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ABSTRACT

Based on our observation that there exists a dramatic drop for the singular values
of the fully connected layers or a single feature map of the convolutional layer, and
that the dimension of the concatenated feature vector almost equals the summa-
tion of the dimension on each feature map, we propose a singular value decompo-
sition (SVD) based approach to estimate the dimension of the deep manifolds for
a typical convolutional neural network VGG19. We choose three categories from
the ImageNet, namely Persian Cat, Container Ship and Volcano, and determine
the local dimension of the deep manifolds of the deep layers through the tangent
space of a target image. Through several augmentation methods, we found that the
Gaussian noise method is closer to the intrinsic dimension, as by adding random
noise to an image we are moving in an arbitrary dimension, and when the rank of
the feature matrix of the augmented images does not increase we are very close
to the local dimension of the manifold. We also estimate the dimension of the
deep manifold based on the tangent space for each of the maxpooling layers. Our
results show that the dimensions of different categories are close to each other and
decline quickly along the convolutional layers and fully connected layers. Further-
more, we show that the dimensions decline quickly inside the Conv5 layer. Our
work provides new insights for the intrinsic structure of deep neural networks and
helps unveiling the inner organization of the black box of deep neural networks.

1 INTRODUCTION

To have a better understanding of deep neural networks, a recent important trend is to analyze the
structure of the high-dimensional feature space. Capitalizing on the manifold hypothesis (Cayton
2005; Narayanan & Mitter 2010), the distribution of the generated data is assumed to concentrate in
regions of low dimensionality. In other words, it is assumed that activation vectors of deep neural
networks lie on different low dimensional manifolds embedded in high dimensional feature space.

Note that the rationality of many manifold learning algorithms based on deep learning and auto-
encoders is that one learns an explicit or implicit coordinate system for leading factors of variation.
These factors can be thought of as concepts or abstractions that help us understand the rich variability
in the data, which can explain most of the structure in the unknown data distribution. See Goodfellow
et al. (2016) for more information.

The dimension estimation is crucial in determining the number of variables in a linear system, or
in determining the number of degrees of freedom of a dynamic system, which may be embedded
in the hidden layers of neural networks. Moreover, many algorithms in manifold learning require
the intrinsic dimensionality of the data as a crucial parameter. Therefore, the problem of estimating
the intrinsic dimensionality of a manifold is of great importance, and it is also a crucial start for
manifold learning.

Unfortunately, the manifold of interest in AI (especially for deep neural networks), is such a rugged
manifold with a great number of twists, ups and downs with strong curvature. Thus, there is a
fundamental difficulty for the manifold learning, as raised in Bengio & Monperrus (2005), that is,
if the manifolds are not very smooth, one may need a considerable number of training examples to
cover each one of these variations, and there is no chance for us to generalize to unseen variations.

Our work is based on an important characterization of the manifold, namely, the set of its tangent
hyperplanes. For a point p on a d-dimensional manifold, the tangent hyperplane is given by a local
basis of d vectors that span the local directions of variations allowed on the manifold. As illustrated
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in Figure 1, these local directions specify how one can change p infinitesmally while staying on the
manifold.

Figure 1: A two-dimensional manifold with a small region where data points concentrate, along
with a tangent plane and associated tangent directions, forming a basis that specifies the directions
of small moves one can make to stay on the manifold.

Based on above analysis, our work focuses on a thorough exploration of the local hyperplane dimen-
sion of the activation manifold in deep neural networks. Creating an artificial data cluster concen-
trated in regions of the local tangent hyperplane, we apply SVD to the data cluster in different layers
or feature maps in neural networks. Through thorough analysis, we reach the following fascinating
results.

• There exists a dramatic drop for the singular values of the fully connected layers or a single
feature map of the convolutional layer.

• For convolutional layers, the dimension of the concatenated feature vector almost equals
the summation of the dimension on each feature map.

• The dimensions of different image categories are close and the dimension declines quickly
along the layers.

To our knowledge this is the first thorough exploration of manifold dimension on very deep neural
networks. We wish our work sheds light on new understandings and inspires further investigations
on the structure of manifolds in deep neural networks.

2 RELATED WORK

With the great success of deep learning in many applications including computer vision and ma-
chine learning, a comprehensive understanding of the essence of deep neural networks is still far
from satisfactory. Related works can be classified mainly into three types. The first kind of work
focuses on the difference of random networks and trained networks (Saxe et al., 2011; He et al.,
2016; Rahimi & Recht, 2009). There are also works that focus on the theoretical understanding
of learning (Zhang et al., 2017; Li & Yuan, 2017), while the rest focus on the inner organization
or feature representations through visualization (Mahendran & Vedaldi, 2015; Dosovitskiy & Brox,
2016).

Up until now, there are only a few works in exploring the property of deep manifolds formed by
activation vectors of the deep layers. In this section, we highlight the most related work for manifold
learning and dimension determination.

Manifold learning has been mainly applied in unsupervised learning procedures that attempt to cap-
ture the manifolds (Van der Maaten & Hinton, 2008). It associates each of the activation nodes with
a tangent plane that spans the directions of variations associated with different vectors between the
target example and its neighbors. Weinberger et al. (2004) investigate how to learn a kernel matrix
for high dimensional data that lies on or near a low dimensional manifold. Rifai et al. (2011) ex-
ploit a novel approach for capturing the manifold structure (high-order contractive auto-encoders)
and show how it builds a topological atlas of charts, with each chart characterized by the principal
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singular vectors of the Jacobian of a representation mapping. Kingma et al. (2014) propose a two-
dimensional representation space, a Euclidean coordinate system for Frey faces and MNIST digits,
learned by a variational auto-encoder.

There are several efficient algorithms to determine the intrinsic dimension of high-dimensional data.
Singular Value Decomposition (SVD), also known as Principal Component Analysis (PCA), has
been discussed thoroughly in the literature Strang et al. (1993). In applications, the choice of al-
gorithm will rely on the geometric prior of the given data and the expectation of the outcome. In
addition, researchers have also proposed several improved manifold-learning algorithms considering
more pre-knowledge of the dataset. For example, Little et al. (2009) estimate the intrinsic dimen-
sionality of samples from noisy low-dimensional manifolds in high dimensions with multi-scale
SVD. Levina & Bickel (2005) propose a novel method for estimating the intrinsic dimension of a
dataset by applying the principle of maximum likelihood to the distances between close neighbors.
Haro et al. (2008) introduce a framework for a regularized and robust estimation of non-uniform
dimensionality and density for high dimensional noisy data.

To have a comprehensive understanding of the manifold structure of neural networks, it is natural
to treat the activation space as a high-dimensional dataset and then characterize it by determining
the dimension. This will give us a new view of the knowledge learnt from the neural network and
hopefully the information hidden inside. However, to the best of our knowledge, there is nearly
no related work in determining the intrinsic dimensionality of the deep manifold embedded in the
neural network feature space. In the following we will give a thorough study on this topic.

3 MANIFOLD DIMENSION CHARACTERIZATION

In this section we describe our strategy to determine the dimension d of the local tangent hyperplane
of the manifold, along with necessary definitions and conventions which will be used in specifying
the dimension of the manifold dataset.

3.1 DETERMINE DIMENSION BY SVD

It is known that if there is a set of data {xi}ni=1 that can be regarded as a data point cluster and
lie close to a noiseless d-dimensional hyperplane, then by applying SVD, the number of non-trivial
singular values will equal to d — the intrinsic dimension of the data point cluster. In the context of a
manifold in a deep neural network, a cluster of activation vectors pointing to a manifold embedded
in feature space RD, can be approximated as concentrated on a d-dimensional tangent hyperplane,
whose dimension directly associates with the manifold.

However, the challenge here in dimension estimation is that noise everywhere are influencing the
dataset making it hard to get the correct result:

1. Little et al. (2009) point out that when D-dimensional noise is added to the data, we will
observe :x̃i = xi + ηi, where η represents noise. The noise will introduce perturbation of
the covariance matrix of the data, which will lead to the wrong result.

2. Goodfellow et al. (2016) also mentioned that some factors of variation largely influence
every single piece of the observed data. Thus those factors we do not care about (or simply
considered as noise) may lead researchers to wrong result with high probability.

To solve the above problems, we make use of the following observations:

1. By introducing representations that are expressed in terms of different, simpler represen-
tations, deep neural networks extract high-level, abstract features from the raw data, that
make it successfully disentangle the factors of variation and discard the ones that we do not
care about (noise), see Goodfellow et al. (2016) for more information. It turns out that the
noise in feature space will be so small that we are likely to have the singular values from
factors we care about significantly larger than the remaining singular values generated by
noise and get the right result.

2. Johnstone (2001) and many works have shown that when n, the number of data points,
goes to infinity, the behavior of this estimator is fairly well understood.
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Based on the above analysis, we propose the following solution:

1. By using a pre-trained deep neural network, after the feed-forward process, the feature
vectors have little irrelevant noise remaining and preserve all useful factors of variation.
So we can make sure that feature vectors lie on a noiseless manifold embedded in high
dimensional feature space.

2. By introducing some picture augmentation methods, we will generate considerable amount
of similar pictures(also classified as the same class with high probability by deep neural
network), then we will get a sufficiently large cluster of feature vectors that lie close to a
local tangent d-dimensional hyperplane of the noiseless manifold.

3. Finally we apply the original SVD on this feature vector cluster which lies close to noiseless
local tangent d-dimensional hyperplane and give a precise estimation of the local dimension
of the manifold.

Following paragraphs give a more formal description of our solution to computing the dimension.

Let Xn = {xi}ni=1 be the set of image data points we generate, x1 is the original image classified
by the neural network as a specific class with high probability,e.g P (x1) > 0.99. By using augmen-
tation methods, we generate n − 1 augmented images and keep all augmented images classified to
be in the same class with high probability. P (xi) > 0.99, i = 2 · · ·n.

Let λ = µ+ η be augmentation information we have introduced to the image. The λ can be divided
into two components: some irrelevant noise(η) combined with useful factors of variance(µ), let f
be the underlying network feature extract function. After feed-forward process in a specific layer,
n feature vectors in RD are denoted as a D × n matrix AD,n. For simplicity, we denote AD,n as
An = {ai}ni=1. P is the local approximate hyperplane of manifoldM.

In the real image space, we have X̃n = {xi + σi}ni=1. But after feed-forward process in the feature
space, the noise η is reduced to very small scale and we got An = {ai}ni=1 ≈ {f(ai) + f(µi)}ni=1.
Therefore activation vectors are concentrated around a noiseless local tangent hyperplane P of man-
ifoldM.

To realize the goal of estimating local tangent d = dimP of manifoldM given X̃n and correspond-
ing AD,n in a specific layer, we adopt the standard approach to compute the SVD, with the singular
values (denoted as σ) yielding j. With high probability the first j singular values are significant, so
that σ1, . . . , σj � σj+1, . . . , σD, we then take the reasonable estimation that d = j.

3.2 ESTIMATE THE MANIFOLD DIMENSION OF DIFFERENT LAYERS

Fully connected layers. For fully connected layers, the size of AD×n would be (D,n). Then we
apply SVD on AD×n to get its singular value array σ that sorted in descending order. Let σi denotes
the i-th singular value in the array, if there exist some j > 0, where σj/σj+1 > θ, in which θ is a
very big number, then we claim that j is an estimation of the tangent hyperplane P’s dimension, so
is the estimation of the local dimension of manifoldM of corresponding layer and original images.
If the j does not exist, then the estimation of the local dimension would be up to the dimension of
the whole activation space(see Section 5).

Convolutional layers. We denote D = H ×W ×C as the activation space dimension of a specific
layer with whose H is feature map’s height, W is the width of feature map , C is the number of
channel. For data cluster with size n and the ith feature map with height H and width W in the con-
volutional layer we got a corresponding matrix A(H×W ),i,n and calculate dimension respectively.

We define the estimated dimension by randomly picking k(k ≥ 1) feature maps and calculating
their dimension one by one and sum the dimensions up. Concatenated dimension: concatenate the k
picked feature maps and calculate the concatenated matrix’s dimension. Original dimension: when
we pick all the feature maps in a layer and calculate the concatenated dimension, this concatenated
dimension is defined as the original dimension. Figure 2 is a illustration of these concepts.

We should note that fully-connected layers’ are 1 (C = 1), so in fully-connected layer, the estimated
dimension = concatenated dimension = original dimension. We will refer to either of it for the same
meaning. When we refer to a layer’s estimated dimension (or estimated dimension of a layer), we
mean we choose all feature maps and do calculation (k = C).
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Figure 2: How to compute the estimated dimension and concatenated dimension. bi denotes the
index of i-th randomly picked feature map. 1 ≤ i ≤ k. The matrix in the bottom consists of all the
A(H×W ),bi,n as submatrices.

4 EXPERIMENTAL SETUP

Network. VGG19 was proposed by Simonyan & Zisserman (2014), it was proved to have excellent
performance in the ILSVRC competition, whose pre-trained model are still wildly used in many
areas. In this paper, we use pre-trained VGG19 model to conduct our experiment, and give every
layer a unique name so that they can be referred to directly. Table 2 in Appendix gives the name of
every layer and its corresponding activation space dimension.

Image augmentation. We choose three categories in ImageNet dataset: Persian Cat (n02123394),
Container Ship (n03095699) and Volcano (n09472597) (See Figure 11 in Appendix). Then for each
category, we select three typical images with high probability as the original image, because the
network firmly believe that they are in the category, their activation vectors can be considered as a
data point on the same manifold representing for Persian Cat.

We use three augmentation methods to generate similar images which form a data point cluster, they
are: 1) Cropping: randomly cut out a strip of few pixels from every edge; 2) Gaussian noise: add
Gaussian noise (mean = 0.0, var = 0.01) to every single pixel; 3) Rotation: rotate the image by a
random degree in±10%. The exaggerated output images of these three methods are shown in Figure
3.

As these augmentation methods only apply small but various changes on the original image X (also
keep high probability P (x) > 0.99), activation vectors A will concentrate around the activation
vector a0 of x0, which can be considered near a local tangent hyperplane P of the manifoldM.

(a) Original image. (b) Cropping. (c) Gaussian noise. (d) Rotation.

Figure 3: Cropping, Gaussian noise, rotation on an original image. We exaggerate the methods to
show the change.

5 SUPPORTED EXPERIMENTS

We have tried three Persian cat images, the dimension is within a small range. For other categories,
we also tried three high-probability images for ship and three high-probability images for volcano.
The dimension of vocano is slightly higher than that of cat, and the dimension of cat is slightly higher
than ship for the same layer. All the three category show the same trend on dimension through the
layers. Therefore, we will show the details mainly on a typical Persian cat as shown in Figure 3 (a).
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Estimated dimension for a fully connected layer or a single feature map. We apply SVD on
AD×n in fully connected layers and then plot the singular values in log10 scale ( Figure 4). If
we specify a certain layer, we can find dramatic drop at j for all the three augmenting methods:
σj/σj+1 > θ = 105. So we can claim that for the local tangent hyperplane P on manifoldM, the
dimension is d = j with high probability as long as we use enough samples (See Section 3.1). This
“dramatic drop” also appears for a single feature map. The only exception is on the fc8 layer, there
is no “dramatic drop”, inferring that the hyperplane P spans the whole activation space. d = 1000
in fc8.

Rule 1. The estimated dimension of the local tangent hyperplane of the manifold for a fully con-
nected layer or a single feature map can be determined by a dramatic drop along the singular values.

(a) Cropping.

(b) Gaussian noise.

(c) Rotation.

Figure 4: “Drops” for fully connected layers.
fc6 and fc7 have dramatic drops.

(a) Estimated dimension = 105 + 146 = 251
= concatenated dimension.

(b) Estimated dimension = 120 + 128 + 50 =
298 = concatenated dimension.

(c) Estimated dimension = 41 + 95 + 117 +
121 + 65 = 439 = concatenated dimension.

Figure 5: Estimated dimension and concatenated
dimension for Conv5 1 , k ∈ {2, 3, 5}.
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Influence on the estimated dimension by the data size. Figure 6 shows the estimated dimen-
sion versus the augmentation data size. The dimension grows slowly with the growth of the data
size. Although the augmentation data scale influences the estimated dimension, the growth on the
dimension along with the data size is fairly small. The dimension only grows by less than 3% as
the data size triples. Thus, it is reasonable to use a fairly small data set to estimate the dimension.
More importantly, as shown in Figure 7, such rule can also be generalized to calculate the estimated
dimension of the convolutional layers.

Rule 2. We can determine the local tangent hyperplane’s estimated dimension of the manifold in a
layer (fully connected or convolution) using a fairly small data cluster size, for example, 8k.

Figure 6: Estimated dimension versus data cluster size in fully connected layer.

Figure 7: Estimated dimension versus data
size in Conv5 4 layer.

Figure 8: Estimated dimension and original
dimension for maxpooling5.

Estimated dimension and concatenated/original dimension. We randomly pick k ∈ {2, 3, 5, 10}
feature maps in layer Conv5 1 and calculate the estimated dimension as well as concatenated di-
mension. The result of k ∈ {2, 3, 5} are as shown in Figure 5. For the result of k = 10, see Table 3
in Appendix. The estimated dimension is very close to the corresponding concatenated dimension.
Thus, we can use the estimated dimension to approximate the concatenated dimension.

We then pick all feature maps in maxpooling5, and calculate the estimated dimension, original
dimension. Figure 8 shows that start from 8k of the data size, the estimated dimension is close to the
original dimension. Thus, we can use a small amount of 8000 images to approximate the original
dimension using the estimated dimension.

When the data cluster size is insufficient, assuming the local tangent hyperplane of the manifold is
d-dimensional, the result will be strictly restricted by the number of input images n when n < d. So
that the concatenated dimension or original dimension we calculate would be almost equal to n for
small n, while estimated dimension is a summation which can approximate d.

Rule 3. The original dimension of the local tangent hyperplane can be approximated by the estimated
dimension using a fairly small size of dataset, for example 8000.
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6 DIMENSIONS OF THE DEEP MANIFOLDS

For each of the three categories, Persian Cat (n02123394), Container Ship (n03095699) and Volcano
(n09472597) in ImageNet, we randomly choose three images of high probability and determine the
estimated dimensions based on the three rules drawn in Section 5.

Dimensions for Conv5 and fully connected layers. For Conv5 and fully connected layers, we sum-
marize the average of the estimated dimensions in Table 1 and Figure 9. The estimated dimension
gradually declines from Conv5 1 to fc8. For fc6 and fc7, the activations lie in a low-dimension man-
ifold embedded in the 4096-dimension space. For fc8, the manifold’s dimension is exactly 1000. It
makes sense as fc8 is directly linked to the final classification prediction, it is in full rank to achieve
a higher performance. The dimensions of the three categories are close to each other and decline
quickly inside the four convolutional layers and the last maxpooling layer.

Table 1: Dimensions of Conv5 and fully connected layers.

5 1 5 2 5 3 5 4 pool5 fc6 fc7 fc8
cat 59946 51347 47958 29834 8358 1580 1506 1000

ship 58329 44968 39781 25267 8851 1577 1691 1000
volcano 62540 53136 51939 30862 10816 2163 1887 1000

Figure 9: Dimension of Conv5 and fc layers. Figure 10: Dimension of all maxpooling layers.

Dimensions for maxpooling layers. We illustrate the average of the estimated dimensions in Figure
10 all maxpooling layers. The dimensions of the three categories coincide with each other and
decline quickly for deep pooling layers.

7 CONCLUSIONS

Through extensive experiments, we found that there exists a dramatic drop for the singular values
of the fully connected layers or a single feature map of the convolutional layer, and the dimension
of the concatenated feature vector almost equals the summation of the dimension of each feature
map for several feature maps randomly picked. Based on the interesting observations we obtained,
we developed an efficient and effective SVD based method to estimate the local dimension of deep
manifolds in the VGG19 neural network. We found that the dimensions are close for different
images of the same category and even images of different categories, and the dimension declines
quickly along the convolutional layers and fully connected layers. Our results supports the low-
dimensional manifold hypothesis for deep networks, and our exploration helps unveiling the inner
organization of deep networks. Our work will also inspire further possibility of observing every
feature map separately for the dimension of convolutional layers, rather than directly working on the
whole activation feature maps, which is costly or even impossible for the current normal computing
power.
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APPENDIX

Figure 11: More original images for cat, ship and volcano. Cropped to make them aligned.

Table 2: VGG19 network architecture(dimension of activation space = size of feature maps × num-
ber of channels).

Layer Size of
feature maps

Number of
channels

Dimension of
activation space

conv1 (1 1, 1 2) 224×224 64 3211264
maxpooling1 112×112 64 802816

conv2 (2 1, 2 2) 112×112 128 1605632
maxpooling2 56×56 128 401408

conv3 (3 1, 3 2, 3 3, 3 4) 56×56 256 802816
maxpooling3 28×28 256 200704

conv4 (4 1, 4 2, 4 3, 4 4) 28×28 512 401408
maxpooling4 14×14 512 100352

conv5 (5 1, 5 2, 5 3, 5 4) 14×14 512 100352
maxpooling5 7×7 512 25088

fc6 4096 1 4096
fc7 4096 1 4096
fc8 1000 1 1000

Table 3: Estimated dimension and concatenated dimension, in the layer Conv5 1, when k = 10.
Dim.i (i ∈ 0, 1, 2, ..., 9) is the estimated dimension of the i-th randomly picked feature maps.
Dim.estim =

∑9
i=0 Dim.i. Dim.concat is the concatenated dimension of the k feature maps.

Sample1 Sample2 Sample3
Dim.0 124 131 158
Dim.1 112 163 80
Dim.2 141 126 62
Dim.3 128 95 120
Dim.4 141 156 61
Dim.5 78 129 155
Dim.6 96 152 112
Dim.7 113 103 116
Dim.8 123 62 118
Dim.9 157 120 128
Dim.estim 1213 1237 1110
Dim.concat 1213 1237 1110

10


	Introduction
	Related Work
	Manifold Dimension Characterization
	determine dimension by svd
	estimate the manifold dimension of different layers

	Experimental Setup
	Supported Experiments
	Dimensions of the Deep Manifolds
	Conclusions

