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ABSTRACT

Recently, RL has shown its strong ability for visually complex tasks. However, it
suffers from the low sample efficiency and poor generalization ability, which pre-
vent RL from being useful in real-world scenarios. Inspired by the huge success of
unsupervised pre-training methods on language and vision domains, we propose
to improve the sample efficiency via a novel pre-training method for model-based
RL. Instead of using pre-recorded agent trajectories that come with their own ac-
tions, we consider the setting where the pre-training data are action-free videos,
which are more common and available in the real world. We introduce a two-phase
training pipeline as follows: for the pre-training phase, we implicitly extract the
hidden action embedding from videos and pre-train the visual representation and
the environment dynamics network through a novel forward-inverse cycle consis-
tency (FICC) objective based on vector quantization; for down-stream tasks, we
finetune with small amount of task data based on the learned models. Our frame-
work can significantly improve the sample efficiency on Atari Games with data of
only one hour of game playing. We achieve 118.4% mean human performance and
36.0% median performance with only 50k environment steps, which is 85.6% and
65.1% better than the scratch EfficientZero model. We believe such pre-training
approach can provide an option for solving real-world RL problems. The code is
available at https://github.com/YeWR/FICC.git.
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Figure 1: The forward-inverse cycle consistency builds an unsupervised training objective for
model-based reinforcement learning from pure videos.

1 INTRODUCTION

Recently, deep reinforcement learning algorithms have achieved great success on various tasks,
including simulated games, robotics manipulations, protein structure analysis and even controlling
nuclear fusion (Schrittwieser et al., 2020; Jumper et al., 2021; Degrave et al., 2022). However, the
great success of these RL algorithms is based on huge amounts of data. For example, it requires over
20 million games on Go for AlphaZero (Silver et al., 2017), and Liu et al. (2021) spend millions
of data for playing simulated humanoid football. But in real applications or complex tasks, it is
impossible to acquire such amounts of data through interactions with environments.

To keep strong performance while requiring much less data, some researchers propose to use model-
based reinforcement learning (MBRL) algorithms. They build environmental world models in assis-
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tance of planning to increase the sample efficiency. And experiments have proved the high sample
efficiency of MBRL (Kaiser et al., 2019; Hafner et al., 2019). The high sample efficiency of MBRL
shows the great potential for handling sequential decision-making problems in complex simulated
environments and real-world (Hafner et al., 2020; Ye et al., 2021).

Although MBRL has improved sample efficiency a lot, it still requires a non-trivial amount of in-
teractions to finish each task (Moerland et al., 2020; Schrittwieser et al., 2020). And each time, it
learns from scratch, which makes it difficult to deploy quickly on different downstream tasks. Con-
sequently, a good approach to improving this is to pre-train the world model with some data first.
However, the datasets equipped with actions are hard to obtain on a large scale. This is because
to collect a large-scale, high-quality dataset with actions, we need a good policy in the first place,
and this becomes a chicken-and-egg problem. Instead, pure videos without action labels are more
accessible and affordable in the real world. There are a huge amount of video datasets without
action labels on the Internet.Thus, in this paper, we study how to pre-train the world models with
action-free videos for MBRL.

We propose to pre-train a latent dynamics model based on inverse latent action prediction from pure
videos without any action labels. We propose a novel cycle consistency loss by chaining the forward
dynamics and the inverse dynamics, as shown in Figure 1. This loss can pre-train the forward
models as well as the inverse models in the visual MBRL algorithms. Afterward, we fine-tune the
downstream tasks based on the pre-trained models. Experiments show that our method can build
sound representation and dynamics pretrained models for the downstream task. We achieve 118.4%
mean human performance and 36.0% median performance with only 50k environment steps, which
is 85.6% and 65.1% better than the scratch EfficientZero model. Our contributions are the following:

• We systematically study the problem of pre-training from action-free videos for model-
based RL, which could be the foundation for future sample efficient, robust, and few-shot
generalizable robots in the physical world.

• We propose a forward dynamics - inverse dynamics cycle consistency pre-training method
that can jointly infer the latent actions from the video and train the representation function
as well as the dynamics function. We also propose a practical fine-tuning scheme that
achieves high performance on many downstream tasks.

• Our framework achieves the SoTA on the 60-minute Atari games and significantly outper-
forms others. Experiments show that the model pre-trained on distinct environmental data
together can be fine-tuned well to the corresponding environments without re-pre-training.

2 RELATED WORKS

Unsupervised Pre-training in NLP and CV In recent work, researchers have found that the lan-
guage model pre-trained with unsupervised learning can quickly and well generalized to down-steam
language tasks (Devlin et al., 2018; Yang et al., 2019). Some researches show that the pre-trained
model can be a good few-shot learner (Brown et al., 2020) or multi-task learner (Radford et al.,
2019). More importantly, the two-stage procedure of training has become more popular for large
models in NLP, such as Transformers (Vaswani et al., 2017; Brown et al., 2020). People find that in
computer vision, similar unsupervised pre-training methods can build sound representation models
for various visual tasks based on transformer (Li et al., 2019; Dosovitskiy et al., 2020). Contrastive
learning and reconstruction are two common techniques to achieve these goals (He et al., 2020; Grill
et al., 2020; He et al., 2022). Generally, all these methods aim to model a universal representation
function, which can be fine-tuned well to some specific vision tasks, e.g. classification or detection.

Unsupervised for Representation Learning in RL Inspired by the great success of unsupervised
pre-training in NLP and CV, researchers attempt to learn representations for visual RL in an unsu-
pervised manner. People find that contrastive learning on online visual RL helps to extract good
latent states for robotics control tasks (Laskin et al., 2020; Schwarzer et al., 2020). Ye et al. (2021)
propose to improve the sample efficiency of model-based RL through temporal contrastive learn-
ing. Furthermore, Stooke et al. (2021) introduce a new unsupervised learning task to decouple the
representation learning from policy learning. Xiao et al. (2022) propose to do better motor control
from the masked visual pre-training method from real-world images. Besides, some researchers
attempt to do pre-training and fine-tuning for RL down-stream tasks. Parisi et al. (2022) find that
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ImageNet pre-trained visual representations can be competitive to ground-truth state representations
for control policies. Schwarzer et al. (2021) propose to pre-train from offline datasets based on sev-
eral unsupervised learning objectives and then fine-tune for down-stream tasks. For model-based
algorithms, Deng et al. (2022) propose to pre-train the world model with unsupervised losses. All of
the work above either study the model-free pre-training, or assume there are actions available during
model-based pre-training. Our work studies the action-free model-based pre-training problem.

Unsupervised learning from action-free videos Pure videos or action-free videos are much more
accessible and affordable in the real-world. Unsupervised learning from action-free videos has been
studied in computer vision and imitation learning before. Dwibedi et al. (2019) and Wang et al.
(2019) propose to utilize the temporal cycle consistency as the unsupervised learning objective for
multiple vision tasks. Menapace et al. (2021) propose to predict action labels for playable video gen-
eration from unlabeled videos with image reconstruction objectives. In imitation learning, Edwards
et al. (2019) studies the imitation from observation alone problem and proposes a similar unsuper-
vised objective to ours. However, they do not work on the reinforcement learning problem. The
closest work to ours is Seo et al. (2022), where they pre-train the model with evidence lower bound
based on Dreamer-v2 (Yarats et al., 2021). However, unlike our approach, they do not explicitly
infer latent actions.

3 PROBLEM FORMULATION

Before introducing our algorithm, we give some basic notations for the model-based reinforce-
ment learning (MBRL) algorithms following conventions in Moerland et al. (2020). Firstly, the
formal definition of Markov Decision Process (MDP) (Puterman, 2014) is defined as the tuple
(S,A, p, r, γ). Here, S is the state space, A is the action space, p(st+1|st, at) is the probability
function of the transition dynamics, rt = r(st, at) is the reward function corresponding to specific
tasks, and γ ∈ [0, 1] is the discount factor.

In model-based reinforcement learning algorithms, dynamics model learning is learned to ap-
proximate the transition dynamics of the environments. People aim to train a dynamics model
D : S × A → S through supervised learning. For the visual-based tasks, it is more computation-
efficient to build a representation networkR : O → S to extract the latent states S from observations
O. Afterward, exploration techniques or planning algorithms can be applied based on the models
R,D. One can utilize those models with model-free algorithms, such as predicting rewards.

In this work, we study the pre-training of R and D in model-based RL. Here R and D are task
agnostic, and they are thus widely applicable to different downstream tasks. The R model can be
learned from data, no matter with actions or without actions. However, D usually requires explicit
actions as input, which is expensive to obtain in the real world. In this work, we study the task of
pre-trainingR and D end-to-end from pure, i.e., action-free, videos.

4 METHOD

Compared to the data with action labels, pure videos are more common and accessible in the real
world. However, pre-training the world models with such action-free data is challenging because
we lack the ground truth action to train the action-based dynamics model. To address this dilemma,
we propose a novel forward-inverse cycle consistency (FICC), an unsupervised training objective
for pre-training the models in model-based RL. Our FICC framework is shown in Figure 2. It first
employs an inverse dynamics model that infers latent action z from the current state st and next
state st+1 from pure videos. With the inferred latent action z and the current state st, a forward
dynamics model maps them to the predicted next state ŝt+1. Our proposed forward-inverse cycle
consistency loss is pulling the ŝt+1 close to st+1. Here the forward and inverse in FICC refer to
forward dynamics and inverse dynamics, respectively. The cycle here refers to the st+1, where it is
first mapped to the latent action z and then mapped back to itself again. We will discuss the FICC
framework in detail in Section 4.1. To avoid shortcuts, we propose a special design for the inverse
model, called Latent Action Generator (LAG), which is discussed in Section 4.2. Finally, we will
introduce how to use such a pre-trained model for the downstream tasks in Section 4.3.
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4.1 FORWARD-INVERSE CYCLE CONSISTENCY IN PRETRAINING

Figure 2 shows our overall forward-inverse cycle consistency framework. First, we use a convolu-
tional neural network R to extract states from the observations. This allows us to have a compact
and semantic meaningful latent state to operate on. The representation model also alleviates the
computation cost for the inverse and forward dynamics models. Then an inverse dynamics model
takes in st and st+1 and output the inferred latent action z. Note that we do not require the inferred
latent action z to have a one-to-one correspondence to the ground truth action. The mapping from
the actual action to latent actions will be later learned when fine-tuning on the downstream task.
Finally, the forward model takes in the inferred latent action z and the current state st to predict the
next state ŝt+1. We use a cosine similarity loss to pull the ŝt+1 close to the true state st+1.

Forward-Inverse Cycle Consistency (FICC) 

Temporal
ConsistencyLAG

Figure 2: The temporal forward-inverse cycle consis-
tency (FICC) for pre-training environmental models.

Besides the cosine similarity cycle consis-
tency loss, we find that adding extra re-
construction loss further helps to stabilize
the training. We add two reconstruction
losses. First, we reconstruct ot from st,
which will ensure that all information has
been encoded in the latent state. Second,
we also reconstruct ot+1 − ot from st and
z. This helps the inverse dynamics model
to focus on the changes in the environ-
ment. We also unrolled those losses for
five steps, since the dynamics models usu-
ally unroll for multiple steps in the down-
stream tasks. In summary, the unsuper-
vised pre-training loss is:

Lcc =

cycle consistency︷ ︸︸ ︷
− cos(ŝt+1, st+1)︸ ︷︷ ︸

similarity

− ln p(ot+1 − ot|st, zq)︸ ︷︷ ︸
difference reconstruction

− ln p(ot|st)︸ ︷︷ ︸
reconstruction

, (1)

where st = R(ot), st+1 = R(ot+1), zq = inverse(st, st+1), ŝt+1 = D(st, zq). The hyper-
parameters and more implementation details such as unrolling are in Appendix D.

4.2 LATENT ACTION GENERATOR BASED ON VECTOR QUANTIZATION

There is one caveat in the FICC framework we introduced in Section 4.1, that is, there might be
a shortcut in the cycle consistency. Since the latent action z is a continuous vector, it can encode
unlimited information theoretically if the scalar precision of z is infinite. Consequently, there is one
shortcut that the latent action z can encode most information of st+1 rather than the difference of
st and st+1. And the inverse model can directly copy all the information in st+1. Correspondingly,
the forward model can learn an identity function. This shortcut will achieve zero loss in the cycle
consistency we defined, but it won’t be useful for the downstream task at all. The reason that the
above shortcut happens is because the latent action z contains too much information. We know that
in practice, the action we take usually has a small amount of information. For example, in video
games, the actions are some key strokes. In the robotics domain, the action can be represented by a
few numbers describing the joint location and speed, etc.

In order to avoid this shortcut, we propose an inverse-dynamics model called Latent Action Gen-
erator (LAG) that regularizes the latent action z to have a limited amount of information. People
have proposed several techniques to enforce information bottlenecks in the neural networks, such as
using low dimensional features, variational information bottlenecks (Alemi et al., 2016), or vector
quantizations (Van Den Oord et al., 2017). In theory, we can use any of those techniques here to
avoid the shortcut. In this paper, we explore using vector quantizations for this purpose in favor of
their scalability and ease of training (Van Den Oord et al., 2017).

Figure 3 shows our proposed LAG model. First, a CNN takes in st and st+1, outputting a latent
action embedding ze ∈ RD. We also define a dictionary of vector quantization embeddings e =
{e1, e2, · · · , ek}. The dimensionality of each vector in the dictionary is the same as ze. The output
of LAG is defined as the nearest dictionary embedding to ze, denoted as zq . The zq is the latent action
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Figure 3: Left: Acquire the latent action embeddings through vector quantization based on the
adjacent frames. Right: Illustration of the latent action representations. Different actions will be
mapped into different embeddings.

we discussed in Section 4.1. In the standard VQ-VAE, there are multiple quantized embeddings for
a single image. However, we find that using only one embedding is enough in our case.

The training of LAG is similar to VQVAE (Van Den Oord et al., 2017), where the codebook loss
brings the code closer to the encoder output, and the commitment loss prevents the encoder from
switching between different codes. The training objective of the LAG is:

Lvq = ||sg[ze(st, st+1)]− e||22 + β ||ze(st, st+1)− sg[e]||22 (2)

where ze denotes the CNN that outputs ze, sg denotes the stop-gradient, β is the commitment trade-
off, and it is set to 1. We conduct the ablation study to show the significance of the information
bottleneck (Section 5.4). More implementation details are attached in Appendix D.

Finally, the unsupervised training objective in the pre-training phase is L = Lcc + αLvq, α = 1.

4.3 FINE-TUNING WITH ACTION ADAPTER

Algorithm 1 Building Action Adapter
1: Given pre-trained LAG, embedding codebook e
2: C[a, k]← 0, a ∈ A, k ∈ K;M← Dict{}
3: for t ∈ N do
4: Obtain triple (st, at, st+1)
5: ek = LAG(st, st+1)
6: C[a, k]← C[a, k] + 1
7: end for
8: Sort Ta,k = (C[a, k], a, k), a ∈ A, k ∈ K by C[a, k]
9: Such that a < b, Ta,k ≥ Tb,k and k < l, Ta,k ≥ Ta,l

10: for C[a, k], a, k ∈ T do
11: if a ∈M.keys() ∨ ek ∈M.values() then
12: Continue
13: end if
14: M[a]← ek
15: end for
16: ReturnM

During fine-tuning on down-stream
tasks, the agent interacts with the en-
vironment with real actions. How-
ever, the dynamics model is pre-
trained via the latent action embed-
ding. The only gap between them
is the format of actions. Fine-tuning
can be quite straightforward if each
real action at is mapped to the corre-
sponding latent action embedding ek
after the representation model R and
dynamics model D are pre-trained.
For convenience, we name such map
M : A → RD as action adapter.
Then the dynamics model can pre-
dict the next states with the action
adapter: ŝt+1 = D(st,M(at)).

We statistically build such adapter
during fine-tuning as Algo. 1 shows.
During fine-tuning, the embedding codebook e is frozen for a stable inference of the dynamics
model. When a state-action-state transition triple (st, at, st+1) is collected in self-play, the pre-
trained LAG will infer the corresponding latent action et and store the relationship tuple (at, et).
We map each real action to the most common latent action. We also require different real actions to
map to different latent actions. Please see Appendix D.3 for more implementation details.

With the pre-trained R, D and the action adapterM, we fine-tune them on the downstream tasks.
In this work, we use EfficientZero (Ye et al., 2021) as the model-based RL algorithm because of
its high performance with limited data. EfficientZero is composed of the representation networkR,
the dynamics network D, the policy network π, the value network V (s) and the reward predictor
r(s, a). Given the pretrainedR and D, we fine-tune with the two learning rates: the small fine-tune
learning rate lf for the pretrained components, and the large learning rate ls for the components that
are not initialized (π, V (s), r(s, a)).
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5 EXPERIMENTS

As mentioned above, we propose three key components for handling the pre-training and fine-tuning
with pure videos: 1) forward-inverse cycle consistency; 2) latent action generator; 3) statistical
action adapter for mapping the real actions to latent actions. In this section, we aim to answer the
following two questions: 1) Whether the pre-training can help downstream RL tasks; 2) What is the
importance of each component. We conduct systematic experiments to answer those questions.

5.1 EXPERIMENTAL SETUP

Environments Recently, sample efficiency has become an important topic in RL. Kaiser et al. (2019)
introduce the Atari 100k benchmark, including 26 games. This benchmark consists of 100k steps
of interactions with environments, which is equivalent to two hours of human game playing. This
benchmark is a popular benchmark for evaluating the sample efficiency of RL algorithms due to
the complex visual observations and diverse tasks (Kaiser et al., 2019; Kielak, 2020; Srinivas et al.,
2020; Kostrikov et al., 2020; Ye et al., 2021). Recent developments in sample efficient RL (Ye et al.,
2021) have achieved super-human performance on the Atari 100k benchmark. In order to further
challenge the RL algorithm, we propose to use the Atari 50k benchmark, which only consists of 50k
steps or one-hour game-play of interactions. We conduct the experiments on top of EfficientZero,
which is the current SoTA model-based algorithm on the Atari 100k benchmark.

Hyper-parameters The hyper-parameters for pre-training are listed in Appendix B. For fine-tuning,
we train for 50k steps and follow other hyper-parameter settings in EfficientZero, which are listed
in the Appendix C. We update the action adapter every 1000 transitions.

Evaluation Mnih et al. (2015) provide a baseline of human sample-efficiency, and we follow the
common evaluation metric for the 26 Atari games, namely human-normalized score (HNS). It is
defined as (scoreagent− scorerandom)/(scorehuman− scorerandom). In each game, we average the scores
over 100 evaluations across 3 runs with different seeds. Following the previous works, we report the
median (Mdn) and mean (Mn) HNS over the 26 games. And we use the statistical tools proposed by
Agarwal et al. (2021) to quantify uncertainty.

Pretraining Dataset We use the EfficientZero replay buffer as the pre-training dataset. We train the
EfficientZero for 1M transitions from scratch and save the replay buffer as the pre-training dataset.

Baselines We compare the following baselines. EfficientZero (Ye et al., 2021) trained from scratch:
since we use EfficientZero as our base model-based RL method, we train from scratch for the 50k
environment steps as the baseline. To the best of our knowledge, there are few works studying pre-
training with action-free videos on Atari games. SGI (Schwarzer et al., 2021) digs into the similar
learning paradigm and achieves high sample-efficiency on Atari games. We also compare to SGI,
which proposes pre-training with action-labeled data on Atari games. All the comparisons are under
the same setting of 50k environment steps. We note that SGI is an “oracle” method since it uses
ground truth actions during pre-training.

5.2 PERFORMANCE COMPARISON

HNS Scores We compare our method with the above baselines on 26 Atari games for 50k en-
vironment steps. As illustrated in Table 1, our method outperforms the previous SoTA method
EfficientZero(EZ) on a large scale in such limited data settings. 20 of total 26 games get superior
performance with our pre-trained models. Specifically, we achieve 0.360 median HNS as well as
1.184 mean HNS and outperform the human level in 6 games. Compared to SGI, a method with
access to ground truth actions during pre-training, we also outperform it by a large margin. Agarwal
et al. (2021) propose to use the inter-quartile mean (IQM) normalized score and quantify the uncer-

Table 1: Comparisons of HNS on 26 Atari 50k for fine-tuning with 3 different runs.
Method Median Mean IQM require action
EZ scratch 0.218 0.638 0.208 w.o. pre-training
SGI 0.132 0.739 0.290 ✓
EZ + FICC (ours) 0.360 1.184 0.353 ×
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Figure 4: Learning curves on 6 out of 26 Atari games. We compare the curves of vanilla EZ and EZ
with our pre-trained model from action-free videos. It indicates that our pre-trained model is able to
improve the sample efficiency during the fine-tuning process.

tainty via percentile bootstrap confidence intervals. And our method is much superior on Atari 50k,
including all these metrics.

Sample Efficiency Figure 4 shows the learning curves of our method and the baseline EZ method
on six Atari games. Here the orange curve is the vanilla EZ, while the blue curve is EZ with our
pre-training method. We find that our pre-training method consistently improves the HNS scores in
all environments. Further, our method outperforms the baseline under almost any amount of data.

5.3 SHARING PRETRAINING AMONG MULTIPLE ENVIRONMENTS

The pre-training model we experimented with in Section 5.2 are trained per environment. That is,
each pre-trained model only sees the data from the downstream task. However, in natural language
processing and the image recognition domain, large-scale pre-trained models are only trained once
and later applied to many different downstream tasks. A natural question is that, can our framework
supports training one model and fine-tune on multiple tasks?

In this part, we aim to answer this question. We select a set of 6 environments (as shown in Table 2),
and pre-train a single model with our method on all data from them. To accommodate the larger scale
of pre-training data size, we use 3 residual blocks instead of 1 in the representation and dynamics
model. All other settings are the same as before. We name this model as EZ-L, where L denotes
“large”. Firstly, we pre-train the EZ-L model across all the 6 environmental datasets and obtain the
action embedding codebook e. Then we do fine-tuning on the 6 environments respectively based
on the pre-trained EZ-L model. For each task, we build the corresponding action adapterM during
fine-tuning. In this way, we pre-train one model and fine-tune it on multiple tasks. Here we follow

Table 2: Pretrain 6 games with different styles and rules in a single model, and then fine-tune
each game with the same pre-trained model (EZ-L). Experiments show that EZ-L achieves superior
performance compared to EZ scratch on most games.

Games Boxing Breakout CrazyClimber MsPacman Pong Qbert
EZ scratch 0.597 8.211 1.183 0.040 0.589 0.199
EZ with FICC 1.949 12.477 1.533 0.051 0.888 0.305
EZ-L with FCC 1.230 9.361 1.133 0.051 1.099 0.279
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exactly the same fine-tuning hyper-parameters. The results are listed in Table 2. We found that
EZ-L improves upon EZ scratch baseline in 5 out of 6 environments. In Pong, it even outperforms
the environment-specific pre-training by a large margin. In summary, we show that it is possible to
have only a single pretrained model and get the benefits of the pre-training in most environments.

5.4 ABLATION STUDY

In this section, we will conduct some ablation studies to investigate the two significant components
of our method, the forward-inverse cycle consistency in Sec. 4.1 and the vector quantization for
latent action generation in Sec. 4.2. We choose four different games for this ablation. We run each
experiment for three different seeds with 100 evaluations. Other hyper-parameters are all the same.
We make more ablation studies about the datasets and dimensions of latent action z in App. A.

FICC and Reconstruction Objectives Ablation Here we do ablation studies to further investigate
the effect of the FICC and the reconstruction objectives mentioned in Eq. 1. As for the FICC ab-
lation, we remove the image difference reconstruction objective ln p(ot+1 − ot|st, zq). To show
the individual performance delta of each reconstruction loss, we remove the image reconstruction
objective ln p(ot|st). The results are shown in Table 3. We find that the removal of the image differ-
ence cycle consistency loss has deteriorated the performance by a large margin. But it is still better
than the EZ from scratch baseline. This supports our claim that this loss encourages the inverse
dynamics to focus on the changes in the environment. Moreover, the model pre-trained without OR
has comparable performance to the Pre-train with FICC. Therefore, the cycle-consistent difference
reconstruction is more significant and it can work well without OR. Compared with FICC and FICC
without OR, the former has more advantages in most environments, except that the latter has obvious
performance improvement in the Boxing environment. We believe that some properties in the Box-
ing environment make the model learn harmful representations from observation reconstruction.

VQ Avoids Shortcut Learning Ablation In Sec. 4.2, we discuss the need for the information
bottleneck. Here we ablate this component to investigate the significance of it. The latent action
generator takes in the adjacent states and outputs one embedding to represent latent actions. We
build a LAG to generate latent action without the quantization step. The output of the neural network
ze = z(st, st+1) is directly fed into the dynamics model instead of utilizing the vector quantization
to replace ze with zq . For convenience, we name such LAG with direct outputs as LAG-D and
the LAG with VQ technique as LAG-VQ. Here “D” is short for direct. Following the previous
ablation environments and parameters, the results are listed in Table 4. For some games, the LAG-D
keeps comparable performance to LAG-VQ (Breakout). However, for some games, such as Krull
underlined in the table, LAG-D performs even worse than the scratch model. It indicates that the
model pre-trained without the information bottleneck harms the fine-tuning on some down-stream
tasks, which can be caused by short-cut learning. We notice that in some game, such as Pong, the
LAG-D is slightly better than the LAG-VQ. However, from the perspective of most games, LAG-VQ
is much better than LAG-D.
Table 3: Ablation of the cycle consistency objectives for 50k environments steps fune-tuning. The
cycle consistency improves the performance of all four evaluation games.

Games Boxing Breakout Krull Pong
EZ scratch 0.597 8.211 1.164 0.589
Pre-train with FICC 1.949 12.477 6.455 0.888
FICC without Observation Reconstruction (OR) 6.002 12.128 3.692 0.816
FICC without Difference Reconstruction (DR) 1.160 11.156 3.367 0.648

Table 4: Ablation of the types of LAG for 50k environment steps fune-tuning. LAG-VQ is the
original implementation, while LAG-D outputs the latent action directly from the neural networks.
For games like Krull, LAG-D behaves even worse than the scratch model. LAG-D fails to build an
information bottleneck, which might cause some short-cut learning during pre-training.

Games Boxing Breakout Krull Pong
EZ scratch 0.597 8.211 1.164 0.589
LAG-VQ 1.949 12.477 6.455 0.888
LAG-D 1.174 12.435 0.712 1.095
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Figure 5: Dynamics prediction visualization of the pre-trained model. Top left: Breakout. Top right:
Krull. Bottom left: Boxing. Bottom right: Pong. The first line of each environment is the ground
truth images, and the second line is the images predicted and generated by the model.

Instance 1

Instance 2

Figure 6: Visualization of the latent action effects. Each row in the figure shows a different observa-
tion. The yellow dashed line is the anchor of the board position at time step t. The left two images
of each line are the current observation ot and the ground truth next step observation ot+1. The six
figures on the right are the reconstructed images with the index 1 to index 6 latent actions as the
input to the dynamic function, which results in distinct predictions ôt+1.

5.5 VISUALIZATION ANALYSIS

In this section, we do some visualizations to verify the effectiveness of the latent action generator
(LAG) as well as the dynamics model based on the latent actions.

Dynamics Prediction In Figure 5 we visualize the dynamic function output of the pre-trained model
with 5 unroll steps. In each step t, we use the LAG to get latent action embedding zt from the
current state st and next state st+1, and use a decoder to reconstruct the output. The whole process
is consistent with the pre-training algorithm. From the results, we observe that the pre-trained model
can make high-quality reconstruction for the images of the next several steps. The prediction ability
of the model includes the motion of objects in the scene (the ball in Breakout and Pong), the motion
of the agent itself (Breakout’s guard, Pong’s right guard, Boxing’s left character), and the motion
of other characters (Boxing’s right character). This shows that our LAG can effectively encode the
differences between the two states.

Latent Action Embeddings The effects of latent actions are visualized in Figure 6. Here we select
the game Breakout and visualize 6 of the total 20 latent actions. Results show that the latent actions
have the same meanings for different rows. For example, latent action with index 6 indicates that
the guard moves to the left, while actions with index 5 indicate that the guard moves to the right.

6 DISCUSSION

In this paper, we propose to pre-train the environment models via a novel forward-inverse cycle
consistency from the action-free videos. To achieve this, a vector quantization based latent action
generator is introduced to avoid the shortcut learning. We evaluate the pre-trained model via fine-
tuning for Atari games with limited 50k environment steps. Experiments prove the efficiency of our
method. As for the limitations, current architecture is difficult to handle the continuous action space.
We leave this as future work.
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7 REPRODUCIBILITY STATEMENT

The main implementations of our proposed method are in Section 4.1, 4.2 and 4.3. In addition, the
settings of the experiments and hyper-parameters we choose are in Appendix B. And the implemen-
tation details are in Appendix D.
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A MORE ABLATION STUDIES, COMPARISONS, AND VISUALIZATIONS

A.1 ABLATION: DIFFERENT DATASETS

Currently, the dataset used in this work is from the EfficientZero replay buffer. It is important to
investigate the impact of pre-training data with different collecting methods. To measure this, we
make ablations for different pre-training datasets under the same settings. We compare the perfor-
mance of the models pre-trained from EZ replay buffer, random trajectories, DQN weak dataset, and
expert trajectories. As for DQN weak dataset, which is similar to SGI, we choose the first 1M steps
from the DQN Replay dataset. As for the expert trajectories, we rollout an expert agent repetitively
with 25% random actions to increase dataset diversity. Here, each dataset contains 1M transitions.
We keep the same experimental setting and choose the same 4 environments with three different
seeds for fine-tuning on Atari 50k. The results are as Table 5 shows:

Table 5: Ablation of different collected datasets for 50k environment steps fine-tuning. There are
four kinds of datasets: EZ Replay buffer, Random trajectories, DQN Weak dataset (first 1M transi-
tions), and Expert trajectories. The model pre-trained from Random trajectories can perform well.
And our method can fit with datasets collected by distinct agents.

Games Boxing Breakout Krull Pong
EZ scratch (No pre-training) 0.597 8.211 1.164 0.589
EZ Replay buffer 1.949 12.477 6.455 0.888
Random trajectories 2.216 11.604 4.136 0.736
DQN Weak dataset 3.279 10.422 5.566 0.942
Expert trajectories 2.785 11.655 5.159 0.768

Notably, SGI cannot work under the random dataset or the DQN weak dataset. But our method
can work. Specifically, we have three conclusions: (1) Our pre-training method is not sensitive
to the quality of datasets. Even if pre-trained under random trajectories, the model has improved
significantly among the 4 environments. (2) Our pre-training method is not sensitive to the data-
collection method. In terms of the DQN weak dataset, our method can still work well and even
outperform the model pre-trained under EZ Replaybuffer in 2 environments. (3) Expert trajectories
are not the best choice of pre-training dataset in our method.

A.2 ABLATION: DIMENSIONS OF LATENT ACTION ze OF LAG-D

In Sec. 5.4, we compare the performance between LAG and LAG-D which generates the latent
actions without vector quantization. And results show that the model pre-trained with LAG-D can
cause shortcut learning and harm the fine-tuning in some games. Therefore, another question is: can
the shortcut learning be avoided for LAG-D through simply reducing the dimension of the latent
action ze. To answer this, we reduce the dimension of ze from 5 to 2 and use the LAG-D for pre-
training. We keep the same experimental setting and choose the same 4 environments with three
random seeds. The results are listed in Table 6. After reducing the dimension of ze, the LAG-D still
fails in the game Krull. It indicates that simply reducing the dimension of ze cannot avoid shortcuts.

Table 6: Ablation of different dimension of ze in LAG-D for 50k environment steps fine-tuning.
Here we reduce the dimension of ze to 2 and the LAG-D still fails in the game Krull.

Games Boxing Breakout Krull Pong
EZ scratch 0.597 8.211 1.164 0.589
LAG-VQ (dim=5) 1.949 12.477 6.455 0.888
LAG-D (dim=5) 1.174 12.435 0.712 1.095
LAG-D (dim=2) 1.465 10.925 0.759 0.741

A.3 COMPARISONS OF MORE ALGORITHMS

Apart from the comparison to SGI, we also compare our method with APV Seo et al. (2022), which
proposes to stack an action-free dynamics model before the original dynamics model based on
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Dreamer V2 Hafner et al. (2020). We try to run their method on the Atari benchmark, however,
we find that it completely fails under the 50k sample limit. In order to achieve non-zero perfor-
mance, we use 10x data during fine-tuning, namely Atari 500k. As for pre-training data for APV,
we choose the best choice suggested by Schwarzer et al. (2021): random sample 3M samples from
checkpoints throughout the DQN training. All the other training details follow the original paper.
We run on the same 4 ablation environments used in our paper and aggregate the results with three
seeds. The results are shown in Table 7. In general, our method has superior performance than APV
because we are able to infer the latent actions during pre-training. But APV pre-trains the model
without action conditions.

Table 7: Comparison between our method and APV. Our method outperforms APV in general.

Games Boxing Breakout Krull Pong
EZ scratch; 50k 0.597 8.211 1.164 0.589
EZ Pre-train with FICC; 50k 1.949 12.477 6.455 0.888
APV; 50k 0.057 -0.013 0.623 0.020
ALV; 500k 0.186 0.080 35.028 0.161

B HYPER-PARAMETERS FOR PRE-TRAINING

The hyper-parameters of pre-training are listed in Table 8. The 1 million pre-training data is col-
lected from EfficientZero training from scratch.

Parameter Setting
Observation down-sampling 96× 96
Frames stacked 4
Frames skip 4
Minibatch size 256
Optimizer SGD
Optimizer: learning rate 0.02
Optimizer: momentum 0.9
Optimizer: weight decay 10−4

Learning rate schedule cos 0.02→ 0.0002
Max gradient norm 10
Training steps 50K
Pre-training data 1M
Unroll steps for training dynamics 5
Shape of the state 64× 6× 6
VQ: Number of latent action embeddings 20
VQ: Dimension of latent action embeddings 5

Table 8: Hyper-parameters for FICC pre-training.

C HYPER-PARAMETERS FOR FINE-TUNING

During fine-tuning, we follow the same training hyper-parameters of EfficientZero except for reduc-
ing the learning rate of the pre-trained models, namely the representation model and the dynamics
model. For the pre-trained model, we choose 0.05 as the initial learning rate while we choose 0.2
for those un-pretrained models. We use SGD optimzier as well as constant learning rate scheduler,
which is also the same as EfficientZero.
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D IMPLEMENTATION DETAILS

D.1 NETWORK DESIGN DETAILS

The design of the representation and dynamics is consistent with EfficientZero since we use it as the
model-based algorithm on the downstream tasks. The implementation details can be founded at (Ye
et al., 2021) Appendix A.1. The representation network takes a 3 × 96 × 96 tensor as input, which
is down-sampled from Atari game image, and outputs the state tensor with shape 64 × 6 × 6. The
dynamics network takes the current state st and current action at as input and output the next state
st+1 with shape 64× 6× 6. Regarding dynamics network, the only difference between us and EZ is
that the shape of the input action tensor is 5× 6× 6 instead of 1× 6× 6 because we map the ground
truth action to the latent action embedding.

The design of the LAG is listed here:

• Concatenate the current state st and the next state st+1 into 128 planes.

• 1 convolution with 64 output planes, with BN and ReLU

• 1 residual block with 64 planes.

• 1 convolution with 5 output planes, with BN and ReLU

• Flatten the planes with shape 5× 6× 6 into 180 dimensions vector.

• 1 fully connected layers with 5 output dimensions, with is the dimension of latent action
embeddings.

• 1 VQ model to quantized the vector to an action embedding.

• Expand dimension at the end of the action embedding and repeat 6 times to 5× 6× 6.

Note that the pre-trained LAG is used and only used for makeup counting table C during finetuning.

The design of the image decoder is listed here:

• 3 transposed convolution with 64 planes, stride 2, with BN and ReLU

• 1 convolution with 3 output planes.

• 1 Sigmoid activation to output a RGB image.

D.2 UNROLLING DETAILS IN TRAINING

The unroll and loss calculation in our pre-training process is as follows: (1) Randomly select a
trajectory from the video pre-training data and generate image sequences with the length of T + 1,
namely o0, o1, ..., oT chronologically. (2) Obtain the state tensor using the representation network:
st = R(ot) for t from 0 to T . (3) Generate all latent action vectors using the latent action generator
(LAG): zt = LAG(st, st+1) for t from 0 to T − 1, while building the training objective Lvq,t of the
LAG using eq.(2). For convenience, we set the first predicted state ŝ0to be s0 i.e. ŝ0 = R(o0) = s0.
(4) Predict next T time-step state tensor using dynamics network and latent action: ŝt+1 = D(ŝt, zt)
for t from 0 to T−1. Note that compared with the MuZero-style method, our dynamics network uses
latent action zt as input rather than ground truth action at because of our action-free pre-train setting.
(5) Use reconstruction head and difference reconstruction head to predict ot and dt = ot+1 − ot
from ŝt for t from 0 to T − 1. The two reconstruction heads both consist of four transposed 2d-
convolution layers. (6) Finally, calculate Lcc,t for t from 0 to T − 1 using Eq.(1) and sum up the
losses: L = Lcc + αLvq =

∑T−1
t=0 (Lcc,t + αLvq,t) , α = 1 for backpropagation.

D.3 ADAPTER DETAILS

In our implementation, we maintain the counting table C in the self-play workers. At the end of
each MCTS search, after selecting the action at and getting the next state st+1, we follow line 5 to
line 7 in Algorithm 1, put st and st+1 into the pre-trained LAG to get the index k of the latent action
embedding and update the counting table C.
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Table 9: Scores achieved on the Atari 50k benchmark.
Game Random Human EfficientZero SGI Ours
Alien 227.8 7127.7 456.0 839.1 625.7
Amidar 5.8 1719.5 48.1 150.9 88.6
Assault 222.4 742.0 586.2 723.5 814.4
Asterix 210.0 8503.3 2185.2 410.3 2603.7
Bank Heist 14.2 753.1 84.3 779.5 75.4
BattleZone 2360.0 37187.5 9442.2 4370.0 6220.0
Boxing 0.1 12.1 7.3 30.3 23.5
Breakout 1.7 30.5 238.2 43.3 361.0
ChopperCmd 811.0 7387.8 727.3 826.7 651.7
Crazy Climber 10780.5 35829.4 40416.8 53437.7 49182.7
Demon Attack 152.1 1971.0 1975.3 1533.1 3906.3
Freeway 0.0 29.6 7.1 0.0 14.3
Frostbite 65.2 4334.7 235.3 311.8 245.6
Gopher 257.6 2412.5 1226.6 457.9 1172.1
Hero 1027.0 30826.4 4676.3 3767.8 11073.0
Jamesbond 29.0 302.8 82.4 295.7 191.3
Kangaroo 52.0 3035.0 224.0 320.3 344.0
Krull 1598.0 2665.5 2841.0 5900.7 8489.0
Kung Fu Master 258.5 22736.3 13363.3 18804.7 12985.7
Ms Pacman 307.3 6951.6 575.0 1443.2 644.1
Pong -20.7 14.6 0.1 -1.4 10.7
Private Eye 24.9 69571.3 96.7 100.0 66.7
Qbert 163.9 13455.0 2813.3 1093.8 4219.7
Road Runner 11.5 7845.0 3143.3 8824.6 3317.0
Seaquest 68.4 42054.7 301.5 654.1 880.8
Up N Down 533.4 11693.2 3128.9 27720.0 4808.9
Normed Mean 0.000 1.000 0.638 0.739 1.184
Normed Median 0.000 1.000 0.218 0.132 0.360

The self-play workers will regularly communicate with the train worker to transfer the counting
table C they maintained. The train worker will add up all the counting table, execute line 9 to line
17 in Algorithm 1, then distribute the adapterM to each self-play worker and reanalysis worker.

D.4 FULL RESULTS

The full results of the Atari 26 games with 50k environment steps are listed as follows. Here the
EfficientZero trains from scratch with 50k interactions. As for SGI, we choose the SGI-M, which
consumes 3M mixed of 50M DQN replay buffer and then finetune the SGI for 50k steps. SGI
requires actions as input. In contrast, our model consumes 1M replay buffer of EfficientZero training
from scratch to pretrain the environment models. Then we finetune for 50k steps.
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