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Abstract

Utilizing the Retrieval-Augmented Generation
(RAG) framework with large language models
for question answering often results in low re-
trieval precision and recall rates. A solution to
address this issue involves retrieving external
knowledge at various granularities. However,
this strategy typically suffers from decreased
precision in coarse-grained retrieval and omis-
sions in fine-grained retrieval. To overcome
these challenges, we introduce a novel frame-
work designed for the legal domain, named
Supplemental Enhancement of Action Seg-
ments (SEAS). SEAS utilizes few-shot prompt-
ing to extract action segments from legal texts,
which are then used to enhance the retrieval
of complete legal texts. In the Japanese Law
Retrieval task, SEAS significantly enhances
the performance of three distinct embedding
models. Furthermore, in the Chinese Legal
Question Answering task, SEAS outperforms
all baselines across all metrics.

1 Introduction

When using large language models (LLMs) for
question answering, the Retrieval-Augmented Gen-
eration (RAG) framework (Lewis et al., 2020) has
become one of the most popular frameworks for
reducing hallucinations (Zhang et al., 2023). De-
spite its advantages, the framework often encoun-
ters challenges with low precision and recall rates
(Gao et al., 2023) in its retrieval processes. Recent
studies have explored various strategies to enhance
retrieval, including adjustments in retrieval gran-
ularity (Ram et al., 2023) and retrieval frequency
(Izacard et al., 2022). Our research explores effec-
tive retrieval granularity within the legal question
answering context, targeting statute law. Subse-
quently, we propose a novel method that integrates
various retrieval granularities to improve retrieval
precision.

There are two main challenges in this work: (1)
defining and extracting effective retrieval granular-
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Figure 1: Overview of Supplemental Enhancement of
Action Segments: (1) Extracting action segments from
the questions and legal texts using few-shot prompting.
(2) Supplementing and enhancing the retrieval results
of complete legal texts with these action segments.

ity for legal question answering, and (2) balancing
the trade-offs between granularity levels, where
coarse granularity provides broader context but less
precision, while fine granularity offers precise con-
tent but risks overlooking relevant details.

To address these challenges, we introduce a new
framework, Supplemental Enhancement of Action
Segments (SEAS) (see Figure 1), which utilizes
“action segments” as fine-grained retrieval units
within the legal domain. The concept of “action
segments” is derived from the jurisprudential con-
cept of “legal actions”, which refers to actions
implemented by individuals that produce legal ef-
fects. For example, in the legal question “A couple
quarreled over trifles, both of them proposed di-
vorce; how to avoid an impulsive divorce?” the
action segments identified are “quarreled for tri-
fles,” “proposed divorce,” and “avoid impulsive di-
vorce.” These segments serve as fine-grained docu-
ment chunks that supplement the retrieval of coarse-
grained chunks, encompassing complete questions



and legal texts.

We evaluate SEAS through two experiments:
(1) Japanese Law Retrieval from COLIEE’s Task
3!, and (2) Chinese Legal Question Answering.
Our experiments show that incorporating action
segments to enhance retrieval improves RAG per-
formance significantly. In the Japanese Law Re-
trieval task, SEAS boosts the retrieval performance
of three embedding models: BAAI/bge-large-en-
v1.5%, OpenAl text-embedding-3-small® and text-
embedding-3-large’. In the Chinese Legal Ques-
tion Answering task, SEAS enhances the perfor-
mance of GPT-3.5-Turbo+RAG and GPT-4+RAG,
with Accuracy (ACC) (Yue et al., 2023) improve-
ments of 2.9% and 2%, respectively.

The main contributions of this paper are the pro-
posal of a new framework, Supplemental Enhance-
ment of Action Segments (SEAS). SEAS intro-
duces two main innovations:

* To the best of our knowledge, this is the first
method that uses action segments as retrieval
granularities to enhance retrieval performance
in legal question answering domain.

* SEAS combines retrievals of document
chunks at different granularities, exploring op-
timization paths in the RAG framework.

2 Related work

A line of studies (Huang et al., 2023; Cui et al.,
2023; Louis et al., 2023) has extended the RAG
framework in the context of legal question answer-
ing. However, these methods suffer from low pre-
cision and recall rates in retrieval (Lewis et al.,
2020). Research on the granularity of RAG re-
trieval (Khandelwal et al., 2019; Nishikawa et al.,
2022; Kang et al., 2023) and chunking strategies
(Langchain, 2023; Yang, 2023) seeks to improve
precision and efficiency by using text chunks of
varying sizes. Our framework improves overall pre-
cision by combining retrieval results of different
granularities.

Determining appropriate granularity and obtain-
ing fine-grained document chunks are two key chal-
lenges in our framework. Several studies (Min
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et al., 2023; Kamoi et al., 2023; Chen et al., 2023a)
have investigated semantic representations of text
at the propositional level. Building on this founda-
tion, Chen et al. (2023b) have effectively utilized
propositions as retrieval units. Inspired by these ad-
vancements, our approach integrates propositions
from legal texts—action segments—as fine-grained
retrieval units to address the first challenge.

Recent research has leveraged content gener-
ated by LLMs for retrieval and enhancement tasks
(Gao et al., 2023), as demonstrated in studies by
Wang et al. (2023), Yu et al. (2022), and Cheng
et al. (2023). These studies highlight the inno-
vative use of data sources within the RAG frame-
work. Inspired by these developments, we have em-
ployed few-shot prompting with LLMs to extract
fine-grained document chunks, thus addressing the
second challenge.

3 Supplemental Enhancement of Action
Segments

We introduce a novel framework, Supplemental
Enhancement of Action Segments (SEAS), as illus-
trated in Figure 1. First, we devise the Action Seg-
ment Extraction (Section 3.1), which extracts ac-
tion segments from legal texts via few-shot prompt-
ing. Then, using these action segments, we imple-
ment the Supplemental Enhancement (Section 3.2).
This process supplements the retrieval results of
complete text chunks with the results of action seg-
ments to produce the final relevant legal texts for
the legal question.

3.1 Action Segment Extraction

Action Segment Extraction involves extracting text
that describes actions from a legal text database and
legal questions. We use few-shot (3-shot) prompt-
ing to extract text describing actions from each
legal article in the database, thereby creating an ac-
tion segment database. Similarly, we use a similar
few-shot (3-shot) prompting method to extract text
describing actions from the legal questions.

3.2 Supplemental Enhancement

First, we use an embedding model to encode the
complete legal texts and legal questions, retrieving
texts relevant to the legal question and selecting the
top X legal texts. Next, we use the same embed-
ding model to encode the action segment database
along with the action segments extracted from legal
questions, aiming to retrieve and select the top Y
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Figure 2: Evaluation results for the Japanese Law Retrieval task from COLIEE. The baselines are three embedding
models: bge-en, openai-small, and openai-large. This figure shows the retrieval performance of these models after

enhancement with SEAS.

action segments from legal texts. We then identify
the original legal texts corresponding to these ac-
tion segments, integrate these Y legal texts with the
initially selected X legal texts, and perform dedu-
plication to compile the final set of [ X, X + Y]
relevant legal texts.

4 Experiment

We conducte two experiments to evaluate the re-
trieval effectiveness of SEAS and its impact on
downstream task performance. The first exper-
iment, Japanese Law Retrieval, was inspired by
COLIEE’s Task 3. This task involves extracting a
subset of Japanese Civil Code Articles to answer
a yes/no Japanese legal bar exam question, assess-
ing the retrieval effectiveness of SEAS. In the sec-
ond experiment, Chinese Legal Question Answer-
ing, we used SEAS to retrieve relevant articles and
added them to the prompt for GPT-3.5-turbo (Ope-
nAl, 2022) and GPT-4 (OpenAl, 2023) to generate
answers to Chinese legal questions, evaluating the
quality of the answers to assess the impact of SEAS
on downstream generation tasks.

4.1 Japanese Law Retrieval

We evaluate the enhancement effects of SEAS on
embedding models. In this experiment, a legal
question can be related to multiple articles (in
this dataset, a legal question is related to no more
than six articles, with an average of 1.28 articles
per question). The model identifies several arti-
cles related to the question. If these articles in-
clude all relevant ones, it is considered a success-
ful retrieval. Our analysis focused on whether the
SEAS-enhanced embedding model could identify a
greater number of relevant articles while recalling
the same total number of articles.

Datasets The data comes from Task 3 (English
version) of the COLIEE 2023 datasets (Goebel
et al., 2024), including the Japanese Civil Code
texts and 1,097 yes/no Japanese legal bar exam
questions from the training set, along with the arti-
cles relevant to each question.

Evaluation Metrics The retrieved articles are
primarily used to enhance the downstream genera-
tive tasks of LLMs. Our testing shows that LLMs
have the capability to select the correct statutes,
making it particularly crucial that the retrieved arti-
cles comprehensively cover all relevant laws. Con-
sequently, we evaluate retrieval effectiveness by
counting the number of questions n for which the
retrieved articles cover all relevant articles:

1097
n=> P M
i=1
P) = {0 e ®

where ¢ represents the number of the question, P(x)
is a function to count, ), represents the set of rel-
evant articles for the z-th question, R, represents
the set of retrieved articles for the z-th question in
Equation (1, 2).

Baselines We choose three embedding models
as baselines: BAAI/bge-large-en-v1.5 (output di-
mension 1024), OpenAl text-embedding-3-small
(output dimension 1536), and text-embedding-3-
small (output dimension 3072). We compare the
number of questions for which the relevant articles
are correctly retrieved before and after enhance-
ment with SEAS.

Results The experiment evaluates the effec-
tiveness of integrating the top 1 article retrieved



Model ACC CPL CLR
General LLMs

GPT-3.5-turbo 1.97 183 271
GPT-4 210 210 3.09
Chinese Legal LLMs

DISC-LawLLM 243 222 3.08
Tongyi Farui 312 293 352
General LLMs with RAG

GPT-3.5-turbo + RAG 314 276 3.0
GPT-4 + RAG 350 330 411

(SEAS; Ours)
GPT-3.5-turbo + RAG + SEAS  3.23 2.82 372
GPT-4 + RAG + SEAS 3.57 333 4.14

Table 1: Evaluation results for the Chinese Legal Ques-
tion Answering task. Baselines are General LLMs, Chi-
nese Legal LLMs and General LLMs with RAG Frame-
work. This figure shows the effectiveness of SEAS-
enhanced LLMs in generating task outcomes.

by the SEAS with the top 4, 5, 6, 7, and 8 arti-
cles retrieved by the BAAI/bge-large-en-v1.5, text-
embedding-3-small, and text-embedding-3-small
models (see Figure 2). Upon incorporating the
supplemental articles retrieved by SEAS, all three
models improved performance, correctly retrieving
relevant articles for more questions. Notably, the
enhancement effect of SEAS was greatest for bge-
en, followed by openai-large, and least for openai-
small.

4.2 Chinese Legal Question Answering

In this section, we evaluate the impact of the
SEAS-enhanced legal retrieval model on down-
stream answer generation tasks. Specifically, we
use BAAI/bge-large-zh-v1.5% as Chinese embed-
ding model and integrate articles retrieved for Chi-
nese legal questions into the prompts and use GPT-
3.5-turbo and GPT-4 to generate answers. The
quality of these generated answers is evaluated
using the DISC-LawLLM-eval (Yue et al., 2023)
method, which involves inputting the question, the
generated answer, and a reference answer into
LLMs. Considering the proficiency of powerful
LLMs like GPT-4 in aligning with human judg-
ments—demonstrating more than 80% consistency
(Zheng et al., 2023)—we employ GPT-4 to evaluate
the quality of the generated answers.

Datasets The dataset comprises 222 Chinese
civil law text questions along with their reference
answers (Chinese version), including 62 questions
from DISC-LawLLM-eval and 160 questions from

4https ://huggingface.co/BAAI/bge-large-zh-v1.
5

Chinese legal consultations, justice-related publi-
cations, and other sources.

Evaluation Metrics We use the evaluation
metrics from DISC-LawLLM-eval, including ac-
curacy, completeness and clarity. (1) Accuracy
(ACCQ): The consistency of the content and seman-
tics of the answer with the reference answer. (2)
Completeness (CPL): The answer do not omit
any details compared to the reference answers. (3)
Clarity (CLR): The juridical logic analysis of the
answer is rigorous and clear, and the sentences are
well-organized.

Baselines We select GPT-3.5-turbo, GPT-4,
GPT-3.5-turbo + RAG, GPT-4 + RAG, and the Chi-
nese legal large language models DISC-LawLLM
(Yue et al., 2023) and Tongyi Farui® (commercial
model) as baselines.

Results The experiment evaluates the effec-
tiveness of integrating the top 3 articles retrieved
by the SEAS with the top 3 articles retrieved by
BAAI/bge-large-zh-v1.5 for generating answers.
(see Table 1). The answers generated after sup-
plementing with the top 3 articles retrieved by
SEAS surpassed those generated by the unen-
hanced LLMs and the LLMs with RAG. No-
tably, GPT-4+RAG+SEAS achieved the highest
performance, surpassing the generation effects of
the Tongyi Fashui and DISC-LawLLM models.
Specifically, the ACC of SEAS-enhanced GPT-3.5-
turbo+RAG increased by 2.9%, and the ACC of
SEAS-enhanced GPT-4+RAG increased by 2%.

5 Conclusion

In this work, we propose a novel frame-
work, Supplemental Enhancement of Action Seg-
ments (SEAS). It generates fine-grained retrieval
units—action segments—as retrieval granularity
for legal domain questions through few-shot
prompting and uses these segments to supplement
and enhance the retrieval results of coarse-grained
retrieval units—complete legal texts. Our frame-
work combines the advantages of different gran-
ularity document chunks, optimizing the retrieval
process. Experimental results show that SEAS im-
proves the retrieval performance of various em-
bedding models and guides downstream LLMs to
generate better answers. We hope this work pro-
vides insights into optimizing RAG retrieval and
can be applied to real-world scenarios.

Shttps://tongyi.aliyun.com/farui
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Limitation

Despite SEAS being a model-agnostic framework
that can be combined with other components, our
study is limited in demonstrating generalizabil-
ity across different types or scales of embedding
models. Additionally, although the framework fo-
cuses on improving RAG retrieval and is domain-
agnostic, our experiments were conducted only
on two legal datasets, lacking tests in other do-
mains. While SEAS effectively retrieves text
chunks through few-shot prompting with LLMs,
the generation cost becomes significant when the
datasets are large.
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