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Fig. 1: Top: Overview of SYMDEX: (Left) Digital twin of our bimanual robot in simulation and real-world. (Middle) The task
is decomposed into two sub-tasks, each trained with a dedicated equivariant policy that seamlessly transfers across symmetric
configurations. (Right) Task-specific policies are distilled into an equivariant policy with unprivileged observations.

Abstract—Humans naturally exhibit bilateral symmetry in
their gross manipulation skills, effortlessly mirroring simple
actions between left and right hands. Bimanual robots—which
also feature bilateral symmetry—should similarly exploit this
property to perform tasks with either hand. Unlike humans,
who often favor a dominant hand for fine dexterous skills,
robots should ideally execute ambidextrous manipulation with
equal proficiency. To this end, we introduce SYMDEX (SYM-
metric DEXterity), a reinforcement learning framework for
ambidextrous bi-manipulation that leverages the robot’s inherent
bilateral symmetry as an inductive bias. SYMDEX decomposes
complex bimanual manipulation tasks into per-hand subtasks
and trains dedicated policies for each. By exploiting bilateral
symmetry via equivariant neural networks, experience from one
arm is inherently leveraged by the opposite arm. We then distill
the subtask policies into a global ambidextrous policy that is
independent of the hand-task assignment. We evaluate SYMDEX
on six challenging simulated manipulation tasks and demonstrate
successful real-world deployment on two of them. Our approach
strongly outperforms baselines on complex tasks in which the left
and right hands perform different roles. We further demonstrate
SYMDEX’s scalability by extending it to a four-arm manipulation
setup, where our symmetry-aware policies enable effective multi-
arm collaboration and coordination. Our results highlight how
structural symmetry as an inductive bias in policy learning
enhances sample efficiency, robustness, and generalization across
diverse dexterous manipulation tasks.

I. INTRODUCTION

Humans inherently exhibit bilateral symmetry in their gross
motor skills, which allows them to effortlessly mirror simple
actions between their left and right limbs. However, when it
comes to fine dexterous tasks (e.g., writing, playing instru-
ments), most people develop a dominant side, a phenomenon
known as handedness. This functional control asymmetry often
leads to suboptimal task strategies, such as switching hands to
maintain control robustness. In contrast, bimanual robots—
which frequently also feature bilateral symmetry—are not
inherently bound by handedness. Hence, in the context of
manipulation, there is a unique opportunity to design algo-
rithms that perform tasks ambidextrously, which enables the
interchangeable use of limbs across diverse task configurations
and plans efficient actions rather than a left/right preference.

Achieving ambidextrous bimanual manipulation requires
control policies incorporating the robot’s bilateral symmetry.
Recent robotics research has explored such structural sym-
metries—referred to as morphological symmetries [20]—to
develop symmetry-aware learning methods. Most previous
work has focused on legged locomotion, where exploiting
morphological symmetry improves control robustness and
sample efficiency [26, 21, 17, 3]. However, whether embed-
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ding symmetry in manipulation policies can offer similar gains
in generalization and sample efficiency for high-dimensional,
contact-rich tasks remains an open question.

Reinforcement Learning (RL) is a compelling paradigm
for bimanual dexterous manipulation, especially in sim-to-real
settings [15, 11, 16]. Unlike imitation learning, which needs
large, high-quality demonstrations, RL trains in randomized
environments, acquiring robust behaviors via massive simula-
tion. Yet the complexity of bimanual or multi-robot systems
has confined prior work to narrowly scoped tasks enforced by
system constraints (e.g., hand-only control [15] or arm joint
locking [11]). Hence we ask: Can RL scale to fully actuated
bimanual—and multi-robot—systems by embedding morpho-
logical symmetry as a structural prior in policy learning?

To address this problem, we introduce SYMDEX (SYM-
metric DEXterity), a RL framework for ambidextrous biman-
ual (and multi-arm) dexterous manipulation that explicitly
incorporates morphological symmetry as an inductive bias.
SYMDEX decomposes complex bimanual tasks into per-
hand subtasks and trains a separate policy for each using an
equivariant neural network [5]. This structure inherently shares
experience across symmetric limbs, exploiting morphological
symmetry to accelerate learning. SYMDEX operates entirely
in joint space, without relying on task-space solvers or hand-
crafted action symmetries. To enable flexibility and remove
the need for fixed hand-task assignment, we distill these sub-
policies into a unified global equivariant policy via teacher-
student distillation. We evaluate SYMDEX on six diverse
and challenging bimanual manipulation tasks in simulation and
successfully deploy it on two of them in the real world.

II. BACKGROUND

Here, we review the foundational concepts and notation neces-
sary for formalizing how symmetries serve as an inductive bias
in learning bimanual (and multi-robot) dexterous manipulation
policies. Extended definitions are provided in Appx. A.

A symmetry group (see Def. A.1) is a set of invertible
transformations, denoted as G = {e, ga, gb, . . . }, that can be
defined to act on distinct objects, such as the state S and
action A spaces of a Markov decision process (MDP). To do
so we define the group actions (see Def. A.2). Specifically,
let (▷S) : G × S → S and (▷A) : G × A → A denote the
action of G on S and A, respectively. Then, given a symmetry
transformation g ∈ G and a state-action pair (s, a) ∈ S × A,
the g-transformed pair is denoted by (g ▷S s, g ▷A a) ∈ S ×A.

The symmetries of MDPs are defined as state–action
transformations that preserve the MDP’s dynamics, i.e., G-
equivariance (Def. A.5) of the dynamics:

g ▷S E[f(s, a)] = E[f(g ▷S s, g ▷A a)],∀(s, a) ∈ S×A, g ∈ G
(1)

where f :S × A → S is a transition dynamics. For example,
consider the bimanual environment in Fig. 1, where the
symmetry group is the reflection group G = C2 = {e, gr |
g2r =e}—with gr denoting the robots’ bilateral symmetry.

The symmetry priors from Eq. (1) constrain the MDP’s
optimal policy and value function. To see this, let’s formally

denote a Partially Observable MDP (POMDP) by the tuple
⟨S,A, r, τ, ρ0, γ,O,σ⟩ , where S, A, and O are the state,
action, and observation spaces; r : S × A → R is the reward
function; τ : S × A × S → R+ is the transition kernel;
ρ0 : S → R+ is the initial state distribution; γ is the discount
factor; and σ : S → O is the observation function. A POMDP
is said to be symmetric if the following conditions hold:

Definition II.1 (Symmetric POMDP). A POMDP
⟨S,A, r, τ, ρ0, γ,O,σ⟩ possess the symmetry group G
when the state and action spaces S and A admit group
actions (▷S) and (▷A), and (r, τ, ρ0) are all G-invariant. That
is, if for every g ∈ G, s, s′ ∈ S, and a ∈ A, we have:

τ(g ▷S s
′ | g ▷S s, g ▷A a) = τ(s′ | s,a),

ρ0(g ▷S s) = ρ0(s), r(g ▷S s, g ▷A a) = r(s,a).
(2)

POMDP’s satisfying Eq. (2) are constrained to have optimal
policy and value functions satisfying [38]:

g ▷A π∗(σ(s)) = π∗(σ(g ▷S s))︸ ︷︷ ︸
Policy G-equivariance

,V ∗(σ(s)) = V ∗(σ(g ▷S s))︸ ︷︷ ︸
Value function G-invariance

(3)

Bimanual and multi-robot manipulation In bimanual (and
multi-robot) dexterous manipulation, each task (e.g., stir eggs;
see Fig. 1) can be decomposed into a sequence of concurrent
and sequential subtasks, with each agent assigned subtasks
(e.g., left arm grasps the egg beater while right arm holds the
bowl). Hence, these environments are modeled as a Multi-Task
Multi-Agent POMDP (MTMA-POMDP) defined by the tu-
ple ⟨S,A, R, τ, ρ0, γ,O,σ,K,N⟩, where N denotes the agent
set—with n ∈ N representing a unique robot arm (with a
dexterous hand)—and K denotes the task set—with k ∈ K
a manipulation subtask. This structure enables decomposition
of the overall action space as A = ⊕n∈NAn, and defines
subtask policies an ∼ πk(o

n,k) ∈ An for all k ∈ K, where
on,k = σn(s, k) denotes the subtask-and-agent specific obser-
vation. Each task defines a reward rk, which define the corre-
sponding value function V k(on,k

t ) = Eπk

[∑∞
t γtrk(o

n,k
t )

]
.

Consequently, the MTMA-POMDP reward and value func-
tions are defined as: r(st) =

∑
(n,k)∈I rk(σ

n(st, k)) and
V (st) =

∑
(n,k)∈I Vk(σ

n(st, k)). Where I denotes the set of
agent-subtask pairwise pairings.

III. METHOD

We formulate bimanual manipulation as a MTMA-POMDP
(App. II), where each agent corresponds to a single robot
arm executing one subtask. This reduces the dimensionality
of each agent’s observation-action spaces and assigns subtask-
specific reward, simplifying credit assignment. However, each
agent must still learn to perform all subtasks to achieve am-
bidexterity. Notably, there is symmetry between the subtasks
assigned to each agent (Fig. 1), which motivates leveraging
morphological symmetries as a strong inductive bias and
learning an equivariant policy for each subtask.

An illustrative example To express this ambidexterity us-
ing the formalism of Sec. II, note that changes in agents’ sub-
task assignments are formalized through group action on set of
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Fig. 2: Comparison of action execution between (a) subtask
policies and (b) global policy in bimanual manipulation tasks.

agent-task pairs I (see Def. A.2), i.e., (▷I) : G×(N×K) → (N×
K). Thus, in the bimanual manipulation environment of Fig. 1,
with N = {R,L} and K = {B,E}—where R and L denote
the left/right arms, and B and E denote the bowl-holding
and egg-beater-operating subtasks—a bilateral reflection of the
workspace, gr, leads to the following permutation of tasks
and agents: gr ▷I (L,B) := (gr ▷ L, gr ▷ B) = (R,E) and
gr ▷I (R,E) := (gr ▷ R, gr ▷ E) = (L,B). Note that since we
learn a dedicated policy per subtask, these changes lead to the
following group action on the action space of the POMDP:

gr ▷A a :=gr ▷A

[
aL ∼ πB(o

L,B)
aR ∼ πE(o

R,E)

]
=

[
aL ∼ gr ▷AN (πE(o

R,E))
aR ∼ gr ▷AN (πB(o

L,B))

]
(4)

Essentially, this shows that the action of a robot arm in the
reflected environment equals the symmetry-transformed action
of the opposite arm in the original environment (see Fig. 1-
left). Here, (▷AN) denotes the group action on an individual
arm’s action space. Crucially, the right-hand side of Eq. (4)
relies on the G-equivariance of each subtask policy and obser-
vation function, ensuring that the global policy is equivariant.
Moreover, this analysis directly extends to multi-robot systems
with more complex symmetry groups:

Morphological symmetries in MTMA-POMDP Let
(S,A, r, τ, ρ0, γ,O,σ,K,N) denote a N -robot manipulation
MTMA-POMDP, with agents N = {1, . . . , N}, tasks K =
{k1, . . . , kN}, and agent-task pairs I = {(1, k1), . . . } associ-
ated with a G-symmetric POMDP (Def. II.1). Then, the group
action on the action space A = ⊕n∈NAn is defined via the
tensor product (Note A.1) of the group actions (▷I) and (▷AN):

g ▷A a =

 a1 ∼ g ▷AN (πg▷k1(o
g▷1,g▷k1))

...

aN ∼ g ▷AN (πg▷kN (og▷N,g▷kN ))

 (5)

Eq. (5) generalizes the bimanual manipulation example in
Eq. (4) to an N -robot task with G-equivariant dynamics.
Crucially, this analysis identifies the symmetry constraints for
each subtask policy and observation function of the MTMA-
POMDP while characterizing the group actions on the global
action space of the POMDP. This enables us to first learn G-
equivariant policies for each subtask and then distill them into
a global G-equivariant policy for the entire system.

Symmetry-aware learning of subtask policies We de-
compose a multi-robot manipulation task into subtasks and
learn a policy for each. Since each subtask has a unique
observation space—comprising the assigned robot state and
the task-specific state—each subtask policy is parameterized

by a G-equivariant Neural Network [5] ( Fig. 2(a)), satisfying:

g ▷AN π
θk
k (on,k) = π

θk
k (g ▷Ok

σn(s, k)) = π
θk
k (og▷n,g▷k) (6)

Here θk are the parameters of the k-th subtask network, and
▷Ok

is the symmetry action on its observation space. See [20]
for details on how to construct these actions.

Under the assumption that each subtask reward is G-
invariant, i.e., rk(σ

n(s, k)) = rk(σ
g▷n(g ▷S s, k)) for all

(n, k) ∈ I, g ∈ G —a premise that holds naturally in
dexterous manipulation tasks with morphological symmetries
because most reward terms depend on hand–object pose
errors— the corresponding subtask value function can be pa-
rameterized by a G-invariant Neural Network (NN) satisfying
V θk

k (on,k) = V θk

k

(
σg▷n(g ▷S s, k)

)
. This parameterization

allows us to employ the Proximal Policy Optimization (PPO)
algorithm [25] to learn the N subtask G-equivariant policies
and G-invariant value functions [38].

Global G-equivariant policy distillation After train-
ing the subtask policies, we distill them into a global G-
equivariant policy—which yields an ambidextrous policy in
the case of bimanual manipulation. This is a classic behavior
cloning problem, where the learned N subtask policies serve
as expert policies to generate a dataset of state–action pairs
D = {(si,ai)}Mi=1 (see Eq. (5)), which we use to learn a
global policy πϕ

d satisfying:

g ▷A πϕ
d (σ(s)) = πϕ

d (g ▷O σ(s)) = πϕ
d (σ(g ▷S s)) (7)

Here ϕ are the network parameters; ▷A and ▷O are the
group actions on the global action and observation spaces
(see Eq. (5)). Notably, The distilled policy infers task–arm
assignments directly from demonstrations (Fig. 2(b)), while
G-equivariance guarantees identical performance from any
symmetric initial state—i.e. s0 = s̄ and s0 = g ▷S s̄ yield
the same outcome for all g ∈ G. This constraint boosts ro-
bustness and promotes generalization to unseen configurations
[10, 29, 20]. In addition, we ensure that the global policy is
trained exclusively on non-privileged observations, enabling
robust deployment in the real world (Fig. 1-right).

IV. EXPERIMENTS

We evaluate our method on six simulated bimanual manipu-
lation tasks (see Fig. 4), spanning a range of coordination and
dexterity challenges (detailed in App. E for simulation and
App. F for real world). We validate the learned policy across
all simulated tasks and further deploy it in the real world,
showcasing effective transfer to real world. The experiments
of the four-arm system are shown in App. I-B.

Baselines and Evaluation Metric We evaluate five PPO-
based baselines, each targeting a specific design aspect: ac-
tion space dimensionality, task decomposition, value function
structure, and symmetry handling via equivariant networks or
data augmentation. All methods use shared hyperparameters
(App. H), and a detailed comparison is summarized in App.G.
Task success rate is averaged over five random seeds with 4096
rollouts each in the simulation. Real-world evaluation reports
success over 30 independent trials.
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Fig. 3: Performance of SYMDEX and baseline methods on six
benchmark tasks. SYMDEX learns all six tasks and achieves
success rates exceeding 80%, outperforming all baselines.

a) Simulation Results: We evaluate SYMDEX on our
simulation benchmark against all baselines, where symmet-
ric transformations are randomly applied to the initial state.
Fig. 3 shows that SYMDEX consistently learns all tasks with
success rates exceeding 80%, outperforming the baselines.

Advantage of Task Decomposition Task decomposition
is highly beneficial when the subtasks assigned to each arm
differ significantly. For example, the baseline E-PPO, which
jointly controls the entire system (44 DoF, cf. Tab. II), suc-
ceeds only on box-lift, partially on table-clean, and
fails on the rest. This occurs because in box-lift and
table-clean, both arms perform similar actions, making
joint learning tractable, whereas when arm subtasks diverge, E-
PPO’s monolithic policy struggles to specialize appropriately.

Moreover, decomposing the task at the subtask level—as
opposed to at the robot arm level—is critical. Baselines like
IPPO and E-IPPO use a decomposed 22 DoF action space,
yet each policy remains fixed to a specific arm and must learn
to select and perform both subtasks, i.e., a multi-task policy.
While IPPO and E-IPPO perform comparably to SYMDEX
on box-lift and table-clean, they fail to generalize
to other tasks. In contrast, SYMDEX assigns a policy per
subtask, circumventing the issues of multi-task learning.

Impact of G-equivariance/invariance Constraints When
comparing SYMDEX to SM-aug—which employs on-policy
data augmentation [3]— our proposed method consistently
outperformes across all tasks. A similar trend is observed
when comparing IPPO and E-IPPO. This performance boost
highlights the advantage of embedding symmetry priors into
the network architecture compared to data augmentation.

Impact of Centralized Learning Both E-PPO and SM-
c use global critics to estimate total rewards across sub-
tasks; however, our results show that such designs suffer
from poor credit assignment in complex, contact-rich set-
tings. Notably, E-PPO outperforms SM-c on box-lift and
table-clean, despite SM-c’s reduced action space via task
decomposition. This suggests that decomposition lowers the
dimensionality but introduces uncertainty in joint optimization,
hindering accurate reward assignment. Instead, SYMDEX,
using a deglobal value function, is more effective for high-
dimensional, coordinated manipulation tasks.

Distillation We use a teacher-student distillation approach

Method Box Table Drawer Threading Bowl Handover

Gaussian policy (GP) 0.83± 0.03 0.74± 0.05 0.69± 0.09 0.62± 0.13 0.75± 0.12 0.54± 0.23
Equi. GP 0.89± 0.01 0.83± 0.01 0.87 ± 0.07 0.63 ± 0.17 0.87± 0.08 0.86 ± 0.12
Equi. Diffusion policy 0.91 ± 0.04 0.84 ± 0.02 0.87 ± 0.13 0.60± 0.1 0.88 ± 0.15 0.68± 0.18

Box Table

Subtask 1 Subtask 2 Overall Subtask 1 Subtask 2 Overall

Equi. GP w/o Curriculum 0.2± 0.12 0.17± 0.23 0.13± 0.08 0.13± 0.05 0.1± 0.08 0.07± 0.12
Equi. GP 0.87 ± 0.08 0.83 ± 0.11 0.77 ± 0.09 0.83 ± 0.13 0.67 ± 0.32 0.63 ± 0.25
Equi. Diffusion Policy 0.7± 0.20 0.73± 0.13 0.6± 0.23 0.73± 0.15 0.47± 0.34 0.4± 0.21

TABLE I: (Top) Simulation distillation results for six different
tasks using three architectural choices. (Below) Real-world
performance comparison on box-lift and table-clean.

to train a unified global policy (Sec. III). We compare three
student variants: a vanilla Gaussian policy, an equivariant
Gaussian policy, and an equivariant diffusion policy [8]. As
shown in Tab. I, both G-equivariant Gaussian and diffusion
policies outperform the vanilla Gaussian policy across all six
tasks. This suggests that incorporating equivariant constraints
facilitates robust policy distillation. Interestingly, the equiv-
ariant Gaussian policy performs comparably to the diffusion
variant—likely because the teacher policies used for data
collection are Gaussian, allowing the Gaussian policy to fit
the dataset effectively.

b) Real-World Results: We conduct sim-to-real exper-
iments to evaluate the performance of our distilled policy
and its two variants on two real-world tasks: box-lift and
table-clean. The real-world setup is in Fig. 10 and videos
are in supplementary material. As shown in Tab. I-Bottom,
the equivariant Gaussian policy consistently outperforms both
its counterpart trained without curriculum and the variant that
replaces the Gaussian model with a diffusion model.

First, we observe that removing the curriculum leads to a
significant performance drop, highlighting the importance of
domain randomization and safety constraints for successful
sim-to-real transfer. Second, although the equivariant diffusion
policy achieves better distillation results than the Gaussian
policy in simulation, the Gaussian policy proves to be more
robust in the real world. We attribute this to the homogeneous
dataset collected from the teacher policies: the diffusion model
struggles to generalize to out-of-distribution observations, par-
ticularly under imperfect state estimation from the perception
system. In contrast, the Gaussian policy directly fits the teacher
policy, making it more robust to the sim-to-real gap.

V. CONCLUSION

In this work, we presented SYMDEX, a novel RL frame-
work for learning morphological symmetry-aware policies
that achieve ambidextrous bimanual manipulation. SYMDEX
enables efficient policy learning across six complex dexterous
manipulation tasks, enhances policy robustness through sym-
metry exploitation, and achieves zero-shot sim-to-real transfer
on two real-world tasks. Furthermore, we demonstrated the
scalability of SYMDEX on a four-arm setup, successfully
handling more intricate symmetry groups and multi-agent
coordination. We believe that incorporating symmetry as an
inductive bias offers a powerful tool for advancing robotic
learning, particularly as morphologically inspired humanoid
and multi-armed robots become increasingly prominent.
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APPENDIX A
BACKGROUND ON GROUP AND REPRESENTATION THEORY

A. Group actions and representations

This section provides a brief overview of the fundamental
concepts in group and representation theory, which are used
to define symmetry groups of robotic systems and MDPs.
For a comprehensive and intuitive background on group and
representation theory in machine learning, we refer the reader
to Weiler et al. [33].

To begin, we define a group as an abstract mathematical
object.

Definition A.1 (Group). A group is a set G, endowed with a
binary composition operator defined as:

(◦) : G ×G −→ G
(g1, g2) −→ g1 ◦ g2,

(8a)

such that the following axioms hold:

Associativity: ∀ g1, g2, g3 ∈ G,

(g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3), (8b)
Identity: ∀ g ∈ G,∃ e ∈ G such that

e ◦ g = g = g ◦ e, (8c)

Inverses: ∀ g ∈ G, ∃ g−1 ∈ G such that

g ◦ g−1 = e = g−1 ◦ g. (8d)

We focus on symmetry groups—that is, groups of trans-
formations acting on a set X where each transformation is
a bijection preserving an intrinsic property. For example, if
X represents the states of a dynamical system, the invariant
property might be the state’s energy (see Fig. 1).

Definition A.2 (Group action on a set [33]). Let X be a set
endowed with the symmetry group G. The (left) group action
of the group G on the set X is a map:

(▷) : G ×X −→ X
(g,x) −→ g ▷ x

(9a)

that is compatible with the group composition and identity
element e ∈ G, such that the following properties hold:

Identity: e ▷ x = x, ∀ x ∈ X (9b)
Associativity: ∀ g1, g2 ∈ G,∀ x ∈ X

(g1 ◦ g2) ▷ x = g1 ▷ (g2 ▷ x), (9c)

We are primarily interested in studying symmetry transfor-
mations on sets with a vector space structure. In most practical
cases, the group action on a vector space is linear, allowing
symmetry transformations to be represented as linear invertible
maps. These maps can be expressed in matrix form once a
basis for the space is chosen.

Definition A.3 (Linear group representation). Let X be a
vector space endowed with the symmetry group G. A linear
representation of G on X is a map, denoted by ρX , between

symmetry transformation and invertible linear maps on X (i.e.,
elements of the general linear group GL(X )):

ρX : G −→ GL(X )
g −→ ρX (g),

(10a)

such that the following properties hold:

composition : ∀g1, g2 ∈ G,

ρX (g1 ◦ g2) = ρX (g1)ρX (g2), (10b)

inversion : ρX (g
−1) = ρX (g)

−1,∀ g ∈ G. (10c)

identity : ρX (g ◦ g−1) = ρX (e) = I, (10d)

Whenever the vector space is of finite dimension |X | = n <
∞, linear maps admit a matrix form ρX (g) ∈ Rn×n, once a
basis set IX for the vector space X is chosen. In this case,
Eqs. (10b) to (10d) show how the composition and inversion
of symmetry transformations translate to matrix multiplication
and inversion, respectively. Moreover, ρX allows to express a
(linear) group action (Def. A.2) as a matrix-vector multipli-
cation:

(▷) : G ×X −→ X
(g,x) −→ g ▷ x := ρX (g)x

(10e)

Definition A.4 (Tensor product representation). Let X and Y
be (finite-dimensional) vector spaces endowed with a common
symmetry group G. Denote by ρX : G → GL(X ), and ρY :
G → GL(Y) the corresponding linear representations. The
tensor product representation is defined through the Kronecker
product of the representations of group actions on the vector
spaces:

(ρX ⊗ ρY) : G −→ GL(X ⊗ Y)
g −→ ρX (g) ⊗ ρY(g),

(11)

Note A.1. Whenever denoting group actions by (▷X ) and (▷Y),
we will use the notation ▷X ⊗ Y to denote the group action on
the tensor product space X ⊗ Y . Such that:

▷X ⊗ Y : G × (X ⊗ Y) −→ (X ⊗ Y)
(g,x⊗ y) −→ [ρX (g)⊗ ρY(g)](x⊗ y)

(12)

Maps between symmetric vector spaces
We will frequently study and use linear and non-linear maps

between symmetric vector spaces. Our focus is on maps that
preserve entirely or partially the group structure of the vector
spaces. These types of maps can be classified as G-equivariant,
G-invariant maps:

Definition A.5 (G-equivariant and G-invariant maps). Let X
and Y be two vector spaces endowed with the same symmetry
group G, with the respective group actions ▷ X and ▷Y . A map
f : X 7→ Y is said to be G-equivariant if it commutes with
the group action, such that:

g ▷Y y = g ▷Y f(x) = f(g ▷X x),∀x ∈ X , g ∈ G.

ρY(g)f(x) = f(ρX (g)x)

⇐⇒
X

▷X

f

��

X

f

��
Y

▷Y Y

(13a)



A specific case of G-equivariant maps are the G-invariant
ones, which are maps that commute with the group action and
have trivial output group actions ▷Y such that ρY(g) = I for
all g ∈ G. That is:

y = g ▷Y f(x) = f(g ▷X x), ∀x ∈ X , g ∈ G.

y = ρY(g)f(x) = f(ρX (g)x)

⇐⇒

X
▷X

f   

X

f

��
Y

▷Y

RR

(13b)

APPENDIX B
SYMMETRIES IN MDPS

This section introduces a formal definition and notation of
symmetries in POMDPs, based on the previous works of [20,
38, 28].

Definition B.1 (Symmetric POMDP). A POMDP
(S,A, r, τ, ρ0, γ,O,σ) possess the symmetry group G
when the state and action spaces S and A admit group
actions (▷S) and (▷A), and (r, τ, ρ0) are all G-invariant. That
is, if for every g ∈ G, s, s′ ∈ S, and a ∈ A, we have:

τ(g ▷S s
′ | g ▷S s, g ▷A a) = τ(s′ | s, a),

ρ0(g ▷S s) = ρ0(s), r(g ▷S s, g ▷A a) = r(s, a).
(14)

POMDP’s satisfying Eq. (2) are constrained to have optimal
policy and value functions satisfying:

g ▷A π∗(σ(s)) = π∗(σ(g ▷S s))︸ ︷︷ ︸
Policy G-equivariance

,

V ∗(σ(s)) = V ∗(σ(g ▷S s))︸ ︷︷ ︸
Value function G -invariance

∀ s ∈ S, g ∈ G. (refer to [38])

(15)

Proposition B.1 (Conditions for optimality [19]). Given the
G-equivariance constraint on the optimal policy π∗ and the
G-invariance of the optimal value function V ∗ in Eq. (15)
of a symmetric POMDP, any parametric policy πθ : O → A
and value function Vθ : O → R can be made G-equivariant
and G-invariant, respectively, if the observation function σ is
G-equivariant, thus endowing the observation space with the
same symmetry group G and group action ▷O.

This holds because for the composition of two functions to
be G-equivariant (πθ ◦ σ : S → A) or G-invariant (Vθ ◦
σ : S → R), both functions must be G-equivariant, such that:

g ▷A πθ(σ(s)) =πθ(g ▷O σ(s)) = πθ(σ(g ▷S s)), (16)
Vθ(σ(s)) =Vθ(g ▷O σ(s)) = Vθ(σ(g ▷S s)) (17)

APPENDIX C
RELATED WORK

a) Symmetry in robotic manipulation: Recent works
leverage inherent rotational symmetries in 3D environments to
design SE3-, SO3-, or SO2-equivariant grasping and pose esti-
mation pipelines [24, 4, 12, 37, 30, 32, 31]. These approaches

typically define the MDP’s action as the target task-space con-
figuration and use off-the-shelf inverse kinematics (IK) solvers
with built-in collision avoidance. In contrast, our method
focuses on multi-robot manipulation environments with the
action space defined in generalized coordinates, forcing the
policy to implicitly learn collision avoidance, in-hand manip-
ulation, and IK. Furthermore, our work focuses on leveraging
the morphological symmetries [20] of the manipulation MDP,
rather than the environmental symmetries of Euclidean space.
Consequently, learned policies are equivariant only to finite
subgroups of E3, because practical manipulation environments
rarely exhibit full E3-symmetry—joint limits and workspace
obstacles break the symmetries of the continuous group (see
Def. II.1).

b) Morphological symmetry in reinforcement learning:
Considering morphological symmetry priors as an inductive
bias is a trend in state-of-the-art robotics research to enhance
sample efficiency and policy generalization. There are two
main approaches to leverage the symmetry priors of Eq. (3),
namely employing equivariant network and data augmenta-
tion [20, 38, 28]. We studied both methods in our experiments
and demonstrated the superior performance of equivariant
network when the symmetry is properly defined. However, ex-
isting works focus on quadrupedal locomotion [26, 17, 18, 1],
and in our work we investigate bimanual (and multi-arm)
dexterous manipulation.

c) Reinforcement learning for (bimanual) dexterous ma-
nipulation: Bimanual dexterous manipulation is a well-known
challenging problem in robotics. Recent works focus on
specific tasks, underscoring the problem’s complexity. For
example, [15] addresses unscrewing a lid, while [11] and [14]
focus on handover/catch scenarios between arms. Notably, [14]
presents simulation-only results, and both [15] and [11] sim-
plify the system by reducing degree of freedom (DoF)—[15]
fixes the dual arms and controls only the hands, and [11] locks
several arm joints—thus shrinking the exploration space and
avoiding the task’s complexity. In contrast, our work maintains
full control over all DoF in both arms and hands, preserving
the inherent richness—and challenge—of the original problem.

d) Sim-to-real Transfer: A key challenge is transferring
trained policies to the real world. Two primary strategies
have emerged for sim-to-real transfer. Teacher-student distilla-
tion has been successfully applied in dexterous manipulation
[6, 7, 22]. This approach leverages privileged simulation infor-
mation to teach a student policy that operates under realistic
sensory constraints; our method builds on this by incorporating
permutation invariance during distillation. The second strategy,
curriculum learning, automatically increases task difficulty to
improve both generalization and policy robustness [27, 2].
For example, in [27], it directly maximizes the entropy of
the environment distribution as long as the the success rate
is sufficiently high. We use a similar idea, but simplifiy the
maximum entropy objective to a fixed step curriculum.



APPENDIX D
PSEUDOALGORITHM

Algorithm 1 Symmetric Dexterity (SYMDEX)

1: Input: number of agents and tasks N , initial policies
{πk}Nk=1, initial value functions {Vk}Nk=1, horizon length
T , update-to-data (UTD) ratio G.

2: for each iteration do
3: for t = 1, · · · , T do
4: Observe state st and construct observation ot =

σ(st, Ik).
5: Sample action {an

t ∼ πIkn
(ont,Ikn )}Nn=1 for each

agent-task pair.
6: Concatenate for global action at = ⊕n∈Na

n
t .

7: Execute action at in the environment and collect data
{(on,Ikn

t ,an
t , r

n,Ikn
t ,o

n,Ikn
t+1 )}Nn=1.

8: end for
9: Compute advantage estimates {Λn}Nn=1 using VIkn

.
10: for g = 1, · · · , G do
11: for n = 1, · · · , N do
12: Sample a batch Bg from

{(on,Ikn
t ,an

t , r
n,Ikn
t ,o

n,Ikn
t+1 )}.

13: Update policy πIkn
on PPO loss.

14: Update value function VIkn
on MSE loss.

15: end for
16: end for
17: end for

APPENDIX E
ENVIRONMENT DETAILS

In this section, we provide a detailed description for all six
tasks, including task descriptions, success criteria, and reward
functions. For all tasks, the episode length is 100. Tasks are
illustrated in Fig. 4
Box-lift: The goal is to use both hands to lift a box

and hold it at a target pose. Each subtask involves one hand
approaching the box from one side and lifting it in coordina-
tion with the other hand. The two subtasks are identical but
mirrored, requiring tight cooperation between both agents.
Success criteria: The box must be held at the target pose for
20 consecutive steps.
Reward functions for both subtasks: (1) A hand alignment
reward that encourages the palm to align with the side of the
box; (2) A box pose reward that encourages the box’s position
and orientation to match the target.

Table-clean: The goal is to clean objects from the
workbench by placing them into a basket. Subtask 1 involves
directly picking and placing the object into the basket.
Subtask 2 involves picking up the object, waiting until the
other agent completes its task, and then placing the object.
To avoid collisions, the hand closer to the basket is expected
to place its object first, while the other waits until the first
has finished. Thus, the hands must coordinate their timing.
Success criteria: Both objects must be successfully placed

inside the basket without any collisions.
Reward functions for both subtasks: (1) A reaching reward
between finger and the object; (2) An object distance reward
to encourage moving the object toward the basket; (3) A
success bonus for placing the object inside the basket.
Additional reward for subtask 2: (4) A waiting reward to
encourage proper timing and coordination with the other agent.

Drawer-insert: The goal is to place an object into a
drawer. Subtask 1 involves directly picking up the object and
placing it into the open drawer. Subtask 2 involves pulling
the drawer open, waiting until the object is placed inside,
and then pushing the drawer closed. The subtasks are loosly
coupled, therefore requiring minimal coordination.
Success criteria: The object is inside the drawer, and the
drawer is fully closed for 20 consecutive steps.
Reward functions for subtask 1: (1) A reaching reward for
between finger and the object; (2) An object distance reward
to encourage moving the object toward the drawer; (3) A
success bonus for placing the object inside the drawer.
Reward functions for subtask 2: (4) A pulling reward for
opening the drawer; (5) A pushing reward for closing it.

Threading: The goal is to thread a drill into a holed cube
in mid-air. Subtask 1 involves grasping the drill naturally and
inserting its pin into the hole of the cube. Subtask 2 involves
picking up the cube, reorienting it so that the hole faces the
drill, and maintaining alignment. This task requires precise
bimanual coordination and synchronization for successful
insertion.
Success criteria: The drill pin must remain inside the cube’s
hole for 20 consecutive steps.
Reward functions for subtask 1: (1) A hand alignment
reward to align the palm with the drill; (2) A drill pose
reward to encourage lifting it to the correct mid-air position;
(3) A drill-cube distance reward to bring the drill closer to
the cube.
Reward functions for subtask 2: (4) A reaching reward to
guide the fingers to the cube; (5) A cube distance reward to
move and align the cube with the drill.

Bowl-stir: The goal is to use an egg-beater to stir
balls inside a bowl. Subtask 1 involves pushing the bowl to
the center and stabilizing it for stirring. Subtask 2 involves
picking up the egg-beater, reorienting it to face downward,
and stirring the balls inside the bowl. This task emphasizes
everyday dexterity, particularly the challenge of in-hand
reorientation.
Success criteria: The egg-beater must be aligned above the
bowl and positioned correctly for stirring.
Reward functions for subtask 1: (1) A hand alignment
reward to align the palm with the bowl; (2) A bowl pose
reward to encourage centering and stabilization.
Reward functions for subtask 2: (3) A reaching reward to



Fig. 4: Our benchmark of six bimanual dexterous manipulation tasks with diverse levels of cooperation and dexterity (TOP);
and their symmetric counterparts (Below).

guide the hand to the egg-beater; (4) An egg-beater distance
reward to position it correctly above the bowl; (5) A stirring
reward based on the motion (velocity) of the balls inside the
bowl.

Handover: The goal is to use the closer hand to grasp
a bottle from the table and hand it over to the other hand.
Subtask 1 involves grasping the bottle in a way that facilitates
the handover and passing it to the other hand. Subtask 2
involves receiving the bottle from the other hand and holding it
steadily in mid-air. The main challenges lie in grasp planning
and ensuring a smooth, coordinated transition between the
hands.
Success criteria: The hand farther from the bottle must hold
it steadily for 20 consecutive steps.
Reward functions for subtask 1: (1) A reaching reward
to guide the hand to the bottle; (2) A bottle pose reward
to encourage lifting it to the correct mid-air position; (3)
A releasing reward that penalizes excessive holding force,
encouraging proper release during handover.
Reward functions for subtask 2: (4) A hand alignment
reward to align the palm with the bottle; (5) A bottle pose
reward to encourage stable holding after receiving the bottle.

APPENDIX F
REAL WORLD SYSTEM

a) Robot Platform, Sensors and Control: Our robotic
platform consists of two 6-DoF xArm UF850 arms, each
equipped with a 16-DoF Allegro Hand V4, yielding a total of
44 degrees of freedom. The system operates over a 1.2×0.8m
tabletop workspace under standard safety constraints. A low-
level joint-level PD controller runs at 120Hz, while policy
inference is executed at 20Hz. Perception is provided by a
single egocentric ZED2i RGB-D camera mounted between the
arms. We integrate FoundationPose [34] and SAM2 [23] for
robust multi-object tracking.

Fig. 5: Overview of Perception

b) Perception Pipeline: Our perception pipeline (Fig. 5)
combines FoundationPose [34] and SAM2 [23] to achieve
robust, real-time 6D object pose tracking in cluttered and
dynamic scenes. The input consists of RGB-D frames captured
at 1080p and 30 FPS from a single ZED2i camera mounted
between the robot arms. We operate the camera in ultra
mode to maximize depth range and preserve Z-accuracy along
the sensing axis, which is crucial for high-precision pose
estimation.

For each incoming frame, FoundationPose is executed in
parallel for all known objects to predict their 6D poses. While
FoundationPose is robust under typical conditions and per-
forms well on standard benchmarks, it fails to recover object
pose when faced with rapid motion or complete occlusion.

To handle such cases, we integrate SAM2 for multi-object
segmentation and tracking. For each object, we render ex-
pected RGB and depth images using a lightweight offscreen
renderer based on the object’s CAD model. These rendered
views are compared against the observed images from the
ZED2i camera. Pose confidence is computed by measuring
photometric and geometric discrepancies between the rendered
and observed RGB-D images. Specifically, we define the
confidence score as:

c=exp
(
−

∑
i M

(i)
(∥∥∥I(i)

obs −I
(i)
rend

∥∥∥
1
+λ·

∥∥∥D(i)
obs −D

(i)
rend

∥∥∥
1

)
/
∑

i M
(i)

)
(18)

where M (i) is a binary foreground mask obtained from
SAM2. Iobs, Irend denote observed and rendered RGB images,
Dobs, Drend denote depth images, N is the number of valid



pixels, and λ balances color and depth contributions. If the
confidence c < 0.5, the object is deemed lost, and its
pose is re-initialized using FoundationPose without relying on
temporal priors.

To mitigate jitter and ensure smooth input to the policy,
we apply SLERP interpolation [13] for rotations and linear
interpolation for translations in SE(3) across consecutive pose
estimates, followed by exponential moving average (EMA) fil-
tering. This ensures temporally coherent trajectories and aligns
the pose update rate with the policy’s inference frequency of
20 FPS.

APPENDIX G
BASELINES

The baselines include: (1) Equivariant PPO (E-PPO), a sin-
gle 44-DoF equivariant policy; (2) Independent IPPO (IPPO),
two fixed single-arm policies, each trained to handle both
subtasks under scene randomization; (3) Equivariant IPPO (E-
IPPO), a 22-DoF single-arm policy reused across arms with
task encoding, effectively doubling training data compared
to IPPO; (4) SYMDEX-c (SM-c), our architecture with a
centralized value function; and (5) SYMDEX-aug (SM-aug),
which replaces equivariant networks with on-policy symmetry-
based data augmentation [3]. A detailed comparison is shown
in Tab. II

Algorithms E-PPO IPPO E-IPPO SM-c SM-aug SYMDEX (Ours)

# of Policies 1 2 1 2 2 2
# of Tasks per Policy 2 2 2 1 1 1
Action Dim. per Policy 44 22 22 22 22 22
# of Value Functions 1 2 1 1 2 2
Uses Equi. Network Yes No Yes Yes No Yes

TABLE II: Comparison design choices of the five baselines
and SYMDEX.

APPENDIX H
HYPERPARAMETERS

We list the hyperparameters used for all baselines. Since
all methods, including SYMDEX, use PPO as the backbone
algorithm, they share identical hyperparameters to ensure a
fair comparison. Additionally, we use the same set of hy-
perparameters across all tasks—except for the entropy coeffi-
cient (Tab. IV)—highlighting the robustness of our method to
hyperparameter tuning. As shown in the table, we generally
recommend starting with an entropy coefficient of 0.01 for
new tasks. If the task does not require extensive exploration,
this can be reduced to 0.005.

We list the final domain randomization and safety penalty
values in Tab. V. We split the curriculum into 10 stages (as
shown in Tab. III), where each stage increases the level of
randomization and penalty scale, allowing the agent to adapt
progressively. For every 100 policy updates, we track the
agent’s success rate during training; if the success rate exceeds
a predefined threshold 0.7, the agent advances to the next
stage. By simplifying the environment in the early stages, the
agent can first focus on mastering the core task before dealing

Hyperparameters Values

Num. Environments 4, 096
Critic Learning Rate 5× 10−4

Actor Learning Rate 3× 10−4

Optimizer Adam
Batch Size 32, 768
Horizon Length 64
UTD Ratio 8
Ratio Clip 0.15
λ for GAE 0.95
Discount Factor (γ) 0.99
Gradient Clipping 0.5
Critic Network [256, 256, 256]
Actor Network [256, 256, 256]

Curriculum: Threshold 0.7
Curriculum: Update Freq. 100
Curriculum: Total Step 10

TABLE III: Hyperparameter setup for all methods and all
tasks.

Entropy Coefficient

Box-lift 0.0
Table-clean 0.005
Drawer-insert 0.01
Threading 0.01
Bowl-stir 0.01
Handover 0.005

TABLE IV: The entropy coefficient used for six tasks.

with harder, more variable situations—enabling more stable
and effective training.

APPENDIX I
ADDITIONAL EXPERIMENTS

A. Curriculum Learning

We report the learning performance during the curriculum
learning stage, which we treat as a separate phase. In this stage,
we load the best checkpoint from initial training and perform
fine-tuning. Since we use PPO as the backbone algorithm, the
fine-tuning process remains stable.

We evaluate the effectiveness of curriculum learning by
comparing the full curriculum to ablations of its two key
components: safety penalty and domain randomization. As
shown in Fig. 6, the curriculum initially causes a performance
drop across all six tasks, and then the performance is gradually
improved as training progresses. We observe that the full
curriculum converges more slowly, which is expected given it
combines both components. Notably, the agent adapts more
easily to the safety penalty than to domain randomization.
In the Box-lift task, performance remains stable during
the curriculum phase, since object randomization and collision
penalties were already introduced in the initial training stage.

B. Multi-arm Experiment

a) Four-Arm System: We demonstrate the scalability of
SYMDEX on a multi-robot task involving a system of four
arms, each equipped with a right dexterous hand. The objective



Box-lift Table-clean Drawer-insert Threading Bowl-stir Handover

Obj. Mass(kg) [0.1, 0.5] [0.02, 0.2] [0.02, 0.2] [0.1, 0.3] [0.02, 0.2] [0.1, 0.4]
Obj. Init. Pos.(cm) +U(−0.1, 0.1) +U(−0.1, 0.1) +U(−0.15, 0.15) +U(−0.05, 0.05) +U(−0.1, 0.1) +U(−0.1, 0.1)
Obj. Init. Orien.(rad.) +U(−0.7, 0.7) +U(−1.57, 1.57) +U(−1.57, 1.57) +U(−0.75, 0.75) +U(−0.6, 0.6) +U(−1.57, 1.57)
Obj. Random Force(N) 0.5

Static Friction [0.24, 1.6]
Dynamic Friction [0.24, 1.6]
Restitution [0.0, 1.0]

Obj. Pose Obs. Noise +U(−0.01, 0.01)
Joint Position Noise +N (0, 0.005)

Energy Penalty Coeff. −0.001
Collision Penalty Coeff. −1000.0

TABLE V: Domain randomization and safety penalty setup.
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Fig. 6: Performance comparison of curriculum learning, curriculum w/o safety penalty (SP), and curriculum w/o domain
randomization (DR) on six benchmark tasks.

Fig. 7: The four-arm system.

is for two arms to hold the flaps of a cardboard box while the
other two arms pick up objects from the table and place them
into the box (Fig. 7). Once the objects are inside, the two arms
holding the flaps then close the box. Since a constant force is
applied to the box flaps to keep them open, the task requires
coordinated collaboration among all arms to succeed.

The four-arm system exhibits symmetry under the group
G = C4 = {e, gr, g2r , g3r | g4r = e}, where gr is a
90◦ rotation about the vertical axis. Following the method
described in Sec.III, we treat each arm as an agent and
assign a specific subtask to each. After training, the system
successfully completes the task from different orientations,
with Fig. 8 visualizing all symmetric scenarios from a fixed
camera viewpoint. Additional experiment results are provided
in Sec. I.

We visualize the environment-policy rollouts across all sym-
metry groups defined by G = C4 = {e, gr, g2r , g3r | g4r = e},
as shown in Fig. 8. The first column shows the initial states,
where the object configurations are rotated by 90◦ about the



Fig. 8: Environment-policy rollout for the multi-arm task starting from state s0 and all its symmetry states gr ▷S s0, g2r ▷S s0,
and g3r ▷S s0. The four-arm system exhibits symmetry under the group G = C4 = {e, gr, g2r , g3r | g4r = e}, where gr is a 90◦

rotation about the vertical axis.

vertical axis across different symmetry groups. As the policy
executes, we observe symmetric behaviors generated by the
equivariant policy. Although the four colored arms remain
fixed, SYMDEX successfully solves all configurations with
consistent performance, as shown in Fig. 9.
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Fig. 9: Performance of SYMDEX on the multi-arm task.

C. Real World Experiment

We provide snapshots from real-world experiments on
Box-lift and Table-clean, as shown in Fig. 10, cov-
ering both original and symmetric scenarios. In Box-lift,
both agents manipulate the same object and perform identical
subtasks, so there is no significant difference between the
original and symmetric settings.

Additionally, we evaluate our policy on out-of-distribution
(OOD) objects. For example, in Box-lift, we use boxes
of varying sizes that were never seen during training; in
Table-clean, we introduce an OOD toy dog. Thanks to
the curriculum learning strategy, our policy generalizes well
and successfully handles these OOD cases.

APPENDIX J
LIMITATIONS

We acknowledge that the primary limitation of SYMDEX is
its reliance on the presence of morphological symmetry within
the robotic system. However, we emphasize that such symme-
try is common in many modern robotic platforms, including
bimanual systems [11, 15], tri-arm robots like Trifinger [35],
and humanoid robots [16, 36].



Fig. 10: Snapshots from the real-world experiments.

We note that SYMDEX primarily leverages kinematic-level
symmetry, where joint positions and end-effector poses are
symmetric under group transformation. This design choice
allows us to use joint position control, which is sufficient for
many manipulation tasks and avoids the need for full dynamic
symmetry, as required by torque control. Achieving symmetry
at the dynamics level—particularly under reflection—would
require the robot components to be true mirror models. While
this condition holds for the left and right hands, it does not
strictly apply to the arms, which are typically identical in
construction rather than mirrored. As a result, their dynamic
properties, such as mass distribution and collision avoidance,
may not fully follow reflectional symmetry. However, since
SYMDEX operates at the kinematic level, this does not
significantly impact its effectiveness in practice.

Regarding the failure cases in the real world experiments,
we observe that the major issue comes from the perception
part. Since our policy is state-based, it depends on accurate
multi-object pose tracking, which is difficult in practice. How-
ever, our equivariant architecture can also be applied to vision-
based inputs, such as RGB-D images and point clouds [9], to
improve robustness, which we will leave as future work.
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