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Abstract

The black-box nature of deep learning models001
in NLP hinders their widespread application.002
The research focus has shifted to Hierarchical003
Attribution (HA) for its ability to model fea-004
ture interactions. Recent works model non-005
contiguous combinations with a time-costly006
greedy search in Euclidean spaces, neglecting007
underlying linguistic information in feature rep-008
resentations. In this work, we introduce a novel009
method, namely Poincare Explanation (PE), for010
modeling feature interactions with hyperbolic011
spaces in a time efficient manner. Specifically,012
we take building text hierarchies as finding013
spanning trees in hyperbolic spaces. First we014
project the embeddings into hyperbolic spaces015
to elicit inherit semantic and syntax hierarchi-016
cal structures. Then we propose a simple yet017
effective strategy to calculate Shapley score. Fi-018
nally we build the the hierarchy with proving019
the constructing process in the projected space020
could be viewed as building a minimum span-021
ning tree and introduce a time efficient building022
algorithm. Experimental results demonstrate023
the effectiveness of our approach.024

1 Introduction025

Deep learning models have been ubiquitous in Nat-026

ural Language Processing (NLP) areas accompa-027

nied by the explosion of the parameters, leading028

to increased opaqueness. Consequently, a series of029

interpretability studies have emerged (Abnar and030

Zuidema, 2020; Geva et al., 2021; He et al., 2022),031

among them feature attribution methods stand out032

owing to fidelity and loyalty axioms and straight-033

forward applicability (Guidotti et al., 2018).034

Previous feature-based works are limited to sin-035

gle words or phrases (Miglani et al., 2020). How-036

ever, Mardaoui and Garreau (2021) point out that037

LIME’s (Ribeiro et al., 2016) performance on sim-038

ple models is not plausible 1. To model feature039

interactions, Hierarchical Attribution (HA) (Chen040

1A figure illustration is provided in Appendix E.
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Figure 1: Pearson correlation ρ results from Jin et al.
(2020) with BERT and LSTM on SST-2 and Yelp
datasets. A higher correlation coefficient indicates a
stronger ability of the method to identify important
words.

et al., 2020; Ju et al., 2023) has been introduced, 041

with a attribution-then-cluster stage in which con- 042

structs feature interaction process by distributing 043

text group scores at different levels2. From bottom 044

to the up, HA categorizes all words into different 045

clusters, ending with a tree structure. 046

However, building feature hierarchies is not a 047

trivial thing. Existing methods have three following 048

problems. P-1: Detecting contiguous text spans to 049

replace all possible interactions (Singh et al., 2019; 050

Chen et al., 2020). Only using spans might lose 051

long-range dependencies in text (Vaswani et al., 052

2017). For example, in the positive example “Even 053

in moments of sorrow, certain memories can evoke 054

happiness”, (“Even”, “sorrow”) is vital and non- 055

adjacent. P-2: Current algorithms estimating the 056

importance of feature combinations are accompa- 057

nied by lengthy optimization processes (Ju et al., 058

2023; Chen et al., 2020). For example, HE (Ju 059

et al., 2023) estimates the importance of words 060

using LIME algorithm and then enumerates word 061

combinations to construct the hierarchy, with a cu- 062

2A vivid HA example is provided in Appendix D.
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Figure 2: Left: The projection illustration for positive
example “It was an interesting but somewhat draggy
movie.” The centre represents the prototype for the
positive label. Right: A negative example “It was a
draggy but somewhat interesting movie.” The center
point stands for the negative label.

bic time complexity3. ASIV (Lu et al., 2023) uses063

directional Shapley value to model the direction064

of feature interactions, while estimating Shapley065

value requires exponential time. P-3: Previous066

methods cannot model the linguistic information067

including syntax and semantic information. Syntax068

and semantics can help to construct a hierarchical069

tree. For syntax, Jin et al. (2020) build hierarchies070

directly on Dependency Parsing Trees (DPT) and071

compute Pearson Correlation (i.e.ρ). The results072

in Figure 1 demonstrate syntax could contribute073

to building explainable hierarchies by reaching a074

higher correlation. For semantic, we take Figure 2075

as an example, the hierarchy in hyperbolic space076

has already achieved preliminary interpretability077

with the proximity corresponding the polarity.078

As the input text length continues to in-079

crease, efficiently modeling the interaction of non-080

contiguous features has become a key challenge081

in promoting HA. Building a hierarchical attribu-082

tion tree based on the input text is essentially a083

hierarchical clustering problem. The definition is084

as follows: given words and their pairwise simi-085

larities, the goal is to construct a hierarchy over086

clusters (word groups). PE approaches this prob-087

lem by following three steps. First, to model lin-088

guistic hierarchical information, we project word089

embeddings into hyperbolic spaces to uncover hid-090

den semantics and syntax structures. Next, inspired091

by cooperative game theory (Owen, 2013), we re-092

gard words as players and clusters as coalitions093

and introduce a simple yet effective strategy to es-094

timate the Shapley score contribution. Finally we095

calculate pairwise similarities and propose an algo-096

3For convenience of comparison, we ignore the time taken
by linear regression in LIME algorithm and detailed discussion
is in Section 6.

rithm that conceptualizes the bottom-up clustering 097

process as generating a minimum spanning tree. 098

Our contributions are summarized as follows: 099

• We propose a method, PE, using hyperbolic 100

geometry for generating hierarchical expla- 101

nations, revealing the feature interaction pro- 102

cess. 103

• PE introduces a fast algorithm for generating 104

hierarchical attribution trees that model non- 105

contiguous feature interactions. 106

• We evaluate the proposed method on three 107

datasets with BERT (Devlin et al., 2019), and 108

the results demonstrate the effectiveness. 109

2 Related Work 110

Feature importance explanation methods mainly 111

assign attribution scores to features (Qiang et al., 112

2022; Ferrando et al., 2022; Modarressi et al., 113

2023). Methods can be classified into two cate- 114

gories: single-feature explanation type and multi- 115

feature explanation type. 116

2.1 Single-Feature Explanation 117

Earlier researches focus on single feature attribu- 118

tion (Ribeiro et al., 2016; Sundararajan et al., 2017; 119

Kokalj et al., 2021). For example, LIME (Ribeiro 120

et al., 2016) aims to fit the local area of the model 121

by linear regression with sampled data points end- 122

ing with linear weights as attribution scores. Gra- 123

dient&Input (Grad×Inp) (Shrikumar et al., 2017b) 124

combines the gradient norm with Shapley value 125

(Shapley et al., 1953). Deeplift (Shrikumar et al., 126

2017a) depends on activation difference to calcu- 127

late attribution scores. IG (Sundararajan et al., 128

2017; Sanyal and Ren, 2021; Enguehard, 2023) 129

uses path integral to compute the contribution of 130

the single feature to the output. It is noticeable that 131

IG is the unique path method to satisfy the com- 132

pleteness and symmetry-preserving axioms. There 133

exist several variants of IG. DIG (Sanyal and Ren, 134

2021) regards similar words as interpolation points 135

to estimate the integrated gradients value. SIG (En- 136

guehard, 2023) computes the importance of each 137

word in a sentence while keeping all other words 138

fixed. However, scoring individual features is in- 139

compatible with interactions between features. 140

2.2 Multi-Feature Explanation 141

Multi-feature explanation methods aim to model 142

feature interactions in deep learning architectures. 143
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For example, Dhamdhere et al. (2020) proposes144

a variant of Shapley value to measure the inter-145

actions. Zhang et al. (2021a) defines the multi-146

variant Shapley value to analyze interactions be-147

tween two sets of players. Enouen and Liu (2022)148

proposes a sparse interaction additive network to149

select feature groups. Tsang et al. (2020) pro-150

poses an Archipelago framework to measure fea-151

ture attribution and interaction through ArchAt-152

tribute and ArchDetect. Lu et al. (2023) proposes153

ASIV to model asymmetric higher-order feature154

interactions. To illustrate the feature interplay pro-155

cess completely, the explanation of feature inter-156

action could be articulated within a hierarchical157

framework. HEDEG (Chen et al., 2020) designs a158

top-down model-agnostic hierarchical explanation159

method, with neglecting non-contiguous interac-160

tions. Ju et al. (2023) addresses the connecting161

rule limitation in HEDGE, and proposes a greedy162

algorithm , HE, for generating hierarchical expla-163

nations, which is time-costly. And they all neglect164

linguistic information including syntax and seman-165

tics.166

3 Background167

We first give a review of hyperbolic geometry.168

Poincare ball A common representation model169

in hyperbolic space is the Poincare ball, denoted170

as (Bmc , gBx), where c is a constant greater than 0.171

Bmc = {x ∈ Rm | c ∥x∥2 < 1} is a Riemannian172

manifold, and gBx = (λc
x)

2Im is its metric tensor,173

λc
x = 2/(1− c ∥x∥2) is the conformal factor and174

c is the negative curvature of the hyperbolic space.175

PE uses the standard Poincare ball with c = 1. The176

distance for x,y ∈ Bmc is:177

178

dB(x,y) = 2 tanh−1 ∥−x⊕c y∥, (1)179

where ⊕c denotes the Möbius addition. We use ⊗c180

to denote the Möbius matrix multiplication. The181

Möbius addition for x, y ∈ Rm is defined as182

(Demirel, 2013):183

x⊕cy =
(1 + 2⟨x,y⟩+ ∥y∥2)x+ (1− ∥x∥2)y

1 + 2⟨x,y⟩+ ∥x∥2∥y∥2
.

(2)184

Given a linear projection A : Rm → Rp and185

x ∈ Bmc , then the Möbius matrix multiplicationis186

defined as (Demirel, 2013):187

A⊗c x = tanh(
∥Ax∥
∥x∥

tanh−1(∥x∥)) Ax

∥Ax∥
.

(3)
188

Cooperative Game Theory We use N to denote 189

a set of players (i.e. token set). A game is a pair 190

Γ = (N, v) and v : 2N → R is the characteristic 191

function. A coalition is any subset of N . In a 192

cooperative game, players can form coalitions, and 193

each coalition S ⊆ N has a value v(S). 194

4 Methodology 195

This section provides a detailed introduction to the 196

three parts of PE. First, we need to score each fea- 197

ture; then, based on these scores, we construct a 198

hierarchy. In Section 4.1, we consider semantic 199

and syntax factors. Besides we facilitate feature 200

Shapley contribution calculation in Section 4.2. In 201

Section 4.3, we combine these factors to score each 202

feature and propose a fast algorithm for construct- 203

ing the hierarchy. 204

4.1 Poincare Projection 205

In this paper, we choose Probing (Hewitt and Man- 206

ning, 2019) to recover information from embed- 207

dings. Namely, we train two matrices to project 208

the Euclidean embeddings to hyperbolic spaces. 209

For a classification task, given a sequence Xi = 210

{xj}1≤j≤n and a trained model f , n is the se- 211

quence length. ŷ represents the predicted label, 212

and f(·) represents the model’s output probability 213

for the predicted label. 214

4.1.1 Label Aware Semantic Probing 215

In this subsection, we extract the semantics from 216

the embeddings through probing. We project the 217

embeddings into a hyperbolic space using a trans- 218

formation matrix. In this space, the distribution of 219

examples with different semantics will change ac- 220

cording to their semantic variations. First, we feed 221

the sequence Xi into a pre-trained language model 222

to obtain the contextualized representations Ei ∈ 223

Rn×din , with din denotes the output dim. Next, 224

the sentence embedding si ∈ Rdin is obtained 225

by the hidden representations of the special tag 226

(e.g.[CLS]), which is the first token of the sequence 227

and used for classification tasks. Our probing ma- 228

trix consists of two types: Ase,Asy ∈ Rdin×dout 229

(dout denotes the projection dim) for probing label- 230

aware semantic information and syntax informa- 231

tion. For semantics, we can obtain the projected 232

representation: 233

ssei = Ase ⊗c si. (4) 234

Also we can obtain the token presentation: 235

esej = Ase ⊗c ej . (5) 236
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To train the probing matrices, we draw inspiration237

from prototype networks (Snell et al., 2017), as-238

suming that there exist k centroids representing239

labels in the hyperbolic space. The closer a point240

is to a centroid, the higher the probability that it241

belongs to that category. Specifically, instead of242

using mean pooling to calculate the prototypes, we243

directly initialize the prototype embeddings in hy-244

perbolic space, denoted as ω = {ck} (ck is the245

k-th label centroid). Given a distance dB, the proto-246

types produce a distribution over classes for a point247

x based on a softmax over distances to prototypes248

in the embedding space:249

P(y = k | ω) =
exp(−dB(ssei , ck))∑
k′ exp(−dB(ssei , ck′))

. (6)250

We minimize the negative log-probability J(ω) =251

−logP(y = k | ω) of the true class k via Rieman-252

nianAdam (Kochurov et al., 2017).253

4.1.2 Syntax Probing254

Similarly, in this subsection, we obtain syntax255

through probing. The difference is that for syn-256

tax, we focus on tokens. In the projected hyper-257

bolic space, the distance of the token embeddings258

from the origin and the distance between tokens259

correspond to the depth of the tokens and their dis-260

tance in the DPT respectively. We project word261

embeddings first:262

esyj = Asy ⊗c ej , (7)263

where ej = Ej,:. How to parameterize a depen-264

dency tree from dense embeddings is non-trivial.265

Following Hewitt and Manning (2019), we define266

two metrics to measure the deviation from the stan-267

dard: using the distance between two words in268

embedding space to represent the distance of word269

nodes in the dependency tree, and using the dis-270

tance of a word from the origin to represent the271

depth of the word node. We use the following two272

loss functions:273

Ldis =
1

n2

∑
j,j′∈[n]

|dDPT (xj , xj′)− dB(e
sy
j , esyj′ )

2|,

(8)274275

Ldep =
1

n

∑
j∈[n]

|dDPT (xj)− dB(e
sy
j ,0)2|. (9)276

where dDPT (xj , xj′) and dDPT (xj) represent the277

distance of words and the depth of words respec-278

tively. And dB(e
sy
j ,0) denotes the distance be-279

tween esyj and the origin in the projected hyperbolic280

space.281

4.2 Shapley Contribution Estimation 282

According to cooperative game theory, we regard 283

the input as a set of players N , where each element 284

of the set corresponds to a word, and the process 285

of hierarchical clustering is viewed as a game, with 286

clusters containing more than two words consid- 287

ered a coalition. Following Zhang et al. (2021b), 288

we define the characteristic function as v = f . 289

Given a game Γ = (N, v), a fair payment scheme 290

rewards each player according to its contribution. 291

The Shapley value removes the dependence on or- 292

dering by taking the average over all possible or- 293

derings for fairness. The Shapley value of player j 294

in a game is as follows: 295

ϕj =
1

|N |!
∑

π∈Π(N)

[v(Qπ
j ∪ {j})− v(Qπ

j )], (10) 296

where Π(N) is the set of all permutations of the 297

players, Qπ
j is the set of players preceding player 298

j (i.e. token j) in permutation π. v(S) is the value 299

that the coalition of players S ⊆ N can achieve 300

together. In practical, Monte Carlo sampling is 301

used: 302

ϕ̂j =
1

R

R∑
r=1

v(Qπr
j ∪ {j})− v(Qπr

j ) (11) 303

where πr denotes the r-th permutation in Π(N). 304

Unfortunately, Monte Carlo sampling methods can 305

exhibit slow convergence (Mitchell et al., 2022). 306

It is noticeable that attention mechanism of 307

Transformer is permutation invariant (Vaswani 308

et al., 2017; Xilong et al., 2023), and the sinusoidal 309

position embedding is only related to the specific 310

position, not to the word. Moreover, after being 311

trained with a Language Modeling task, the model 312

has the ability to fill in the blanks based on con- 313

text. Therefore, we assume that it is unnecessary 314

to enumerate exponential combinations of words 315

and the contribution of preceding permutation set 316

(e.g.π(< r)) is included in larger subsequent per- 317

mutation sets (e.g.π(r)). Therefore, we directly 318

calculate contribution as follows: 319

ϕ̃j = v(N)− v(N \ {j})
= f(X)− f(X \ {xj})

(12) 320

where N \ {j} denotes the player set excluding 321

player j and X \ {xj} denotes the input excluding 322

token xj . 323
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Figure 3: Three different binary tree types rooted from
j ∨ j′ ∨ u.

4.3 Minimum Spanning Tree324

Our goal is to identify a hierarchy tree T that aligns325

with semantic similarities, syntax similarities, and326

the contributions of individual elements. Building327

upon Dasgupta (2016), we use the following cost:328

CD(T ; e) =
∑

j,j′∈[n]

ejj′ |leaves(T [j ∨ j′])|, (13)329

where ej,j′ denotes the pairwise similarities,330

leaves(T [j ∨ j′]) is leaves of T [j ∨ j′], which is331

the subtree rooted at j∨ j′, j∨ j′ is the parent node332

of j and j′ as shown in Figure 3. Due to the unfold-333

ing dilemma of leaves(T [i∨ j]) process, we adopt334

following expansion by Wang and Wang (2018):335

CD(T ; e) =
∑

jj′u∈[n]

[ejj′ + eju + ej′u

− ejj′u(T )] + 2
∑
jj′

ejj′ ,
(14)336

where337

ejj′u(T ) =ejj′1[{j, j′ | u}] + eju1[{j, u | j′}]
+ ej′u1[{j′, u | j}],

(15)
338

where {j, j′ | u} means the j ∨ j′ is the descendant339

of j ∨ j′ ∨ u, illustrated in Figure 3. The same for340

{j, u | j′} and {j′, u | j}.341

We aim to find the binary tree T ∗:342

T ∗ = argmin
all binary trees T

CD(T ; e). (16)343

Directly optimizing this cost presents a combina-344

torial optimization problem. We introduce the fol-345

lowing decomposition:346

ejj′ =− ϕ̃(j ∨ j′) + α1dB(e
se
j , esej′ )

+
1

2
α2(dB(e

sy
j ,0) + dB(e

sy
j′ ,0)),

(17)347

where α1,α2 ∈ [0, 1].348

Under that we prove the optimal tree T ∗ is a 349

like-minimum spanning tree of Equation14.4 The 350

proof can be found in Appendix A. Ultimately we 351

introduce the following decoding algorithm:

Algorithm 1 Building Algorithm

Input: Label hyperbolic embeddings Ese =
{Ese

1 , · · · ,Ese
n }, syntax hyperbolic embed-

dings Esy = {Esy
1 , · · · ,Esy

n }
Output: Binary tree T with n leafs
1: T ← ({xj} : xj ∈ X)
2: Initialize a PriorityQueue Υ
3: Υ← {(xj , xj′) : pairs sorted by ejj′}
4: while Υ ̸= ∅ do
5: xj , xj′ ← Υ.front, Υ.pop
6: if xj and xj′ not in T then
7: T ← T ∪ {xj ∨ xj′}
8: Υ.push(xi ∨ xj)
9: end if

10: end while
352

5 Experiments 353

5.1 Experimental Setups 354

Datasets To evaluate the effectiveness of PE, we 355

perform comprehensive experiments on three repre- 356

sentative text classification datasets: “Rotten Toma- 357

toes” (Pang and Lee, 2005), “TREC” (Li and Roth, 358

2002), “Yelp” (Zhang et al., 2015). Detailed statis- 359

tics are in Table 1.

Datasets Train/Dev/Test C L
Rotten Tomatoes 10K/2K/2K 2 64
TREC 5000/452/500 6 64
Yelp 10K/2K/1K 2 256

Table 1: Statistics of three datasets. C: number of
classes, L: average text length

360

Metrics Following prior literature (DeYoung 361

et al., 2020), we use AOPC metric, which is the 362

average difference of the change in predicted class 363

probability before and after removing top K words. 364

AOPC =
1

n

∑
K

(f(xi)− f(x̃Ki )) (18) 365

Higher is better. And we evaluate two different 366

strategies: del and pad. Concretely, We assign 367

4The difference from the original minimum spanning tree
is located in the last paragraph of Appendix A.
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values to words through the following formula:368

scorei = ϕ̃(j)− β1dB(e
se
j , ck)− β2dB(e

sy
j ,0),

(19)369

where ck is the prototype of predicted label k in370

the semantic hyperbolic space, 0 is the origin in371

the syntactic hyperbolic space, β1, β2 ∈ [0, 1].372

Infrastructures All experiments are processed on373

one 15 core 2.6GHz CPU (Intel(R) Xeon(R) Plat-374

inum 8358P) and one RTX3090 GPU.375

Baselines We compare PE with three hierarchical376

attribution methods: HEDGE (Chen et al., 2020),377

HELIME , HELOO (Ju et al., 2023) and three fea-378

ture interaction methods: SOC (Jin et al., 2020),379

Bivariate Shapley (BS)(Masoomi et al., 2022) and380

ASIV (Lu et al., 2023).381

5.2 General Experimental Results382

We first evaluate our method using the AOPC met-383

ric across three datasets, as shown in Tables 2 and384

3. Firstly, our method, PE, consistently surpasses385

the baseline in binary and multiclass tasks for both386

short and long texts. For instance, PE outperforms387

HELOO by 0.235 in Table 2 and by 0.067 in Table388

3 of AOPCdel,20%, Rotten Tomatoes / Yelp set-389

ting. Second, in comparison to recent works such390

as SOC and HELOO, our method’s primary advan-391

tage lies in its computation efficiency. We conduct392

an analysis comparing the average time of various393

approaches to construct HA trees. The results in394

Table 3 indicate that PE substantially outperforms395

its counterparts in terms of speed, being twice as396

fast as SOC and six times faster than HELIME .397

5.3 Ablation Study398

We conduct ablation experiments with three modi-399

fied baselines from PE: PE w/o prob corresponding400

ϕ̃(i) = 0, PE w/o semantic corresponding β1 = 0401

and PE w/o syntax corresponding β2 = 0.402

As shown in Figure 4, both PE and variants out-403

perform w/o prob baselines, demonstrating our ap-404

proach’s effectiveness in directly calculating con-405

tributions in Equation 12. Moreover, we observe406

that both in del and pad settings, the utility of esti-407

mating contribution is more striking than the other408

two components in Equation 19. The reason may409

be that context has a greater impact on output than410

single semantics and syntax. It is noticeable that411

syntax slightly outperforms semantics, we hypoth-412

esis that the reason might be related to the nature413

of the tasks in the TREC dataset, as the labels tend414
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Figure 4: Evaluation results of Ablation Study.

to associate with syntactic structures (Li and Roth, 415

2002). 416

5.4 Case Study 417

For qualitative analysis, we present two typical ex- 418

amples from the Rotten Tomatoes dataset to illus- 419

trate the role of PE in modeling the interaction of 420

discontinuous features and we show more examples 421

in Appendix B. In the first example, we compare 422

the results of PE and HELOO in interpreting BERT 423

model. Figure 5 provides two hierarchical expla- 424

nation examples for a positive and negative review, 425

each generated by PE and HELOO respectively. In 426

Figure 5(a), it can be seen that PE accurately cap- 427

tures the combination of words with positive sen- 428

timent polarity: delightful, out, and humor, and 429

captures the key combination of out and humor at 430

step 1. Additionally, this example includes a word 431

with negative polarity: stereotypes, where it can 432

be observed that HELOO captures its combination 433

with in and delightful, missing the combination 434

with out and humor. In Figure 5(b), PE captures 435

the combination of slightest and wit in the first 436

phase and complements it with the combination of 437

lacking at step 2. HE captures the combination of 438

combination and animation at step 1, and it adds 439

lacking at step 2. We can infer that PE is able to 440

capture the feature combination more related to the 441

label at a shallow level, which demonstrates the 442

effectiveness of our method. 443

Additionally, to more vividly demonstrate the 444

role of semantics and syntax in building hierar- 445
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Datasets
Methods

Rotten Tomatoes TREC
AOPCdel AOPCpad AOPCdel AOPCpad

10% 20% Avg 10% 20% Avg 10% 20% Avg 10% 20% Avg
SOC 0.102 0.117 0.110±0.003 0.149 0.153 0.151±0.002 0.074 0.087 0.081±0.001 0.097 0.099 0.098±0.001

HEDGE 0.087 0.134 0.111±0.011 0.084 0.194 0.139±0.009 0.068 0.079 0.074±0.004 0.095 0.101 0.098±0.008

HELIME 0.075 0.195 0.135±0.005 0.076 0.193 0.135±0.009 0.063 0.072 0.068±0.003 0.059 0.066 0.063±0.007

HELOO 0.062 0.117 0.090±0.004 0.061 0.119 0.090±0.004 0.081 0.092 0.087±0.001 0.075 0.086 0.081±0.005

BS 0.109 0.121 0.116±0.013 0.103 0.185 0.144±0.009 0.099 0.104 0.102±0.003 0.097 0.105 0.101±0.005

ASIV 0.101 0.113 0.107±0.005 0.098 0.181 0.140±0.008 0.093 0.106 0.199±0.006 0.092 0.113 0.103±0.003

PE 0.304 0.352 0.328±0.011 0.364 0.313 0.339±0.003 0.214 0.220 0.217±0.007 0.183 0.174 0.179±0.004

Table 2: AOPC comparison results of PE with baselines on the Rotten Tomatoes and TREC dataset.

Datasets Yelp

Methods
AOPCdel AOPCpad t

10% 20% 10% 20%
HEDGE 0.077 0.084 0.074 0.089 70.312±0.074

HELIME 0.056 0.075 0.065 0.076 20.383±0.054

HELOO 0.040 0.071 0.059 0.064 16.201±0.079

PE 0.110 0.138 0.112 0.143 2.230±0.042

Table 3: AOPC and time efficiency comparision results
of PE and baselines on the Yelp dataset. t denotes the
average time of building HA tree per input in seconds.

chical explanations, we illustrate with two exam-446

ples from the TREC dataset. As shown in Figure447

6(a), when α2 = 0.5, at the level L3, PE combines448

center, temperature, the, earth together. However,449

when α2 = 0, PE combines the, temperature, the,450

earth together. In the dependency parse tree of the451

sentence what is the temperature of the center of452

the earth, the distance to root is greater than center.453

This indicates that incorporating syntactic infor-454

mation is meaningful for constructing convincing455

hierarchical explanations.456

6 Analysis of Time Complexity457

In this section, we delve into the time complexity458

associated with HA methods, which can be divided459

into two parts: the complexity of generating attribu-460

tion scores, denoted as Oattr, and the complexity of461

generating the hierarchy from the scores, denoted462

as Ohierarchy. As shown in Table 4, we elabo-463

rate on the time complexity of various methods.464

For score computation, HEDGE utilizes the Monte465

Carlo sampling algorithm, with the number of sam-466

ples denoted by M1, leading to a time complexity467

of O(nM1). HELOO uses the LOO algorithm (Lip-468

ton, 2018), with a time complexity of O(n2M1),469

where M2 is the maximum number of iterations470

of the LOO algorithm. HELIME method employs471

the LIME algorithm, with ridge regression solving472

complexity of O(n3M2), and M2 is the number of473

wedding in

out humor

out humordelightful

delightfulin

delightfulin

stereotypes… …

pos neg

out humoruses delightful

stereotypes

(a) A positive example “My big fat greek wedding uses stereotypes
in a delightful blend of sweet romance and lovingly dished out
humor.”

combination bad animation lacking slightest bit

slightest wit

slightest witlacking

of

animationcombination

… …

pos neg

of wit

combination animation lacking

…

(b) A negative example “Just another combination of bad ani-
mation and mindless violence lacking the slightest bit of wit or
charm.”

Figure 5: PE,HELOO for BERT on two examples from
the Rotten Tomatoes dataset. The subtree in the up-
per right corner is generated by PE and the lower is
produced by HELOO.

sampled instances. The time complexity of PE for 474

solving scores is O(n2). 475

Methods Oattr Ohierarchy

HEDGE (2020) O(nM1) O(n3)

HELOO (2023) O(n2M2) O(n3)

HELIME (2023) O(n3M3) O(n3)

PE (ours) O(n2) O(n2logn)

Table 4: Comparison results of HA methods about cap-
turing non-contiguous interactions and their time com-
plexity. The relationship between the number of samples
in the table and the value of n is: M1 ≫M2 > M3 ≫
n.
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what temperatureis the at the center of earth

the earth

temperature the earth

center temperature the earth the temperature the earth

(a) An example “What is the temperature at the center of the
earth?”, which the predicted label is numeric value.

is

what

temperature at center
of earth

the

ROOT

attr

nsubj

prep pobj
prep

detdet det

pobj

(b) A dependency parsing tree generated by Spacy (Honnibal and
Montani, 2017).

Figure 6: PE for BERT on the example from the TREC
dataset. The cluster on the left side of the third level
L3 is the results for α2 = 0.5, and the right side is the
result for α2 = 0.

7 Conclusion476

In this paper, we introduce PE, a computationally477

efficient method employing hyperbolic geometry478

for modeling feature interactions. More concretely,479

we use two hyperbolic projection matrices to em-480

bed the semantic and syntax information and devise481

a simple strategy to estimate the contributions of482

feature groups. Finally we design an algorithm to483

decode the hierarchical tree in an O(n2logn) time484

complexity. Based on the experimental results of485

three typical text classification datasets, we demon-486

strate the effectiveness of our method.487

8 Limitations488

The limitations of our work include: 1) Although489

our method boasts low time complexity, the use490

of the probing method to train additional model491

parameters, including two Poincare projection ma-492

trices, somewhat limits the generalizability of our493

approach. 2) In our experiments, we decompose494

the weights of the edges of the HA tree according495

to Equation 17. Whether there exists a optimal496

decomposition formula remains for future investi-497

gation.498
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A Proof694

First, we prove that the conclusion holds for n =695

3, and we generalize to the case of n > 3 using696

induction.697

Notation Due to the specificity of the binary tree698

we are solving for, a unique candidate tree can699

correspond to a node permutation π. For a tree700

with n leaves, we define πn as the corresponding701

permutation.702

We denote the constructed permutation π∗
n and703

prefix permutation π∗
m in Algorithm 1.704

Base Case We here start the discussion from the705

left case in Figure 10. The cost can be expanded706

into:707

CD(π
∗
3; e) =

∑
ijk

(eik + ejk) + 2
∑
ij

eij

=
∑
ijk

2eij + eik + ejk
(20)708

Notice that eij is smallest among eij , eik, ejk and709

among {i, j | k}, {i, k | j}, {j, k | i}, only one710

will hold true. We can conclude that π∗
3 is the711

solution that minimizes the cost.712

Induction Step We assume that the tree correspond-713

ing to the permutation πm has the smallest cost. To714

prove that πm+1 is also the smallest. We use a715

proof by contradiction to demonstrate that πm+1716

corresponds to the tree with the smallest cost. We717

define the tree’s level as L1, · · · , Ln−1 in Figure718

10. Firstly, we introduce the following lemma:719

Lemma We denote the γ-th step permutation pro-720

duced in Algorithm 1 as π∗
γ , and its corresponding721

tree cost as C(π∗
γ). Now, if we swap the nodes at722

level Ls and Lt, s < t, and the resulting sequence723

π∗
γ
′, then C(π∗

γ
′) > C(π∗

γ).724

Proof. We consider the cost after the swap as three725

parts: the triples that do not include s and t, the part726

of the triples that include s and the part that include727

t, denoted as C1,C2 and C3. For ease of proof,728

we denote the sequence to the left of s as A =729

π∗
γ,1:s−1, and the sequence between s and t as B =730

π∗
γ,s+1:t−1. Obviously C1 remains unchanged, as731

for C2, before and after the swap:732

C2 =
∑

i,j∈A,s

e(·) +
∑

i∈A,s,j∈B
e(·) +

∑
s,i,j∈B

e(·),

(21)733734

C ′
2 =

∑
i,j∈A,s

e(·) +
∑

i∈A,j∈B,s

e(·) +
∑

i,j∈B,s

e(·)

(22)735

Figure 7: Examples for π3, π4 and πn.

By subtracting, we obtain: 736

C ′
2 − C2 = (

∑
i∈A,j∈B,s

e(·)−
∑

i∈A,s,j∈B
e(·))+

(
∑

i,j∈B,s

e(·)−
∑

s,i,j∈B
e(·)) ≥ 0.

(23)

737

Similarly we obtain: 738

C ′
3 − C3 = (

∑
i∈A,t,j∈B

e(·)−
∑

i∈A,j∈B,t

e(·))+

(
∑

t,i,j∈B
e(·)−

∑
i,j∈B,t

e(·)) ≥ 0.

(24)

739

Now we prove that πm+1 is smallest. If πm+1 740

is not the smallest, then the node at the last level 741

can be the smallest by swapping with a previous 742

node. There are two cases: when the swapped 743

node is from the first level (e.g. j), in this case, 744

the difference in cost before and after the swap 745

becomes: 746

∆C = (
∑

i∈C,m+1,j∈D
e(·)−

∑
i∈C,j∈D,m+1

e(·))+

(
∑

t,i,j∈D
e(·)−

∑
i,j∈D,t

e(·)) ≥ 0,

(25)

747

where C = π∗
m+1,1, D = π∗

m+1,3:m. Similarly, 748

when the swapped node is located in other levels, 749

the cost after the swap will not decrease. This 750

means that in C(πm+1) cannot be smaller through 751

swapping other leaves from different levels, thus 752

πm+1 is smallest. 753

The primary difference is that the edge weights 754

in our graph (Graham and Hell, 1985) are not all 755

known in advance but are dynamically generated. 756

B Visualization 757

C Implementation Details 758

In this work, all language models are implemented 759

by Transformers. All our experiments are per- 760
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The redeeming Chan’s

worse routine

offuture film has always been the action , but the stunts in the tuxedo seem tired and what’s worse , routine

tired worse routine

tired worse routinebut

tired worse routinebutaction

pos neg

(a) A negative example “The redeeming feature of Chan’s films has always been the action, but the stunts in the tuxedo seem tired
and what’s worse, routine.”

are of theThe production values highest and the performances without being memorable

pos neg

attractive

attractive memorableandof

attractive memorable

attractive memorableand

(b) A positive example “The production values are of the highest and the performances attractive without being memorable.”

Figure 8: PE for BERT on two examples from the Rotten Tomatoes dataset.

Service here I\nsucks love the food still \n is so bad

pos neg

but

so bad

so badhere  sucks

\n

sucks so bad

(a) A negative example “Service here sucks \n I love the food still \n\n but the service is so bad.”

Flavors are great but every time I come is disgusting are

pos neg

machines

machines dirtyis disgusting

itthis location dirty

machines dirty

disgusting machines dirty

(b) A positive example “Flavors are great but every time I come this location it is disgusting machines are dirty.”

Figure 9: PE for BERT on two examples from Yelp dataset.

formed on one A800. The results are reported with761

5 random seeds.762

For fine tuning the projection matrix P c, we it-763

erate 5 epochs using RiemanianAdam optimizer764

and learning rate is initialized as 1e-3, the batch765

size is 32. For fine tuning the projection matrix766

P s, we use the Penn Treebank dataset we iter- 767

ate 40 epochs using Adam optimizer and learn- 768

ing rate is initialized as 1e-3. We set dout as 769

64. We use grid search to search α1, α2, β1, β2 ∈ 770

{0, 0.1, 0.2, 0.3, 0.4, 0.5}. 771
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D HA Example772

it never fails to engage us

it to engage us

it

never fails

never fails to engage us

engage usit never fails to

fails toneverit engage us

it never fails to engage us
pos

neg

Figure 10: A hierarchy example from HEDGE (Chen
et al., 2020). The background color of the words and
phrases represents emotional polarity, with cool colors
indicating positive and warm colors indicating negative.

E Lime Explanation773

Went back last 
night for dinner, 
this place is still 
awesome . I had 
the Las Vegas 
Rolls, they were 
pure deep fried…

pos

neg

Figure 11: A LIME explanation example from a ran-
dom forest classifier. It can be observed that two stop
words (i.e.“is” and “were”) are identified as positive and
negative emotional polarities, respectively.
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