
Under review as a conference paper at ICLR 2018

ON THE USE OF WORD EMBEDDINGS ALONE TO
REPRESENT NATURAL LANGUAGE SEQUENCES

Anonymous authors
Paper under double-blind review

ABSTRACT

To construct representations for natural language sequences, information from two
main sources needs to be captured: (i) semantic meaning of individual words, and
(ii) their compositionality. These two types of information are usually represented
in the form of word embeddings and compositional functions, respectively. For the
latter, Recurrent Neural Networks (RNNs) and Convolutional Neural Networks
(CNNs) have been considered. There has not been a rigorous evaluation regarding
the relative importance of each component to different text-representation-based
tasks; i.e., how important is the modeling capacity of word embeddings alone,
relative to the added value of a compositional function? In this paper, we conduct
an extensive comparative study between Simple Word Embeddings-based Models
(SWEMs), with no compositional parameters, relative to employing word embed-
dings within RNN/CNN-based models. Surprisingly, SWEMs exhibit comparable
or even superior performance in the majority of cases considered. Moreover, in
a new SWEM setup, we propose to employ a max-pooling operation over the
learned word-embedding matrix of a given sentence. This approach is demon-
strated to extract complementary features relative to the averaging operation stan-
dard to SWEMs, while endowing our model with better interpretability. To further
validate our observations, we examine the information utilized by different models
to make predictions, revealing interesting properties of word embeddings.

1 INTRODUCTION

Word embeddings, learned from massive unstructured text data, are widely-adopted building blocks
for Natural Language Processing (NLP). By representing each word as a fixed-length vector, these
embeddings can group semantically similar words, while explicitly encoding rich linguistic regular-
ities and patterns (Bengio et al., 2003; Mikolov et al., 2013; Pennington et al., 2014). In the spirit of
learning distributed representations for natural language, many NLP applications also benefit from
encoding word sequences, e.g., a sentence or document, into a fixed-length feature vector. Examples
of this are sentence/document classification (Le & Mikolov, 2014; Zhang et al., 2015), text-sequence
matching (Hu et al., 2014; Shen et al., 2017), machine translation (Bahdanau et al., 2014), etc. Many
architectures have been proposed to model the compositionality in variable-length text, leveraging
the word-embedding construct. These methods range from simple operations like addition (Mitchell
& Lapata, 2010; Iyyer et al., 2015) to more sophisticated compositional functions such as Recurrent
Neural Networks (RNNs) (Tai et al., 2015; Sutskever et al., 2014), Convolutional Neural Networks
(CNNs) (Kalchbrenner et al., 2014; Kim, 2014) and recursive neural networks (Socher et al., 2011a).

Although those models with more expressive compositional functions, e.g., recurrent or convolu-
tional networks, have demonstrated impressive results, they are typically computationally expen-
sive, due to the need to estimate hundreds of thousands, if not millions, of parameters (Parikh
et al., 2016). In constrast, models with simple compositional functions often compute a sentence
or document embedding by simply taking the summation, or averaging, over the word embedding
of each sequence element obtained via, e.g., word2vec (Mikolov et al., 2013), or GloVe (Pennington
et al., 2014). Generally, such a Simple Word Embedding-based Model (SWEM) does not explicitly
account for word-order information within a text sequence. However, they possess the desirable
property of having significantly fewer parameters and much faster training, relative to recurrent- or
convolutional-based models. Hence, there is a computation-vs.-expressiveness tradeoff regarding

1

Under review as a conference paper at ICLR 2018

how to model the compositionality of a text sequence. Moreover, it is of interest to examine the
practical (empirical) value of the additional expressiveness, on many standard NLP problems.

Recently, several studies suggest that on certain NLP applications much simpler word embedding-
based architectures exhibit comparable or even superior performance, compared with more com-
plicated models using recurrence or convolutions. For instance, Parikh et al. (2016) employed a
decomposable attention mechanism operating on the word embedding layer, achieving state-of-the-
art results on the Stanford Natural Language Inference (SNLI) corpus (Bowman et al., 2015), with
considerably fewer parameters. More recently, Vaswani et al. (2017) developed a network archi-
tecture for machine translation solely based on attention, without recurrence or convolutions, that
yielded state-of-the-art BLEU scores on the English-to-German translation task. Although complex
compositional functions are avoided in these models, additional modules, such as attention layers,
are employed on top of the word embedding layer. As a result, the specific role that the word em-
beddings plays in these models is not emphasized (or explicit), which distracts from understanding
how important the word embeddings alone are to the observed superior performance.

More importantly, from the perspective of representing natural language sequences, existing work
(Wieting et al., 2015; Arora et al., 2016; Parikh et al., 2016) only compared simple compositional
functions with an LSTM (Long Short-Term memory) or CNN on a limited set of tasks, while mostly
focusing on fairly short sentences (up to approximately 50 words). However, as indicated in Wiet-
ing et al. (2015), the superiority of recurrent or convolutional compositional architectures is highly
dependent on the nature of specific applications, such as text length, task goal, etc.

Our Contribution In this paper, we conduct an extensive experimental investigation regarding the
ability of word embeddings to represent sentences or (longer) documents. The principal motivation
is to understand whether word embeddings themselves already carry sufficient information for the
corresponding prediction on a variety of NLP tasks. To emphasize the expressiveness of word em-
beddings, we compare several simple word embeddings-based models, which have no compositional
parameters, with existing recurrent and convolutional networks, in a point-by-point manner. Specif-
ically, we consider three tasks with distinct properties: document classification (Yahoo news, Yelp
reviews, etc.), (short) sentence classification (Stanford sentiment treebank, TREC, etc.), and natural
language sequence matching (SNLI, WikiQA, etc.). Moreover, we propose to leverage a new max-
pooling operation over the word embedding representation of given text, which is demonstrated in
our experiments to extract complementary features relative to the averaging operation. As a side
benefit, the max-pooling operation also endows our model with better interpretability. Meaningful
semantic structures are manifested in the learned word embeddings, that shed light on the prediction
process of our models.

To gain better insight into the properties of word embeddings, and SWEM architectures, we fur-
ther explore the sensitivity of different compositional functions to the size of the training data, by
comparing SWEM with CNN and LSTM in cases where only a subset of the original training set
samples are available. In order to validate our experimental findings, we conduct additional experi-
ments to understand how much of the word-order information is utilized to make the corresponding
prediction on different tasks. We also investigate the dimensionality of word embeddings required
for SWEM to be sufficiently expressive.

Limitations Our investigation regarding the modeling capacity of word embeddings also has
limitations. First, we examine the most basic, yet representative, forms of one-layer recur-
rent/convolutional models for comparisons and do not consider other sophisticated model variants.
Thus, our conclusions are limited to algorithms explored in this paper. Where available from the
literature, we do compare to some deep models, such as the deep CNN construct. Additional mod-
ules (such as attention layers) can also be combined with our SWEM to yield better performance,
which is not the main goal of this study (as we wish to focus on the word embeddings themselves),
and is thus left for future work. Second, our discussion only considers NLP problems defined by the
datasets considered, which may not fully capture the difficulty of representing and reasoning over
natural language sequences. However, our exploration covers a wide variety of real-world applica-
tions (with large-scale datasets) and thus, we hypothesize our conclusions should be representative
of the English language in many cases of interest.

Summary of Findings Keeping these limitations in mind, our findings regarding when (and why)
word embeddings are enough for text sequence representations are summarized as follows:

2

Under review as a conference paper at ICLR 2018

• Word embeddings are surprisingly effective at representing longer documents (with hundreds of
words), while recurrent/convolutional compositional functions are necessary when constructing rep-
resentations for short sentences.

• The SWEM architecture performs stronger on topic categorization tasks than on sentiment analy-
sis, due to the different levels of sensitivity to word-order information for the two tasks.

• To match natural language sentences, e.g., textual entailment, answer sentence selection, etc., word
embeddings are already sufficiently informative for the corresponding prediction, while adopting
complicated compositional functions like LSTM or CNN tends to be substantially less helpful.

• For our SWEM-max model (employing a max pooling within SWEM), each dimension of the
word embedding contains interpretable semantic patterns, and groups together words with a common
theme or topic.

• SWEMs are much less likely to overfit than an LSTM or CNN, with training data of limited size,
exhibiting superior performance even with only hundreds of training observations.

• SWEMs demonstrate competitive results with small word-embedding dimensions, suggesting that
word embeddings are efficient at encoding semantic information.

2 RELATED WORK

A fundamental goal in NLP is to develop expressive, yet computationally efficient compositional
functions that can capture the linguistic structure of natural language sequences. A variety of mod-
els have been proposed to account for different properties of text sequences, which may be divided
into two main categories: (i) simple compositional functions that largely leverage information from
the word embeddings to extract semantic features; and (ii) complex compositional functions that
construct words into text representations in a recurrent or convolutional manner, and can in princi-
ple capture the word-order features either globally or locally. However, several recent studies have
shown empirically that the advantages of distinct compositional functions are highly dependent on
the specific task (Mitchell & Lapata, 2010; Iyyer et al., 2015; Wieting et al., 2015; Arora et al., 2016;
Vaswani et al., 2017; Parikh et al., 2016). This is intuitively reasonable since different properties
of a text sequence may be required, depending on the nature of specific problems. However, previ-
ous research only focused on one or two problems at a time, thus a comprehensive study regarding
the effectiveness of various compositional functions on distinct NLP tasks, e.g., categorizing short
sentence/long documents, matching natural language sentences, has heretofore been absent. Our
work seeks to perform a comprehensive comparison with respect to these two types of composi-
tional functions, across a wide range of NLP problems, and reveals some general rules for rationally
selecting models to tackle different tasks.

3 MODELS & TRAINING

Consider a text sequence X (either a sentence or a document), composed of a sequence of words:
{w1, w2,, wL}, where L is the number of tokens, i.e., the sentence/document length. Let
{v1, v2,, vL} denote the respective word embedding for each token, where vl ∈ RK and K
is the dimensionality of the embedding. The compositional function, X → z, aims to combine
the word embeddings into a fixed-length sentence/document representation z. In the following, we
describe different types of functions to be considered in this work.

3.1 SIMPLE WORD-EMBEDDING BASED MODEL (SWEM)

To investigate the modeling capacity of word embeddings, we consider a type of model with no ad-
ditional compositional parameters to encode natural language sequences, termed a SWEM. Among
them, the simplest strategy is to compute the element-wise average over word vectors for a given
sequence (Wieting et al. (2015); Adi et al. (2016)):

z =
1

L

L∑
i=1

vi . (1)

3

Under review as a conference paper at ICLR 2018

The model in (1) averages over each of the K dimensions for all words, resulting in a representation
z with the same dimension as word embeddings (termed SWEM-aver). Intuitively, z takes the
information of every sequence element into account using the addition operation.

Motivated by the success of employing pooling layers to down-sample representations for image
data (Krizhevsky et al. (2012)), we propose another SWEM variant, that extracts the most salient
features from every word embedding dimension, by taking the maximum value along each dimen-
sion of the word vectors. This strategy is also similar to the max-over-time pooling operation in
convolutional neural networks (Collobert et al., 2011):

z = max-pooling(v1, v2, ..., vL) . (2)

We denote this model variant as SWEM-max. Here the j-th component of z is the maximum element
in the set {v1j , . . . , vLj}, where v1j is, for example, the j-th component of v1. Considering that
SWEM-aver and SWEM-max are complementary, in the sense that they account for different types
of information from text sequences, we also propose a third SWEM variant, where the two abstracted
features are concatenated together to form the sentence embeddings (denoted as SWEM-concat). It
is worth noting that for all SWEM variants, there are no additional compositional parameters to be
learned. As a result, models can only exploit intrinsic word embedding information for predictions.

3.2 RECURRENT SEQUENCE ENCODER

A widely adopted compositional function is defined in a recurrent manner: the model successively
takes word vector vt at step t, along with hidden unit ht−1 from the last time step, to update the hid-
den state via ht = f(vt, ht−1), where f(·) is the transition function. To address the issue of learning
long-term dependencies, f(·) is often defined as Long Short-Term Memory (LSTM) (Hochreiter &
Schmidhuber, 1997), which employs gates (ot, ft and it, as output, forget and input gates, respec-
tively) to control the information abstracted from a sequence using:itftot

c̃t

 =

 σ
σ
σ

tanh

(W ·
[
ht−1

vt

])
, ct = ft � ct−1 + it � c̃t , ht = ot � ct ,

where� stands for element-wise (Hadamard) multiplication. The last hidden state hL or the average
over all hidden states, h1, . . . , hL, is typically utilized as the final representation z. Intuitively,
the LSTM encodes a text sequence considering its word-order information, but yields additional
compositional parameters, W , that must be learned.

3.3 CONVOLUTIONAL SEQUENCE ENCODER

The Convolutional Neural Network (CNN) architecture in Kim 2014; Collobert et al. 2011; Gan
et al. 2017 is another strategy extensively employed as the compositional function for encoding
text sequences. The convolution operation considers every window of n words within the sequence
X , i.e., {w1:n, w2:n+1, ..., wL−n+1:L}. These n-gram text subsequences can be represented by the
concatenation of all corresponding word vectors, i.e., {v1:n, v2:n+1, ..., vL−n+1:L}. A filter U ∈
RK×n is then applied to each word window to generate the corresponding feature:

si = g(U � vi:i+n−1 + b) ,

where g(·) is a nonlinear function such as hyperbolic tangent and b is a bias term. The fea-
tures produced by each word window, si, are concatenated together as a feature map: s =
[s1, s2, ..., sL−n+1]. Subsequently, an aggregation operation such as max-pooling is used on top
of the feature maps to abstract the most salient semantic features, resulting in the final represen-
tation z. Multiple learned filters are employed, and these may employ different temporal lengths
n. For simplicity we have discussed a single-layer CNN text model. Deep CNN text models have
also been developed (Conneau et al., 2016), and we perform empirical comparisons to such models
below.

3.4 PARAMETERS & COMPUTATION COMPARISON

4

Under review as a conference paper at ICLR 2018

Model Parameters Complexity Seq. Operations
CNN n ·K · d O(n · L ·K · d) O(1)

LSTM 4 · d · (K + d) O(L · d2 + L ·K · d) O(L)
SWEM 0 O(L ·K) O(1)

Table 1: Comparisons of CNN, LSTM and SWEM architectures. Columns
correspond to the number of compositional parameters, computational com-
plexity and sequential operations, respectively.

We compare CNN, LSTM
and SWEM w.r.t. their pa-
rameters and computational
speed. K denotes the dimen-
sion of word embeddings, as
above. For the CNN, we use
n to denote the filter width
(assumed the same for all fil-
ters, for simplicity of analy-
sis, but in practice variable n may be used among the CNN filters). We define d as the dimension
of the final sequence representation. Specifically, d represents the dimension of hidden units or the
number of filters in LSTM or CNN, respectively. We first examine the number of compositional
parameters for each model. As shown in Table 1, both the CNN and LSTM have a large number of
parameters, to model the semantic compositionality of text sequences, whereas SWEM has no such
parameters. Similar to Vaswani et al. (2017), we then consider the computational complexity and
the minimum number of sequential operations required for each model. SWEM tends to be more
efficient than CNN and LSTM in terms of computation complexity. For example, considering the
case whereK = d, SWEM is faster than CNN or LSTM by a factor of nd or d, respectively. Further,
the computations in SWEM are highly parallelizable, unlike LSTM that requires O(L) sequential
steps.

4 EXPERIMENTS

We evaluate different compositional functions on a wide variety of supervised tasks, including doc-
ument categorization, text sequence matching (given a sentence pair, X1, X2, predict their relation-
ship, y) as well as (short) sentence classification. We experiment on 15 datasets regarding natural
language understanding, with corresponding data statistics summarized in the Supplementary Ma-
terial. Our code will be released to encourage future research.

We use 300-dimensional GloVe word embeddings (Pennington et al., 2014) as initialization for
all our models. Out-Of-Vocabulary (OOV) words are initialized from a uniform distribution with
range [−0.01, 0.01]. The GloVe embeddings are employed in two ways for learning the refined
word embeddings: (i) directly updating each word embedding during training; and (ii) training a
300-dimensional multilayer perceptron (MLP) layer with ReLU activation, with GloVe embeddings
input to the MLP and with output defining the updated word embeddings. This latter approach
corresponds to learning an MLP model that transforms GloVe embeddings to the dataset and task of
interest. The advantages of these two methods differs from dataset to dataset. We choose the better
strategy based on their corresponding performances on the validation set. The final classifier is
implemented as an MLP layer with dimension selected from the set [100, 300, 500, 1000], followed
by a sigmoid or softmax function depending on the specific task.

Adam (Kingma & Ba, 2014) is used to optimize all models, with learning rate selected from the set
[1e − 3, 3e − 4, 2e − 4, 1e − 5] (with cross-validation used to select the appropriate parameter for
a given dataset and task). Dropout regularization (Srivastava et al., 2014) is employed on the word
embedding layer and final MLP layer, with the dropout rate selected from the set [0.2, 0.5, 0.7]. The
batch size is selected from [2, 8, 32, 128, 512].

4.1 DOCUMENT CATEGORIZATION

We begin with the task of categorizing documents (with approximately 100 words in average per
document). We follow the data split in Zhang et al. (2015) for comparability. These datasets can be
generally categorized into three types: topic categorization (represented by Yahoo! Answer and AG
news), sentiment analysis (represented by Yelp Polarity and Yelp Full) and ontology classification
(represented by DBpedia). Results are shown in Table 2. Surprisingly, on topic prediction tasks,
our SWEM model exhibits stronger performances, relative to both LSTM and CNN compositional
architectures, this by leveraging both the average and max-pooling features from word embeddings.
Specifically, our SWEM-concat model even outperforms a 29-layer deep CNN model (Conneau
et al., 2016) when predicting topics. On the ontology classification problem (DBpedia dataset), we

5

Under review as a conference paper at ICLR 2018

Model Yahoo! Ans. AG News Yelp P. Yelp F. DBpedia
Bag-of-means∗ 60.55 83.09 87.33 53.54 90.45

Small word CNN∗ 69.98 89.13 94.46 58.59 98.15
Large word CNN∗ 70.94 91.45 95.11 59.48 98.28

LSTM∗ 70.84 86.06 94.74 58.17 98.55
Deep CNN (29 layer)‡ 73.43 91.27 95.72 64.26 98.71

SWEM-aver 73.14 91.71 93.59 60.66 98.42
SWEM-max 72.66 91.79 93.25 59.63 98.24

SWEM-concat 73.53 92.24 93.76 61.11 98.57

Table 2: Test error rates on (long) document classification tasks, in percentage. Results marked with ∗ are
reported in Zhang et al. (2015), with † are reported in Dai & Le (2015), and with ‡ are reported in Conneau
et al. (2016).

observe the same trend, that SWEM exhibits comparable or even superior results, compared with
CNN or LSTM models.

Since there are no compositional parameters in SWEM, our models have an order of magnitude
fewer parameters (excluding embeddings) than LSTM or CNN, and are considerably more com-
putationally efficient. As illustrated in Table 4, SWEM-concat achieves better results on Yahoo!
Answer than CNN/LSTM, with only 61K parameters (one-tenth the number of LSTM parameters,
or one-third the number of CNN parameters), while taking a fraction of the training time relative to
the CNN or LSTM.

Politics Science Computer Sports Chemistry Finance Geoscience
philipdru coulomb system32 billups sio2 (SiO2) proprietorship fossil
justices differentiable cobol midfield nonmetal ameritrade zoos

impeached paranormal agp sportblogs pka retailing farming
impeachment converge dhcp mickelson chemistry mlm volcanic

neocons antimatter win98 juventus quarks budgeting ecosystem

Table 3: Top five words with the largest values w.r.t. a give word embeddings’ dimension (each column
corresponds to a dimension). The first row shows the topic for words in each column.

Model Parameters Speed
CNN 541K 171s

LSTM 1.8M 598s
SWEM 61K 63s

Table 4: Speed & Parameters on Ya-
hoo! Answer dataset.

However, for the sentiment analysis tasks, both CNN and
LSTM compositional functions perform better than SWEM,
suggesting that word-order information may be required for an-
alyzing sentiment orientations. This finding is consistent with
Pang et al. (2002), where they hypothesize that the positional
information of a word in text sequences may be beneficial to
predict sentiment. This is intuitively reasonable since, for in-

stance, the phrase ‘not really good’ and ‘really not good’ convey different levels of negative sen-
timent, while being different only by their word orderings. Contrary to SWEM, CNN and LSTM
models can both capture this type of information via convolutional filters or recurrent transition
functions. However, as suggested above, such word-order patterns may be much less useful for
predicting the topic of a document. This may be attributed to the fact that word embeddings alone
already provide sufficient topic information of a document, at least when the text sequences consid-
ered are relatively long.

Although the proposed SWEM-max variant generally performs a bit worse than SWEM-aver, it
extracts complementary features from SWEM-aver, and hence in most cases SWEM-concat ex-
hibits the best performance among all SWEM variants. Further, we found that the word embeddings
learned from SWEM-max tend to be very sparse. We trained our SWEM-max model on the Yahoo
datasets (randomly initialized from a uniform distribution with range [0, 0.001]). With the learned
embeddings, we plot the values for each of the word embedding dimensions, for the entire vocabu-
lary. As shown in Figure 1, most of the embedding values are highly concentrated around zero, indi-
cating that the word embeddings learned are very sparse. By contrast, the GloVe word embeddings,
for the same vocabulary, are much more dense than the embeddings learned from SWEM-max. This
suggests that the model may only depend on a few key words, among the entire vocabulary, for
predictions (since most words do not contribute to the summation or max operation in SWEM).
Through the embedding, the model learns the important words for a given task (those words with
non-zero embedding components).

6

Under review as a conference paper at ICLR 2018

MultiNLI
Model SNLI Matched Mismatched WikiQA Quora MSRP

Acc. Acc. Acc. MAP MRR Acc. Acc. F1
CNN 82.1 65.0 65.3 0.6752 0.6890 79.60 69.9 80.9

LSTM 80.6 66.9∗ 66.9∗ 0.6820 0.6988 82.58 70.6 80.5
SWEM-aver 82.3 66.5 66.2 0.6808 0.6922 82.68 71.0 81.1
SWEM-max 83.8 68.2 67.7 0.6613 0.6717 82.20 70.6 80.8

SWEM-concat 83.3 67.9 67.6 0.6788 0.6908 83.03 71.5 81.3

Table 5: Performance of different models on matching natural language sentences. Results with ∗ are for
Bidirectional LSTM, reported in Williams et al. (2017). Our reported results on MultiNLI are only trained
MultiNLI training set (without training data from SNLI). For MSRP dataset, we follow the setups in Hu et al.
(2014) and do not use any additional (hand-crafted) features.

Moreover, the nature of the max-pooling process gives rise to a more interpretable model. For
a document, only the word with largest value in each embedding dimension is employed for the
final representation. In this regard, we suspect that semantically similar words may have large
values in some shared dimensions. So motivated, after training the SWEM-max model on the Yahoo
dataset, we selected five words with the largest values, among the entire vocabulary, for each word
embedding dimension (these words are selected preferentially in the corresponding dimension, by
the max operation). As shown in Table 3, the words chosen w.r.t. each embedding dimension are
indeed highly relevant and correspond to a common topic (the topics are inferred from words). For
example, the words in the first column of Table 3 are all political terms, which could be assigned to
the Politics & Government topic. Note that our model can even learn locally interpretable structure
that is not explicitly indicated by the label information. For instance, all words in the fifth column
are Chemistry-related. However, we do not have a chemistry label in the dataset, and regardless they
should belong to the Science topic.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Embedding Amplitude

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
e
q
u
e
n
cy

1e7

GloVe

SWEM-max

Figure 1: The histograms for learned word
embeddings (randomly initialized) of SWEM-
max and GloVe embeddings for the same vo-
cabulary, trained on Yahoo! Answer dataset.

Moreover, we summed up all embedding dimensions
for each word in the vocabulary and selected 20 words
with the largest total value. We assume that these words
should be highly predictive since they are more likely to
“survive” the max-pooling operation. These words are
listed as below:

‘askcomputerexpert’, ‘midfield’, ‘presario’, ‘preventdisease’,
‘dhcp’, ‘playgolfamerica’, ‘radeon’, ‘win32’, ‘system32’,
‘colston’, ‘juventus’, ‘mayweather’, ‘murtha’, ‘hoodia’, ‘le-
bron’, ‘theist’, ‘billups’, cannavaro’, ‘maldini’, ‘ronaldhino’.

These words can be generally grouped into two categories: the
first are the names of sports players/teams (e.g., ‘ronaldhino’,
‘lebron’ or ‘juventus’), software product/brand (e.g., ‘win32’,
‘radeon’) or plants (e.g. ‘hoodia’). These words are important
since their occurence may already indicate the assigned label.
The second are field-specific terms regarding a topic, such as
‘askcomputerexpert’ to the Computers & Internet topic, ‘pre-
ventdisease’ to the Health topic or ‘midfield’ to the Sports topic. Again, these words are likely to occur in
documents with matching topic.

4.2 TEXT SEQUENCE MATCHING

To gain a deeper understanding regarding the modeling capacity of word embeddings, we further investigate the
problem of sentence matching, including natural language inference, answer sentence selection and paraphrase
identification. The corresponding performances are shown in Table 5. Surprisingly, on most of the datasets
considered (except WikiQA), SWEM demonstrates the best results compared with those with CNN or the
LSTM encoder. Notably, on SNLI dataset, we observe that SWEM-max performs the best among all SWEM
variants, consistent with the findings in Nie & Bansal (2017); Conneau et al. (2017) that max-pooling over
BiLSTM hidden units outperforms average pooling operation on SNLI dataset. As a result, with only 120K
parameters, our SWEM-max achieves a test accuracy of 83.8%, which is very competitive among state-of-the-
art sentence encoding-based models (in terms of both performance and number of parameter)1.

1See leaderboard at https://nlp.stanford.edu/projects/snli/ for details.

7

https://nlp.stanford.edu/projects/snli/

Under review as a conference paper at ICLR 2018

The strong results of the SWEM setup on these tasks may stem from the fact that when matching natural
language sentences, it is sufficient in most cases to simply model the word-level alignments between two
sequences (Parikh et al., 2016). From this perspective, word-order information becomes much less useful for
predicting relationship between sentences. Moreover, considering the simpler model architecture of SWEM,
they could be much easier to be optimized than LSTM or CNN-based models, and thus give rise to better
empirical results.

(a) (b)

Figure 2: The test accuracy comparisons between SWEM and CNN/LSTM on (a) Yahoo! Answers dataset
and (b) SNLI dataset, with different proportions of training data (ranging from 0.1% to 100%).

To explore the robustness of different compositional functions, we consider another application scenario, where
we only have a limited number of training data, e.g., when labeled data are expensive to obtain. To investigate
this, we re-run the experiments on Yahoo and SNLI datasets, while employing increasing proportions of the
original training set. Specifically, we use 0.1%, 0.2%, 0.6%, 1.0%, 10%, 100% for comparison; the corre-
sponding results are shown in Figure 2. Surprisingly, SWEM consistently outperforms CNN and LSTM models
by a large margin, on a wide range of training data proportions. For instance, with 0.1% of the training sam-
ples from Yahoo dataset (around 1.4K labeled data), SWEM achieves an accuracy of 56.10%, which is much
better than that of models with CNN (25.32%) or LSTM (42.37%). On the SNLI dataset, we also noticed the
same trend that the SWEM architecture result in much better accuracies, with a fraction of training data. This
observation indicates that overfitting issues in CNN or LSTM-based models on text data mainly stems from
over-complicated compositional functions, rather than the word embedding layer. More importantly, SWEM
tends to be a far more robust model when only limited data are available for training.

4.3 SHORT SENTENCE CLASSIFICATION

We now consider sentence-classification tasks (with approximately 20 words on average). We experiment on
three sentiment classification datasets, i.e., MR, SST-1, SST-2, as well as subjectivity classification (Subj) and
question classification (TREC). The corresponding results are shown in Table 6. Compared with CNN/LSTM
compositional functions, SWEM yields inferior accuracies on sentiment analysis datasets, consistent with our
observation in the case of document categorization. However, SWEM exhibits comparable performance on
other two tasks, again with much less parameters and faster training. Generally, SWEM is less effective at
extracting representations from (short) sentences than from (long) documents. This may be due to the fact
that for a shorter text sequence, word-order features tend to be more important since the semantic information
provided by word embeddings is relatively limited.

Model MR SST-1 SST-2 Subj TREC
RAE (Socher et al. (2011b)) 77.7 43.2 82.4 – –

MV-RNN (Socher et al. (2012)) 79.0 44.4 82.9 – –
LSTM (Tai et al. (2015)) – 46.4 84.9 – –
RNN (Zhao et al. (2015)) 77.2 – – 93.7 90.2

Dynamic CNN (Kalchbrenner et al. (2014)) – 48.5 86.8 – 93.0
CNN (Kim (2014)) 81.5 48.0 88.1 93.4 93.6

SWEM-aver 77.6 45.2 83.9 92.5 92.2
SWEM-max 76.9 44.1 83.6 91.2 89.0

SWEM-concat 78.2 46.1 84.3 93.0 91.8

Table 6: Test accuracies with different compositional functions on (short) sentence classifications.

Moreover, we note that the results on these relatively small datasets are highly sensitive to model regularization
techniques due to the overfitting issues. In this regard, one interesting future direction may be to develop specific
regularization strategies for the SWEM setup, and thus make them work better on small sentence classification
datasets.

8

Under review as a conference paper at ICLR 2018

Negative: Friendly staff and nice selection of vegetarian options . Food is just okay , not great.
Makes me wonder why everyone likes food fight so much.

Positive: The store is small , but it carries specialties that are difficult to find in Pittsburgh. I was
particularly excited to find middle eastern chili sauce and chocolate covered turkish de-
lights.

Negative: If you love long lines and only 4 or less lanes open, then this is the place to be. The lines
are long and the cashiers are usually old people who take their time with everything.

Table 8: The test samples from Yelp Polarity dataset that LSTM gives wrong predictions with shuffled training
data, but predicts correctly with the original training set. Therefore, word order should be relatively important
in these cases for predicting the corresponding sentiment (the first column shows the ground truth labels).

5 PROPERTIES OF WORD EMBEDDINGS

To further reveal the modeling capacity of word embeddings to represent natural language sequences, we per-
form additional experiments to answer the following interesting questions:

Datasets Yahoo Yelp P. SNLI
Original 72.78 95.11 78.02
Shuffled 72.89 93.49 77.68

Table 7: Test accuracy for LSTM model trained
on original/shuffled training set.

How important is word-order information for distinct
tasks? One possible disadvantage of SWEM is that it ig-
nores the word-order information within a text sequence,
which could be potentially captured by CNN- or LSTM-
based models. However, we empirically found that except
for sentiment analysis, SWEM exhibits similar or even su-
perior performances than CNN or LSTM on a variety of
tasks. In this regard, one natural question would be: how

important are word-order features for these tasks?

To this end, we randomly shuffle the words for every sentence in the training set, while keeping the original
word order for samples in the test set. The motivation here is to remove the word-order features from the training
set and examine how sensitive the performance on different tasks are to word-oder information. We use LSTM
as the model for this purpose since it can captures word-order information from the original training set. The
results on three distinct tasks are shown in Table 7. Somewhat surprisingly, for Yahoo and SNLI datasets,
the LSTM model trained on shuffled training set shows comparable accuracies to those trained on the original
dataset, indicating that word-order information does not contribute significantly on these two problems, i.e.,
topic categorization and textual entailment. However, on the Yelp polarity dataset, the results drop noticeably,
further suggesting that word-order does matter for sentiment analysis (as indicated above from a different
perspective).

Notably, the performance of LSTM on the Yelp dataset with a shuffled training set is very close to our results
with SWEM, indicating that the main difference between LSTM and SWEM may be due to the ability of the
former to capture word-order features. Both observations are in consistent with our experimental results in the
previous section.

To understand what type of sentences are sensitive to word-order information, we further show those samples
that are mis-predicted because of the shuffling of training data in Table 8. Taking the first sentence as an
example, several words in the review are generally positive, i.e. friendly, nice, okay, great and likes. However,
the most vital features for predicting the sentiment of this sentence could be the phrase/sentence ‘is just okay’,
‘not great’ or ‘makes me wonder why everyone likes’, which cannot be captured without considering word-order
features.

Embedding dim. 3 10 30 100 300 1000
Yahoo 64.05 72.62 73.13 73.12 73.24 73.31

Table 9: Test accuracy of SWEM on Yahoo dataset with a wide range of
word embedding dimensions.

How many word embedding
dimensions are needed? Since
there are no compositional pa-
rameters in SWEM, the compo-
nent that contains the semantic
information of a text sequence
is the word embedding. Thus, it
is of interest to see how many word embedding dimensions are needed for a SWEM architecture to perform
well. To this end, we vary the dimension from 3 to 1000 and train a SWEM-concat model on the Yahoo dataset.
For fair comparison, the word embeddings are randomly initialized in this experiment, since there are no pre-
trained word vectors, such as GloVe (Pennington et al., 2014), for some dimensions we consider. As shown
in Table 9, the model exhibits higher accuracy with larger word embedding dimensions. This is not surprising
since with more embedding dimensions, more semantic features could be potentially encapsulated. However,
we also observe that even with only 10 dimensions, SWEM demonstrates comparable results relative to the case
with 1000 dimensions, suggesting that word embeddings are very efficient at abstracting semantic information

9

Under review as a conference paper at ICLR 2018

into fixed-length vectors. This property indicates that we may further reduce the number of model parameters
with lower-dimensional word embeddings, while still achieving competitive results.

6 CONCLUSION & FUTURE DIRECTIONS

We have performed a comparative study between SWEM (with parameter-free compositional functions) and
CNN or LSTM-based models, to represent text sequences on a wide range of NLP tasks. We further validated
our experimental findings through additional exploration, and revealed some interesting properties of word
embeddings.

Our study regarding the capacity of word embeddings has several implications for future research:

(i) The SWEM architecture is a simple, yet very effective strategy to encode text sequences for a wide variety
of tasks. We suggest that SWEM should be considered as a strong baseline model while developing other (more
sophisticated) neural network architectures.

(ii) Additional modules, such as use of an attention mechanism or memory network, could be directly combined
with word embeddings to further enhance the model expressiveness, yet preserve the low computational cost
(one work along this line could be Parikh et al. (2016)).

(iii) Simple manipulation of word embeddings provides new opportunities towards visualizing and rationalizing
predictions made by deep learning models.

An important aspect of the SWEM-learned embeddings is that they are very sparse, much more so than the
relatively dense embeddings manifested by methods like GloVe. This indicates that only a small fraction of
learned key words contribute to the summation and max operations in SWEM-aver and SWEM-max, respec-
tively. These non-zero components also yield interpretable topics that drive model performance. We observed
that the CNN- and LSTM-refined word embeddings are also very sparse. This is an insight that has not been
widely noted in the literature, and it may suggest an avenue for interpreting and understanding the success of
these classes of NLP methods.

REFERENCES

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg. Fine-grained analysis of sentence
embeddings using auxiliary prediction tasks. arXiv preprint arXiv:1608.04207, 2016.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for sentence embeddings.
2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473, 2014.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic language
model. JMLR, 3(Feb):1137–1155, 2003.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large annotated corpus
for learning natural language inference. arXiv preprint arXiv:1508.05326, 2015.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural
language processing (almost) from scratch. JMLR, 12(Aug):2493–2537, 2011.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault, and Yann Lecun. Very deep convolutional networks for
natural language processing. arXiv preprint arXiv:1606.01781, 2016.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes. Supervised learning of
universal sentence representations from natural language inference data. arXiv preprint arXiv:1705.02364,
2017.

Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. In NIPS, pp. 3079–3087, 2015.

Zhe Gan, Yunchen Pu, Ricardo Henao, Chunyuan Li, Xiaodong He, and Lawrence Carin. Learning generic
sentence representations using convolutional neural networks. In EMNLP, pp. 2380–2390, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convolutional neural network architectures for
matching natural language sentences. In NIPS, pp. 2042–2050, 2014.

10

Under review as a conference paper at ICLR 2018

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. Deep unordered composition rivals
syntactic methods for text classification. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), volume 1, pp. 16 81–1691, 2015.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network for modelling
sentences. arXiv preprint arXiv:1404.2188, 2014.

Yoon Kim. Convolutional neural networks for sentence classification. EMNLP, 2014.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural
networks. In NIPS, pp. 1097–1105, 2012.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In ICML, pp. 1188–
1196, 2014.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of words
and phrases and their compositionality. In NIPS, pp. 3111–3119, 2013.

Jeff Mitchell and Mirella Lapata. Composition in distributional models of semantics. Cognitive science, 34(8):
1388–1429, 2010.

Yixin Nie and Mohit Bansal. Shortcut-stacked sentence encoders for multi-domain inference. arXiv preprint
arXiv:1708.02312, 2017.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?: sentiment classification using machine
learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natural language
processing-Volume 10, pp. 79–86. ACL, 2002.

Ankur P Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable attention model for
natural language inference. arXiv preprint arXiv:1606.01933, 2016.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word representation.
In EMNLP, pp. 1532–1543, 2014.

Dinghan Shen, Yizhe Zhang, Ricardo Henao, Qinliang Su, and Lawrence Carin. Deconvolutional latent-
variable model for text sequence matching. arXiv preprint arXiv:1709.07109, 2017.

Richard Socher, Cliff C Lin, Chris Manning, and Andrew Y Ng. Parsing natural scenes and natural language
with recursive neural networks. In ICML, pp. 129–136, 2011a.

Richard Socher, Jeffrey Pennington, Eric H Huang, Andrew Y Ng, and Christopher D Manning. Semi-
supervised recursive autoencoders for predicting sentiment distributions. In EMNLP, pp. 151–161. As-
sociation for Computational Linguistics, 2011b.

Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng. Semantic compositionality through
recursive matrix-vector spaces. In Proceedings of the 2012 joint conference on empirical methods in nat-
ural language processing and computational natural language learning, pp. 1201–1211. Association for
Computational Linguistics, 2012.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. Journal of machine learning research, 15(1):
1929–1958, 2014.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In NIPS,
pp. 3104–3112, 2014.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations from tree-
structured long short-term memory networks. arXiv preprint arXiv:1503.00075, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Towards universal paraphrastic sentence
embeddings. arXiv preprint arXiv:1511.08198, 2015.

11

Under review as a conference paper at ICLR 2018

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification. In
NIPS, pp. 649–657, 2015.

Han Zhao, Zhengdong Lu, and Pascal Poupart. Self-adaptive hierarchical sentence model. In IJCAI, pp. 4069–
4076, 2015.

12

Under review as a conference paper at ICLR 2018

APPENDIX I: EXPERIMENTAL SETUP

6.1 DATA STATISTICS

We consider a wide range of text-representation-based tasks in this paper, including document categorization,
text sequence matching and (short) sentence classification. The statistics and corresponding types of these
datasets are summarized in Table 10

Datasets #w #c Train Types
Yahoo 104 10 1,400K Topic categorization

AG News 43 4 120K Topic categorization
Yelp P. 138 2 560K Sentiment analysis
Yelp F. 152 5 650K Sentiment analysis

DBpedia 57 14 560K Ontology classification
SNLI 11 / 6 3 549K Textual Entailment

MultiNLI 21/11 3 393K Textual Entailment
WikiQA 7 / 26 2 20K Question answering
Quora 13 / 13 2 384K Paraphrase identification
MSRP 23 / 23 2 4K Paraphrase identification

MR 20 2 11K Sentiment analysis
SST-1 18 5 12K Sentiment analysis
SST-2 19 2 10K Sentiment analysis
Subj 23 2 10K Subjectivity classification

TREC 10 6 6K Question classification

Table 10: Data Statistics. Where #w, #c and Train denote the average number of words, the number
of classes and the size of training set, respectively. For sentence matching datasets, #w stands for
the average length for the two corresponding sentences.

6.2 WHAT ARE THE KEY WORDS USED FOR PREDICTIONS?

Given the sparsity of word embeddings, one natural question would be: What are those key words that are
leveraged by the model to make predictions? To this end, after training SWEM-max on Yahoo! Answer
dataset, we selected the top-10 words (with the maximum values in that dimension) for every word embedding
dimension. The results are visualized in Figure 3. These words are indeed very predictive since they are likely
to occur in documents with a specific topic, as discussed above. Another interesting observation is that the
frequencies of these words are actually quite low in the training set (e.g. colston: 320, repubs: 255 win32:
276), considering the large size of the training set (1,400K). This suggests that the model is utilizing those
relatively rare, yet representative words of each topic for the final predictions.

Figure 3: The top 10 words for each word embeddings’ dimension.

13

	Introduction
	Related Work
	Models & training
	Simple Word-Embedding based Model (SWEM)
	Recurrent Sequence Encoder
	Convolutional Sequence Encoder
	Parameters & Computation Comparison

	Experiments
	Document Categorization
	Text sequence Matching
	Short Sentence Classification

	Properties of word embeddings
	Conclusion & Future Directions
	Data statistics
	What are the key words used for predictions?

