URL https://arxiv. org/abs/2402.00350.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314–21328, 2022.

Qingyao Li, Wei Xia, Kounianhua Du, Xinyi Dai, Ruiming Tang, Yasheng Wang, Yong Yu, and
Weinan Zhang. Rethinkmcts: Refining erroneous thoughts in monte carlo tree search for code
generation. arXiv preprint arXiv:2409.09584, 2024.

Qingyao Li, Xinyi Dai, Xiangyang Li, Weinan Zhang, Yasheng Wang, Ruiming Tang, and Yong Yu.
Codeprm: Execution feedback-enhanced process reward model for code generation. In Findings of
the Association for Computational Linguistics: ACL 2025, pp. 8169–8182, 2025.

MatrixStudio. Codeforces-python-submissions, 2024. URL https://huggingface.co/dat
asets/MatrixStudio/Codeforces-Python-Submissions.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Codegen2:
Lessons for training llms on programming and natural languages. arXiv preprint arXiv:2305.02309,
2023.

OpenAI. Gpt-4o-mini. https://openai.com/index/gpt-4o-mini-advancing-cos
t-efficient-intelligence/, 2024. Accessed: 2024-07-18.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang Wang.
Automatically correcting large language models: Surveying the landscape of diverse self-correction
strategies. arXiv preprint arXiv:2308.03188, 2023.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang Wang.
Automatically correcting large language models: Surveying the landscape of diverse automated
correction strategies. Transactions of the Association for Computational Linguistics, 12:484–506,
2024.

Archiki Prasad, Elias Stengel-Eskin, Justin Chih-Yao Chen, Zaid Khan, and Mohit Bansal. Learning
to generate unit tests for automated debugging. arXiv preprint arXiv:2502.01619, 2025.

A Yang Qwen, Baosong Yang, B Zhang, B Hui, B Zheng, B Yu, Chengpeng Li, D Liu, F Huang,
H Wei, et al. Qwen2. 5 technical report. arXiv preprint, 2024.
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ROLE OF LANGUAGE MODELS FOR THE PAPER

In the process of writing this paper, the language model was used and only used to help us polish the
text.

APPENDIX

A ADDITIONAL RESULTS

A.1 ANALYSIS OF RL TRAINING CURVES FOR CODE GENERATION

To further illustrate the superiority of ATGEN as a reward source for training code generators via
reinforcement learning, we present the training curves in Figure 4. These plots provide direct visual
evidence supporting the quantitative results presented in the main paper.

Figure 4a compares the mean reward score of a code generator trained using rewards from our
ATGEN-7B versus rewards from the baseline Qwen2.5-7B-Instruct test generator. The total reward is
an average of three components: a format reward, a tag count reward, and the crucial code pass rate
reward. The baseline’s training curve quickly plateaus around a score of 0.7. This is because the code
generator rapidly masters the simple format and tag-related tasks (achieving a perfect score of 1.0
on both), but the test cases provided by the baseline generator are not effective enough to create a
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meaningful and optimizable signal for the code pass rate. The learning for this critical component
stagnates, capping the average reward. In contrast, the curve for the model trained with ATGEN not
only reaches a higher overall score but also shows a continuous upward trend, indicating that our test
generator provides a challenging and consistent learning signal that allows the code generator to keep
improving its functional correctness.

Figure 4b provides a more direct comparison by isolating the code pass rate reward in the later stages
of training (after 50 steps), comparing ATGEN with the stronger UTGen baseline. The curve for
UTGen is consistently low and shows no clear upward trajectory, suggesting that its test cases lack
the necessary quality and diversity to drive further improvement in the code generator. Conversely,
the reward signal from ATGEN is substantially higher and more dynamic, providing a much more
effective curriculum for the code generator to enhance its problem-solving capabilities. These curves
unequivocally demonstrate that ATGEN serves as a far more effective reward provider for training
advanced code generation models.

(a) Comparison of mean reward score against a base-
line test generator.

(b) Comparison of code pass rate reward against UT-
Gen.

Figure 4: Training curves for the code generator when using different test generators as the reward
source. (a) The total reward score during the initial 50 steps of training. Using ATGEN leads to
a higher and more sustained reward signal. (b) The isolated code pass rate reward after 50 steps.
ATGEN provides a significantly more effective learning signal than UTGen.

A.2 ABLATION STUDY ON ADVERSARIAL CODE GENERATION STRATEGY

To validate our choice of using a sampling-based approach for generating adversarial code, we
conduct an ablation study comparing it against a more direct instruction-based method. In the
instruction-based setting (ATGEN (Instruct)), we directly prompt the code generator to produce a
adversarial code that passes the current test case Tgen while failing the ground-truth test suite Tgold. We
hypothesize that while this method is computationally cheaper, it risks creating code with “unnatural”
or “synthetic” bugs, causing a distributional shift that could negatively impact the test generator’s
training.

The results are presented in Table 5. The findings confirm our hypothesis. Both instruction-based
models show a clear degradation in Attack Rate compared to their sampling-based counterparts. For
instance, our proposed ATGEN (Adaptive) achieves a 36.22% Attack Rate, whereas its instruction-
based variant, ATGEN (Instruct, Adaptive), only reaches 32.71%. This suggests that training on
synthetically generated bugs harms the test generator’s ability to identify realistic programming flaws.

Table 5: Comparison of adversarial code generation
strategies. All models use the Qwen2.5-7B-Instruct
backbone. The sampling-based approach (our pro-
posed method) yields a significantly higher Attack
Rate, validating its effectiveness.

Method IO Acc (%) Attack Rate (%)
Sampling-based (Proposed)
ATGEN (Unconditional) 74.97 34.57
ATGEN (Adaptive) 74.09 36.22

Instruction-based (Ablation)
ATGEN (Instruct) 70.47 30.73
ATGEN (Instruct, Adaptive) 76.28 32.71

Interestingly, the ATGEN (Instruct, Adap-
tive) model achieves the highest IO Accuracy
(76.28%). We attribute this to the nature of re-
inforcement learning. When faced with noisy
and synthetic bugs, optimizing the Attack Rate
becomes a more difficult task. Consequently,
the model pivots to maximize the reward from
the more stable and accessible source: IO Ac-
curacy. Since achieving high IO Accuracy pri-
marily depends on understanding the problem
description rather than the buggy code, this
objective is unaffected by the noisy training
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data. The model, therefore, over-optimizes for
correct I/O pairing at the expense of its core

bug-finding capability. These results strongly justify our use of the more robust sampling-based
adversarial generation, as it creates a more realistic and effective training curriculum for the test
generator.

B PROMPTS

In this section, we present the prompts used in training and inference for an LLM to perform various
operations.

We present the prompts for generating test case IO pair for test generator in Table 6. And we present
the prompts for sampling adversarial code in Table 7. The other prompt we present in Table 8 is the
prompt for instructing the code generator to generate adversarial code.

Prompt for Generating Test Case IO Pair

system message:
You are a helpful AI Assistant that provides well-reasoned and

↪→ detailed responses. You first think about the reasoning
↪→ process as an internal monologue and then provide the
↪→ user with the answer. Respond in the following format:
↪→ <think>\n...\n</think>\n<answer>\n...\n</answer>

prompt:
Generate a test case (both input and output) for the given

↪→ programming problem and buggy code.
The generated input/output pair MUST satisfy the problem

↪→ description (i.e., the gold code should pass it).
The generated input/output pair MUST cause the provided buggy

↪→ code to fail (e.g., wrong answer, runtime error).

Format the generated test case within the <answer> tags as a
↪→ JSON object containing "input" and "output" keys,
↪→ enclosed in triple backticks ‘‘‘json ‘‘‘. For example:

<answer>
‘‘‘json
{{
"input": "[your generated test case input]", (Notice: Brackets

↪→ are not needed in your output)
"output": "[your generated test case output]"
}}
‘‘‘
</answer>

Problem:
{example[’question’]}
Buggy Code:
{example[’buggy_code’]}

Table 6: Prompt for Generating Test Case IO Pair.
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Prompt for Sampling Adversarial Code

Complete the Python program to solve the problem. Remember to
↪→ contain the complete program including all the imports
↪→ and function header in your response.

Generate the code ONLY. No other explanation or words attached!
{question}

Table 7: Prompt for Sampling Adversarial Code.

Prompt for Instruction-based Generation of Adversarial Code

Create Python code that appears to solve the problem but
↪→ contains subtle flaws. The code MUST:

1. DIRECTLY READ FROM STANDARD INPUT (using input()) and PRINT
↪→ the result

2. CONTAIN NO EXTRA TEST CODE
3. Pass the specific test case while failing other valid

↪→ scenarios
4. Include hidden logical errors that aren’t obvious at first

↪→ glance

Example (BAD for illustration):
Problem: "Sum two integers"
Input Format: Two space-separated integers
Bad Solution:
a, b = map(int, input().split())
print(a + b if a < 5 else 0)

Think in <think>\n...\n</think> and answer in
↪→ <answer>\n...\n</answer>.

The content between <answer> and </answer> should be the code
↪→ ONLY, without any other words attached.

Problem:
{question}

Test Case (MUST PASS):
{test_case_pair}

Table 8: Prompt for Instruction-based Generation of Adversarial Code.
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