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ABSTRACT

Reinforcement learning algorithms can train agents that solve problems in com-
plex, interesting environments. Normally, the complexity of the trained agent is
closely related to the complexity of the environment. This suggests that a highly
capable agent requires a complex environment for training. In this paper, we point
out that a competitive multi-agent environment trained with self-play can produce
behaviors that are far more complex than the environment itself. We also point out
that such environments come with a natural curriculum, because for any skill level,
an environment full of agents of this level will have the right level of difficulty.
This work introduces several competitive multi-agent environments where agents
compete in a 3D world with simulated physics. The trained agents learn a
wide variety of complex and interesting skills, even though the environment
themselves are relatively simple. The skills include behaviors such as running,
blocking, ducking, tackling, fooling opponents, kicking, and defending using
both arms and legs. A highlight of the learned behaviors can be found here:
https://goo.gl/eR7fbX.

1 INTRODUCTION

Reinforcement Learning (RL) is exciting because good reinforcement learning algorithms exist
(Mnih et al., 2015; Silver et al., 2016; Schulman et al., 2015a; Mnih et al., 2016; Schulman et al.,
2015b; Lillicrap et al., 2015; Schulman et al., 2017), allowing us to train agents that accomplish a
great variety of interesting tasks. We can train an agent to play Atari games from pixels (Mnih et al.,
2015) or get humanoids to walk (Schulman et al., 2017). RL is exciting partly because it is easy
to envision an RL algorithm producing a broadly competent agent when trained on an appropriate
curriculum of environments.

In general, training an agent to perform a highly complex task requires a highly complex environ-
ment, and these can be difficult to create. However, there exists a class of environments where the
behavior produced by the agents can be far more complex than the environments; this is the class
of the competitive multi-agent environments trained with self-play. Such environments have two
very attractive properties: (1) Even very simple competitive multi-agent environments can produce
extremely complex behaviors. For example, the game of Go has very simple rules, but the strategies
needed to win are extremely complex. This is because the complexity of these environments is pro-
duced by the competing agents that act in it. Thus, as the other agents become more competent, the
environment effectively becomes more complex. (2) When trained with self-play, the competitive
multi-agent environment provides the agents with a perfect curriculum. This happens because no
matter how weak or strong an agent is, an environment populated with other agents of comparable
strength provides the right challenge to the agent, facilitating maximally rapid learning and avoiding
getting stuck.

Self-play in competitive multi-agent environments is not a new idea – it has already been explored
in TD-gammon (Tesauro, 1995) and refined in AlphaGo (Silver et al., 2016) and Dota 2 (OpenAI).
In both cases, the resulting behavior was far more complex than the environment itself, and the
self-play approach provided the agents with a perfectly tuned curriculum for each task. In this
paper, we investigate whether the idea of competitive multi-agent environments can yield fruit in
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other domains: speci�cally, in the domain of continuous control, where balance, dexterity, and
manipulation are the key skills.

In more detail, we introduce several multi-agent tasks with competing goals in a 3D world with sim-
ulated physics, using the MuJoCo framework (Todorov et al., 2012), where the agents would need
to learn highly developed motor skills in order to succeed in the competitive environment. We train
the agents using a distributed implementation of a recent policy gradient algorithm, Proximal Policy
Optimization (Schulman et al., 2017). By adding a simple exploration curriculum to aid exploration
in the environment we �nd that agents learn a high level of dexterity in order to achieve their goals,
in particular we �nd numerous emergent skills for which it may be dif�cult to engineer a reward.
Speci�cally, the agents learned a wide variety of skills and behaviors that include running, blocking,
ducking, tackling, fooling opponents, kicking, and defending using arms and legs. Highlight of the
learned behaviors on the various tasks can be found here: https://goo.gl/eR7fbX

2 PRELIMINARIES

In this section, we review some background on policy gradient methods, Proximal Policy Optimiza-
tion and related work in the multi-agent reinforcement learning domain.

Notation: We consider multi-agent Markov games (Littman, 1994). A Markov game forN agents
is a partially observable Markov decision process (MDP) de�ned by: a set of statesS describing
the state of the world and the possible joint con�guration of all the agents, a set of observations
O1; : : : ; ON of each agent, a set of actions of each agentA 1; : : : ; A N , a transition functionT :
S � A 1 � � � A N ! S determining distribution over next states, and a reward for each agenti which
is a function of the state and the agent's actionr i : S � A i ! R. Agents choose their actions
according to a stochastic policy� � i : Oi � A i ! [0; 1], where� i are the parameters of the policy.
For continuous control problems considered here,� � is Gaussian where the mean and variance are
deep neural networks with parameter� . Each agenti aims to maximize its own total expected return
Ri =

P T
t =0 
 t r i

t , where
 is a discount factor andT is the time horizon

Policy Gradient: Policy gradient methods work by directly computing an estimate of the gradient
of policy parameters in order to maximize the expected return using stochastic gradient descent.
These methods are behind much of the recent success in using deep neural networks for control
(Schulman et al., 2015b; Heess et al., 2017; Lillicrap et al., 2015; Silver et al., 2016). Such meth-
ods are also attractive because they don't require an explicit model of the world. There are several
different expressions for the policy gradient estimator which have the formg ..= E [A t r � log � � ].
Different choices ofA t lead to different algorithms, for example taking the sample return of a trajec-
tory A t =

P
t r t leads to the REINFORCE algorithm (Williams, 1992). However, such algorithms

suffer from high variance in the gradient estimates and it's typical to use a baseline, such as a value
function baseline, to ameliorate the high variance. Generalized advantage estimation (Schulman
et al., 2015b) takes this approach of using a learned value function to reduce variance at the cost of
some bias and using an exponentially weighted estimator of the advantage function.

Proximal Policy Optimization (PPO): Achieving good results with policy gradient algorithms
requires carefully tuning the step-size (Schulman et al., 2015a). Moreover, most policy gradient
methods perform one gradient update per sampled trajectory and have high sample complexity.
Recently, Schulman et al. (2017) proposed the PPO algorithm which addresses both these prob-
lems. This uses a surrogate objective which is maximized while penalizing large changes to the
policy. Let l t (� ) = � � (a t j st )

� � old (a t j st ) denote the likelihood ratio. Then PPO optimizes the objective:

L = E
h
min( l t (� )Â t ; clip(l t (� ); 1 � �; 1 + � )Â t )

i
, whereÂ t is the generalized advantage estimate

and clip(l t (� ); 1 � �; 1 + � ) clips l t (� ) in the interval[1 � �; 1 + � ]. The algorithm alternates be-
tween sampling multiple trajectories from the policy and performing several epochs of SGD on the
sampled dataset to optimize this surrogate objective. Since the state value function is also simulta-
neously approximated, the error for the value function approximation is also added to the surrogate
objective to compute the complete objective function (Schulman et al., 2017).

Related Work: Tan (1993) explored the multi-agent setting with independently learning agents
using Q-learning, in particular exploring advantages of cooperative agents over independent agents
in a 2D grid world. This was further explored by Matignon et al. (2012) again in the cooperative
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