
Adjoint Code Design Patterns

Uwe Naumann and Jonathan Hüser
Department of Computer Science

RWTH Aachen University
D-52056 Aachen, Germany

[naumann,hueser]@stce.rwth-aachen.de

Abstract

Adjoint methods have become fundamental ingredients of the scientific computing
toolbox over the past decades. Large-scale parameter sensitivity analysis, uncer-
tainty quantification and nonlinear optimization as well as modern approaches to
deep learning would otherwise turn out computationally infeasible. For nontrivial
real-world problems the algorithmic derivation of adjoint numerical simulation
programs quickly becomes a highly complex software engineering task requiring
expertise in software analysis, transformation and optimization. Despite rather
mature software tool support for algorithmic differentiation substantial user in-
tervention is typically required. A large number of patterns shared by numerous
application codes results in repeated duplication of development effort. The adjoint
code design patterns discussed in this talk based on [8] aim to reduce this problem
through improved formalization from the software engineering perspective.

1 Motivation

Motivated by the continuously growing complexity of mathematical models in Computational Science,
Engineering and Finance (CSEF) algorithmic adjoint numerical simulations have experienced an
increased level of attention over the past years. Applications range from traditional areas such as
meteorology / physical oceanography or shape / topology optimization in aerospace and automotive
engineering to more recent developments in deep (machine) learning [1] or computational finance.
They share the need for large (> O(103)) gradients to be evaluated for mathematical models
implemented as often highly complex numerical simulation software.

The development of adjoint numerical simulations benefits tremendously from work conducted in
the field of algorithmic differentiation (AD) [6, 7] over the past decades. Progress in methods and
software tools is supported by reports on a vast number of successful applications; see, e.g, [3, 2].
Nevertheless, the implementation of an adjoint, its testing and validation, and maintenance within
a rapidly changing hard- and software environment remains an extremely challenging simulation
software engineering task. Building on existing adjoint coding expertise and corresponding AD
tool support the choice of the right level of abstraction in a modular approach to adjoint code
design turns out to be crucial for ensuring efficiency (computation time and memory requirement),
scalability (on parallel computers including shared and distributed memory architectures as well
as accelerators), robustness (with respect to changes in requirements / the overall software design),
flexibility (combination / substitution of adjoint modules) and sustainability (long-term integration
into the compute infrastructure) of the software.

In this talk we discuss adjoint code design patterns as a (potential standard) approach to the devel-
opment, documentation, and exchange of (building blocks of) adjoint simulation software. Both
terminology and notation are inspired by object-oriented analysis and design methodology. We use
UML class diagrams for graphical formalization. Case studies are implemented in the C++ pro-

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

gramming language based on our AD software tool dco/c++. Generalization to other programming
paradigms and languages is possible and encouraged.

2 Adjoint Code Design Patterns

Algorithmic adjoint code contains an augmented primal section to record for the given sequence of
q = p + m elemental function1 evaluations

vi := ϕi(vk)k≺i , i = 1, . . . , q ,

all data required for evaluation of the adjoint elementals

vj(1) := vj(1) + vi(1) ·
dϕi(vk)k≺i

dvj
, j ≺ i = q, . . . , 1 (1)

as a sequence of fused multiply-add (FMA) operations within the adjoint section. Refer to [6, 7] for
further information on algorithmic adjoints.

For notational convenience when introducing adjoint code design patterns we assume all elementals
to map from the entire memory space of the program (v1−n, . . . , vq) onto itself. A similar approach
is taken in [5].

The primal program for computing a multivariate vector function F : IRn → IRm as y = F (x) yields
an elemental decomposition

vi = Φi(vi−1), Φi : IRn+q → IRn+q for i = 1, . . . , q

and v0 = (x0, . . . , xn−1, 0, . . . , 0), vq = (x0, . . . , xn−1, v1, . . . , vp, y0, . . . , ym−1) . Consequently,
x = Pn · v0 and y = vq · QT

m for linear operators Pn = (In×n, 0n×q) ∈ IRn×(n+q) and Qm =

(0m×(n+p), Im×m) ∈ IRm×(n+q) extracting the first n and last m entries of a vector in IRn+q,

respectively. The identity in IRk is Ik×k and 0k×l denotes a matrix of all zeros in IRk×l.

The adjoint program evaluates the adjoint elemental decomposition

x(1) := x(1)+ < y(1),∇F (x) > ,

where
< y(1),∇F (x) >= Pn · Φ1

(1)(x,Φ
2
(1)(v

1, . . .Φq
(1)(v

q−1,vq
(1)) . . .))

and for given vq
(1) = (0, . . . , 0, y0(1), . . . , y

m−1
(1)) assuming availability of adjoint elementals

vi−1
(1) = Φi

(1)(v
i−1,vi

(1)) ≡ ∇Φi(vi−1)T · vi
(1) for i = q, . . . , 1.

Adjoint elementals can be implemented in various ways including AD by overloading or (manual)
source transformation, symbolic differentiation, finite difference approximation, preaccumulation,
and AD of smoothed (discontinuous) elementals.

By default the adjoint elemental decomposition is generated homogeneously, typically using AAD by
either overloading or source transformation. Special treatment of certain elementals (e.g, Φk) may
become desirable or even essential, for example, to ensure feasibility of the memory requirement by
checkpointing or preaccumulation, to exploit the implicit function theorem, to handle nonsmoothness
or even discontinuity, or to integrate parts of the computation running on a different compute platform
(e.g, GPU). The resulting gaps in the adjoint context need to be filled by custom versions of Φk

(1)

yielding < y(1),∇F (x) > as

Pn · (∇Φ1(x)T . . .

vk−1
(1)︷ ︸︸ ︷

∇Φk(vk−1)T (∇Φk+1(vk)T . . . (∇Φq(vq−1)T · vq
(1)) . . .)︸ ︷︷ ︸

vk
(1)

) .

1Elemental functions range from arithmetic operators and intrinsic functions built into programming lan-
guages via solution algorithms for implicit functions to arbitrary compact subsections of the primal code.

2

ACDP_PrimalBase

#x: vector<Type&>

#y: vector<Type&>

#data: container<DataType:typename>

+write_data(d:DataType)

+read_data(): DataType&

+register_input(x:Type&)

+input_value(i:unsigned int): ValueType&

+register_output(y:Type&)

+output_value(i:unsigned int): ValueType&

+evaluate_primal()

Type:typename

ValueType:typename

Target

+evaluate_primal()

ACDP_AdjointBase

+input_adjoint(i:unsigned int): ActiveBaseType&

+output_adjoint(i:unsigned int): ActiveBaseType&

+evaluate_augmented_primal()

+evaluate_adjoint()

AdjointContext

+ActiveType: typename

+ActiveBaseType: typename

+register_acdp(p:ACDP_AdjointBase)

ACDP_Instance

+evaluate_augmented_primal()

+evaluate_adjoint()

Type=ActiveType

ValueType=ActiveBaseType

Figure 1: Base Pattern

An API needs to be provided allowing for

vk−1
(1) := Φk

(1)(v
k−1,vk

(1)) ≡ ∇Φk(vk−1)T · vk
(1)

to be evaluated based on custom required data to be recorded by an appropriately augmented primal
version of Φk. For example, checkpointing Φk requires its input arguments to be stored in order to
allow context-free reevaluation. The adjoint Φk

(1) restores the argument checkpoint followed by an
augmented primal evaluation of Φk (e.g, generation of a tape) and propagation of the adjoints (e.g,
interpretation of the tape). Moreover, communication with the context needs to be established by
enabling access to in- and outputs of Φk and to the adjoints of all active arguments.

Figure 1 shows a UML class diagram of the Base pattern, for example, in the context of dco/c++.
To qualify as a context for an adjoint code design pattern (ACDP) the two abstract base patterns
ACDP_PrimalBase and ACDP_AdjointBase need to be provided. Details of their implementation
depend on the given context and should be irrelevant to the user of an instance of an ACDP. Instances
of ACDP contain data (e.g, the solution of a system of nonlinear equations, see Sec. 3) and (optionally)
user target code (e.g, the residual of the nonlinear system). The type-generic class ACDP_PrimalBase
enables inclusion of the target code into the primal active flow of data and collection (write_data)
and use (read_data) of additional pattern-specific and type-generic data. Registration of active in-
and outputs yields storage of corresponding references in x and y, respectively. Their primal values
are accessed via a unique index using the methods input_value and output_value . For a user target
to specialize ACDP_PrimalBase it must implement the method evaluate_primal to evaluate the type-
generic primal outputs y as a function of the inputs x. Further details will be discussed during the
talk.

3 Case Study

Implicit functions defined as systems of nonlinear equations F (x(p),p) = 0, where x ∈ IRnx and
F : IRnx × IRnp → IRnx are fundamental numerical kernels in modern scientific computing. The
mathematics of adjoint nonlinear systems is covered extensively in the literature, for example, [4].
Computation of p(1) amounts to the solution of the linear system

∂F (x∗,p)

∂x

T

· z = −x(1) (2)

followed a single evaluation of the adjoint residual. The algorithmic adjoint differentiation of the
nonlinear solver can be avoided. A (passive) primal solution is followed by the accumulation of the
Jacobian of the residual with respect to the state x at the primal solution. A linear system is solved
to obtain z and hence p(1) as the adjoint of the residual with respect to p at the primal solution in
direction z. Derivatives of the residual can often be obtained at much lower computational cost than
an algorithmic adjoint of the nonlinear solver.

Figure 2 formalizes the above as an adjoint code design pattern. Its detailed discussion will be part of
the talk.

3

ACDP_PrimalBase

+evaluate_primal()

Type:typename

ValueType:typename

Residual

+evaluate_primal()

ACDP_AdjointBase

+evaluate_augmented_primal()

+evaluate_adjoint()

AdjointContext

+ActiveType: typename

+ActiveBaseType: typename

+register_acdp(p:ACDP_AdjointBase)

ACDP_SymbolicAdjointNLS

+TangentType<ActiveBaseType>: typename

+AdjointTape<ActiveBaseType>: typename

+x: Vector<ActiveBaseType>

+register_parameter()

+register_state()

+evaluate_primal()

+evaluate_augmented_primal()

+evaluate_adjoint()

Type=ActiveType

ValueType=ActiveBaseType

3

1. Type=ActiveBaseType

2. Type=TangentType<ActiveBaseType>

3. Type=AdjointType<ActiveBaseType>

ValueType=ActiveBaseType

Figure 2: Symbolic Adjoint Nonlinear System Pattern

4 Conclusion

This talk makes an attempt to formalize the design of adjoints for a number of relevant structural
and numerical software patterns. Relevance for machine learning results immediately from the
growing need for (adjoint) gradients of general models as opposed to special types of (neural)
networks. Ad hoc development of adjoint simulations suffers from a high degree of repetition in
terms of conceptual results and their implementation. The provision of well-designed and properly
documented design patterns is expected to improve robustness and compatibility of adjoint software as
well as to streamline the development process. We are convinced that ongoing and future development
efforts within the machine learning community can draw substantial benefit from the use of adjoint
code design patterns. Details will be discussed during the talk.

References
[1] A. Baydin, B. Pearlmutter, and A. Radul. Automatic differentiation in machine learning: a survey.

CoRR, abs/1502.05767, 2015.

[2] C. Bischof, M. Bücker, P. Hovland, U. Naumann, and J. Utke, editors. Advances in Automatic
Differentiation, number 64 in Lecture Notes in Computational Science and Engineering (LNCSE).
Springer, 2008.

[3] S. Forth, P. Hovland, E. Phipps, J. Utke, and A. Walther, editors. Recent Advances in Algorithmic
Differentiation, volume 87 of Lecture Notes in Computational Science and Engineering. Springer,
Berlin, 2012.

[4] J. C. Gilbert. Automatic differentiation and iterative processes. Optimization Methods and
Software, 1:13–21, 1992.

[5] A. Griewank and U. Naumann. Accumulating Jacobians as chained sparse matrix products.
Mathematical Programming, 95(3):555–571, 2003.

[6] A. Griewank and A. Walther. Evaluating Derivatives. Principles and Techniques of Algorithmic
Differentiation, Seocnd Edition. Number OT105 in Other Titles in Applied Mathematics. SIAM,
2008.

[7] U. Naumann. The Art of Differentiating Computer Programs. An Introduction to Algorithmic
Differentiation. Number SE24 in Software, Environments, and Tools. SIAM, 2012.

[8] U. Naumann. Adjoint code design patterns. Technical Report AIB-2017-08, Department of
Computer Science, RWTH Aachen University, 2017. Submitted.

4

	Motivation
	Adjoint Code Design Patterns
	Case Study
	Conclusion

