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Abstract

Video segmentation requires consistently segmenting and tracking objects over time. Due to
the quadratic dependency on input size, directly applying self-attention to video segmentation
with high-resolution input features poses significant challenges, often leading to insufficient
GPU memory capacity. Consequently, modern video segmenters either extend an image
segmenter without incorporating any temporal attention or resort to window space-time
attention in a naive manner. In this work, we present Axial-VS, a general and simple
framework that enhances video segmenters by tracking objects along axial trajectories.
The framework tackles video segmentation through two sub-tasks: short-term within-clip
segmentation and long-term cross-clip tracking. In the first step, Axial-VS augments an off-
the-shelf clip-level video segmenter with the proposed axial-trajectory attention, sequentially
tracking objects along the height- and width-trajectories within a clip, thereby enhancing
temporal consistency by capturing motion trajectories. The axial decomposition significantly
reduces the computational complexity for dense features, and outperforms the window space-
time attention in segmentation quality. In the second step, we further employ axial-trajectory
attention to the object queries in clip-level segmenters, which are learned to encode object
information, thereby aiding object tracking across different clips and achieving consistent
segmentation throughout the video. Without bells and whistles, Axial-VS showcases state-of-
the-art results on video segmentation benchmarks, emphasizing its effectiveness in addressing
the limitations of modern clip-level video segmenters. Code and models are available here.
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1 Introduction

Video segmentation is a challenging computer vision task that requires temporally consistent pixel-level scene
understanding by segmenting objects, and tracking them across a video. Numerous approaches have been
proposed to address the task in a variety of ways. They can be categorized into frame-level (Kim et al., 2020;
Wu et al., 2022c; Heo et al., 2023; Li et al., 2023a), clip-level (Athar et al., 2020; Qiao et al., 2021; Hwang
et al., 2021; Mei et al., 2022), and video-level segmenters (Wang et al., 2021b; Heo et al., 2022; Zhang et al.,
2023), which process the video either in a frame-by-frame, clip-by-clip, or whole-video manner.

Among them, clip-level segmenters draw our special interest, as it innately captures the local motion within
a short period of time (a few frames in the same clip) compared to frame-level segmenters. It also avoids
the memory constraints incurred by the video-level segmenters when processing long videos. Specifically,
clip-level segmenters first pre-process the video into a set of short clips, each consisting of just a few frames.
They then predict clip-level segmentation masks and associate them (i.e., tracking objects across clips) to
form the final temporally consistent video-level results.

Concretely, the workflow of clip-level segmenters requires two types of tracking: short-term within-clip
and long-term cross-clip tracking. Most existing clip-level segmenters (Li et al., 2023b; Shin et al., 2024)
directly extend the modern image segmentation models (Cheng et al., 2022; Yu et al., 2022b) to clip-level
segmentation without any temporal attention, while TarViS (Athar et al., 2023) leverages a straightforward
window space-time attention mechanism for within-clip tracking. However, none of the previous studies
have fully considered the potential to enhance within-clip tracking and ensure long-term consistent tracking
beyond neighboring clips. An intuitive approach to improve tracking ability is to naively calculate the affinity
between features of neighboring frames (Vaswani et al., 2017). Another unexplored direction involves tracking
objects along trajectories, where a variant of self-attention called trajectory attention (Patrick et al., 2021)
was proposed to capture object motion by computing the affinity of down-sampled embedded patches in
video classification. Nevertheless, in video segmentation, the input video is typically of high-resolution and
considerable length. Due to the quadratic complexity of attention computation concerning input size, directly
computing self-attention or trajectory attention for dense pixel features becomes computationally impractical.

To address this challenge, we demonstrate the feasibility of decomposing and detecting object motions
independently along the height (H-axis) and width (W-axis) dimensions, as illustrated in Fig. 1. This
approach sequentially computes the affinity between features of neighboring frames along the height and
width dimensions, a concept we refer to as axial-trajectory attention. The axial-trajectory attention is
designed to learn the temporal correspondences between neighboring frames by estimating the motion paths
sequentially along the height- and width-axes. By concurrently considering spatial and temporal information
in the video, this approach harnesses the potential of attention mechanisms for dense pixel-wise tracking.
Furthermore, the utilization of axial-trajectory attention can be expanded to compute the affinity between
clip object queries. Modern clip-level segmenters encode object information in clip object queries, making
this extension valuable for establishing robust long-term cross-clip tracking. These innovations serve as
the foundations for our within-clip and cross-clip tracking modules. Building upon these components, we
introduce Axial-VS, a general and simple framework for video segmentation. Axial-VS enhances a clip-level
segmenter by incorporating within-clip and cross-clip tracking modules, leading to exceptional temporally
consistent segmentation results. This comprehensive approach showcases the efficacy of axial-trajectory
attention in addressing both short-term within-clip and long-term cross-clip tracking requirements.

We instantiate Axial-VS by employing Video-kMaX (Shin et al., 2024) or Tube-Link (Li et al., 2023b) as
the clip-level segmenters, yielding a significant improvement on video panoptic segmentation (Kim et al.,
2020) and video instance segmentation (Yang et al., 2019), respectively. Without bells and whistles, Axial-VS
improves over Video-kMaX (Shin et al., 2024) by 8.5% and 5.2% VPQ on VIPSeg (Miao et al., 2022) with
ResNet50 (He et al., 2016) and ConvNeXt-L (Liu et al., 2022b), respectively. Moreover, it also achieves 3.5%
VPQ improvement on VIPSeg compared to the state-of-the-art model DVIS (Zhang et al., 2023), when using
ResNet50. Besides, Axial-VS can also boost the strong baseline Tube-Link (Li et al., 2023b) by 0.9% AP,
4.7% APlong, and 6.5% AP on Youtube-VIS-2021 (Yang et al., 2021a), Youtube-VIS-2022 (Yang et al., 2022),
and OVIS (Qi et al., 2022) with Swin-L (Liu et al., 2021).
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a) Selected reference point
at frame 1

b) axial-trajectory attention
at frame 2

c) axial-trajectory attention
at frame 3

d) axial-trajectory attention
at frame 4

Figure 1: Visualization of Learned Axial-Trajectory Attention. In this short clip depicting the action ‘playing
basketball’, the basketball location at frame 1 is selected as the reference point (mark in red). We multiply the learned
height and width axial-trajectory attentions and overlay them on frame 2, 3 and 4 to visualize the trajectory of the
reference point over time. As observed, the axial-trajectory attention can capture the basketball’s motion path.

2 Related Work

Attention for Video Classification The self-attention mechanism (Vaswani et al., 2017) is widely explored
in the modern video transformer design (Bertasius et al., 2021; Arnab et al., 2021; Neimark et al., 2021; Fan
et al., 2021; Patrick et al., 2021; Liu et al., 2022a; Wang & Torresani, 2022) to reason about the temporal
information for video classification. While most works treat time as just another dimension and directly
apply global space-time attention, the divided space-time attention (Bertasius et al., 2021) applies temporal
attention and spatial attention separately to reduce the computational complexity compared to the standard
global space-time attention. Trajectory attention (Patrick et al., 2021) learns to capture the motion path of
each query along the time dimension. Deformable video transformer (Wang & Torresani, 2022) exploits the
motion displacements encoded in the video codecs to guide where each query should attend in their deformable
space-time attention. However, most of the aforementioned explorations cannot be straightforwardly extended
to video segmentation due to the quadratic computational complexity and the high-resolution input size of
videos intended for segmentation. In this study, we innovatively suggest decomposing object motion into
height and width-axes separately, thereby incorporating the concept of axial-attention (Ho et al., 2019; Huang
et al., 2019; Wang et al., 2020). This leads to the proposal of axial-trajectory attention, effectively enhancing
temporal consistency while maintaining manageable computational costs.

Attention for Video Segmentation The investigation into attention mechanisms for video segmentation
is under-explored, primarily hindered by the high-resolution input size of videos. Consequently, most
existing works directly utilizes the modern image segmentation models (Cheng et al., 2022) to produce
frame-level or clip-level predictions, while associating the cross-frame or cross-clip results through Hungarian
Matching (Kuhn, 1955). VITA (Heo et al., 2022) utilizes window-based self-attention to effectively capture
relations between cross-frame object queries in the object encoder. DVIS (Zhang et al., 2023) similarly
investigates the use of standard self-attention to compute the affinity between cross-frame object queries,
resulting in improved associating outcomes. TarViS (Athar et al., 2023) introduces a window space-time
attention mechanism at the within-clip stage. Axial-VS extends these concepts by introducing the computation
of axial-trajectory attention along object motion trajectories sequentially along the height and width axes.
This operation is considered more effective for improving within-clip tracking capabilities and facilitating
simultaneous reasoning about temporal and spatial relations. Moreover, we apply axial-trajectory attention
to object queries to efficiently correlate cross-clip predictions, thereby enhancing cross-clip consistency.

Video Segmentation Video segmentation aims to achieve consistent pixel-level scene understanding
throughout a video. The majority of studies in this field primarily focus on video instance segmentation,
addressing the challenges posed by ‘thing’ instances. Additionally, video panoptic segmentation is also crucial,
emphasizing a comprehensive understanding that includes both ‘thing’ and ‘stuff’ classes. Both video instance
and panoptic segmentation employ similar tracking modules, and thus we briefly introduce them together.
Based on the input manner, they can be roughly categorized into frame-level segmenters (Yang et al., 2019;
Kim et al., 2020; Yang et al., 2021b; Ke et al., 2021; Fu et al., 2021; Li et al., 2022; Wu et al., 2022c; Huang
et al., 2022; Heo et al., 2023; Liu et al., 2023; Ying et al., 2023; Li et al., 2023a), clip-level segmenters (Athar
et al., 2020; Qiao et al., 2021; Hwang et al., 2021; Wu et al., 2022a; Mei et al., 2022; Athar et al., 2023;
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Li et al., 2023b; Shin et al., 2024), and video-level segmenters (Wang et al., 2021b; Lin et al., 2021; Wu
et al., 2022b; Heo et al., 2022; Zhang et al., 2023). Specifically, TubeFormer (Kim et al., 2022) tackles
multiple video segmentation tasks in a unified manner (Wang et al., 2021a), while TarVIS (Athar et al.,
2023) proposes task-independent queries. Tube-Link (Li et al., 2023b) exploits contrastive learning to better
align the cross-clip predictions. Video-kMaX (Shin et al., 2024) extends the image segmenter (Yu et al.,
2022b) for clip-level video segmentation. VITA (Heo et al., 2022) exhibits a video-level segmenter framework
by introducing a set of video queries. DVIS (Zhang et al., 2023) proposes a referring tracker to denoise
the frame-level predictions and a temporal refiner to reason about long-term tracking relations. Our work
focuses specifically on improving clip-level segmenters, and is thus mostly related to the clip-level segmenters
Video-kMaX (Shin et al., 2024) and Tube-Link (Li et al., 2023b). Building on top of them, Axial-VS proposes
the within-clip and cross-clip tracking modules for enhancing the temporal consistency within each clip and
over the whole video, respectively. Our cross-clip tracking module is similar to VITA (Heo et al., 2022)
and DVIS (Zhang et al., 2023) in the sense that object queries are refined to obtain the final video outputs.
However, our model builds on top of clip-level segmenters instead of frame-level segmenters, and we use
axial-trajectory attention to refine the object queries without extra complex designs, while VITA introduces
another set of video queries and DVIS additionally cross-attends to the queries cashed in the memory.

3 Method

In this section, we briefly overview the clip-level video segmenter framework in Sec. 3.1. We then introduce
the proposed within-clip tracking and cross-clip tracking modules in Sec. 3.2 and Sec. 3.3, respectively.

3.1 Video Segmentation with Clip-level Segmenter

Formulation of Video Segmentation Recent works (Kim et al., 2022; Li et al., 2022) have unified
different video segmentation tasks as a simple set prediction task (Carion et al., 2020), where the input video
is segmented into a set of tubes (a tube is obtained by linking segmentation masks along the time axis) to
match the ground-truth tubes. Concretely, given an input video V ∈ RL×3×H×W with L represents the video
length and H , W represent the frame height and width, video segmentation aims at segmenting it into a set
of N class-labeled tubes:

{ŷi} = {(m̂i, p̂i(c))}N
i=1, (1)

where m̂i ∈ [0, 1]L×H×W and p̂i(c) represent the predicted tube and its corresponding semantic class probability.
The ground-truth set containing M class-labeled tubes is similarly represented as {yi} = {(mi, pi(c))}M

i=1.
These two sets are matched through Hungarian Matching (Kuhn, 1955) during training to compute the losses.

Formulation of Clip-Level Video Segmentation The above video segmentation formulation is theoreti-
cally applicable to any length L of video sequences. However, in practice, it is infeasible to fit the whole video
into modern large network backbones during training. As a result, most works exploit frame-level segmenter
or clip-level segmenter (a clip is a short video sequence typically of two or three frames) to get frame-level or
clip-level tubes first and further associate them to obtain the final video-level tubes. In this work, we focus
on the clip-level segmenter, since it better captures local temporal information between frames in the same
clip. Formally, we split the whole video V into a set of non-overlapping clips: vi ∈ RT×3×H×W , where T
represents the length of each clip in temporal dimension (assuming that L is divisible by T for simplicity; if
not, we simply duplicate the last frame). For the clip-level segmenter, we require T ≥ 2.

Overview of Proposed Axial-VS Given the independently predicted clip-level segmentation, we propose
Axial-VS, a meta-architecture that builds on top of an off-the-shelf clip-level segmenter (e.g., Video-kMaX (Shin
et al., 2024) or Tube-Link (Li et al., 2023b)) to generate the final temporally consistent video-level segmentation
results. Building on top of the clip-level segmenter, Axial-VS contains two additional modules: within-clip
tracking module and cross-clip tracking module, as shown in Fig. 2. We detail each module in the following
subsections, and choose Video-kMaX as the baseline for simplicity in describing the detailed designs.
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Figure 2: Overview of Axial-VS, which builds two components on top of a clip-level segmenter (blue): the within-clip
tracking and cross-clip tracking modules (orange). Both modules exploit the axial-trajectory attention to enhance
temporal consistency. We obtain video features by concatenating all clip features output by the pixel decoder (totally
K clips), and video prediction by multiplying (

⊗
) video features and refined clip object queries.

Figure 3: Within-clip tracking module takes input clip features extracted by the network backbone, iteratively
stacks Multi-Scale Deformable (MSDeform) Attention and axial-trajectory attention (sequentially along H- and
W-axes) for Nw times, and outputs the spatially and temporally consistent clip features.
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3.2 Within-Clip Tracking Module

As shown in Fig. 3, the main component of the within-clip tracking module is the proposed axial-trajectory
attention, which decomposes the object motion in the height-axis and width-axis, and effectively learns to
track objects across the frames in the same clip (thus called within-clip tracking). In the module, we also
enrich the features by exploiting the multi-scale deformable attention (Zhu et al., 2020) to enhance the spatial
information extraction. We explain the module in detail below.

Axial-Trajectory Attention Trajectory attention (Patrick et al., 2021) was originally proposed to capture
the object motion information contained in the video for the classification task. However, unlike video
classification, where input video is usually pre-processed into a small set of tokens and the output prediction
is a single label, video segmentation requires dense prediction (i.e., per pixel) results, making it infeasible to
directly apply trajectory attention, which has quadratic complexity proportional to the input size. To unleash
the potential of tracking objects through attention in video segmentation, we propose axial-trajectory attention
that tracks objects along axial trajectories, which not only effectively captures object motion information but
also reduces the computational cost.

Formally, given an input video clip consisting of T frames, we forward it through a frame-level network
backbone (e.g., ConvNeXt (Liu et al., 2022b)) to extract the feature map F ∈ RT×D×H×W , where D, H , W
stand for the dimension, height and width of the feature map, respectively. We note that the feature map
F is extracted frame-by-frame via the network backbone, and thus no temporal information exchanges
between frames. We further reshape the feature into Fh ∈ RW×TH×D to obtain a sequence of TH pixel
features xth ∈ RD. Following (Vaswani et al., 2017), we linearly project xth to a set of query-key-value
vectors qth, kth, vth ∈ RD. We then perform axial-attention along trajectories (i.e., the probabilistic path
of a point between frames). Specifically, we choose a specific time-height position th as the reference point
to illustrate the computation process of axial-trajectory attention. After obtaining its corresponding query
qth, we construct a set of trajectory points ỹtt′h which represents the pooled information weighted by the
trajectory probability. The axial-trajectory extends for the duration of the clip, and its point ỹtt′h ∈ RD at
different times t′ is defined as:

ỹtt′h =
∑
h′

vt′h′ · exp ⟨qth, kt′h′⟩∑
h exp ⟨qth, kt′h⟩

. (2)

Note that this step computes the axial-trajectory attention in H-axis (index h′), independently for each
frame. It finds the axial-trajectory path of the reference point th across frames t′ in the clip by comparing
the reference point’s query qth to the keys kt′h′ , only along the H-axis.

To reason about the intra-clip connections, we further pool the trajectories over time t′. Specifically, we
linearly project the trajectory points and obtain a new set of query-key-value vectors:

q̃th = Wqỹtth, k̃tt′h = Wkỹtt′h, ṽtt′h = Wvỹtt′h, (3)

where Wq, Wk, and Wv are the linear projection matrices for query, key, and value. We then update the
reference point at time-height th position by applying 1D attention along the time t′:

yth =
∑

t′

ṽtt′h · exp ⟨q̃th, k̃tt′h⟩∑
t exp ⟨q̃th, k̃tth⟩

. (4)

With the above update rules, we propagate the motion information in H -axis in the video clip. To capture
global information, we further reshape the feature into Fw ∈ RH×TW×D and apply the same axial-trajectory
attention (but along the W -axis) consecutively to capture the width dynamics as well.

The proposed axial-trajectory attention (illustrated in Fig. 4) effectively reduces the computational complexity
of original trajectory attention from O(T 2H2W 2) to O(T 2H2W + T 2W 2H), allowing us to apply it to the
dense video feature maps, and to reason about the motion information across frames in the same clip.

Multi-Scale Attention To enhance the features spatially, we further adopt the multi-scale deformable
attention (Zhu et al., 2020) for exchanging information at different scales of feature. Specifically, we apply the
multi-scale deformable attention to the feature map F (extracted by the network backbone) frame-by-frame,
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Figure 4: Illustration of Axial-Trajectory Attention (only Height-axis axial-trajectory attention is shown for
simplicity), which includes two steps: computing the axial-trajectories ỹ along Height-axis (Eq. 2) of the dense pixel
feature maps x ∈ RT H×D, where T , H, and D denote the clip length, feature height and channels, respectively and
then computing temporal attention along the axial-trajectories (Eq. 4) to obtain the temporally consistent features y.

Figure 5: Cross-clip tracking module refines K sets of clip object queries by performing axial-trajectory attention
and temporal atrous spatial pyramid pooing (Temporal-ASPP) for Nc times.

which effectively exchanges the information across feature map scales (stride 32, 16, and 8) for each frame. In
the end, the proposed within-clip tracking module is obtained by iteratively stacking multi-scale deformable
attention and axial-trajectory attention (for Nw times) to ensure that the learned features are spatially
consistent across the scales and temporally consistent across the frames in the same clip.

Transformer Decoder After extracting the spatially and temporally enhanced features, we follow typical
video mask transformers (e.g., Video-kMaX (Shin et al., 2024) or Tube-Link (Li et al., 2023b)) to produce
clip-level predictions, where clip object queries Ck ∈ RN×D (for k-th clip) are iteratively refined by multiple
transformer decoder layers (Carion et al., 2020). The resulting clip object queries are used to generate a set
of N class-labeled tubes within the clip, as described in Sec. 3.1.

Clip-Level (Near-Online) Inference With the above within-clip tracking module, our clip-level segmenter
is capable of segmenting the video in a near-online fashion (i.e., clip-by-clip). Unlike Video-kMaX (Shin et al.,
2024) which takes overlapping clips as input and uses video stitching (Qiao et al., 2021) to link predicted
clip-level tubes, our method simply uses the Hungarian Matching (Kuhn, 1955) to associate the clip-level
tubes via the clip object queries (similar to MinVIS (Huang et al., 2022); but we work on the clip-level,
instead of frame-level), since our input clips are non-overlapping.

3.3 Cross-Clip Tracking Module

Though axial-trajectory attention along with the multi-scale deformable attention effectively improves the
within-clip tracking ability, the inconsistency between clips (i.e., beyond the clip length T ) still remains a
challenging problem, especially under the fast-moving or occluded scenes. To address these issues, we further
propose a cross-clip tracking module to refine and better associate the clip-level predictions. Concretely, given
all the clip object queries {Ck}K

k=1 ∈ RKN×D of a video (which is divided into K = L/T non-overlapping
clips, and k-th clip has its own clip object queries Ck ∈ RN×D), we first use the Hungarian Matching to align
the clip object queries as the initial tracking results (i.e., “clip-level inference” in Sec. 3.2). Subsequently,
these results are refined by our proposed cross-clip tracking module to capture temporal connections across
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Figure 6: Illustration of Temporal-ASPP, which operates on the clip object queries and includes three parallel
atrous convolution with different atrous rates to aggregate local temporal cross-clip connections across different time
spans followed by 1x1 convolution and layer norm to obtain the final updated clip object queries.

the entire video, traversing all clips. As shown in Fig. 5, the proposed cross-clip tracking module contains
two operations: axial-trajectory attention and Temporal Atrous Spatial Pyramid Pooling (Temporal-ASPP).
We elaborate on each operation in detail below.

Axial-Trajectory Attention For k-th clip, the clip object queries Ck encode the clip-level tube predictions
(i.e., each query in Ck generates the class-labeled tube for a certain object in k-th clip). Therefore, associating
clip-level prediction results is similar to finding the trajectory path of object queries in the whole video.
Motivated by this observation, we suggest leveraging axial-trajectory attention to capture whole-video
temporal connections between clips. This can be accomplished by organizing all clip object queries in a
sequence based on the temporal order (i.e., clip index) and applying axial-trajectory attention along the
sequence to infer global cross-clip connections. Formally, for a video divided into K clips (and each clip is
processed by N object queries), each object query Ckn ∈ {Ck} is first projected into a set of query-key-value
vectors qkn, kkn, vkn ∈ RD. Then we compute a set of trajectory queries Z̃kk′n by calculating the probabilistic
path of each object query:

Z̃kk′n =
∑
k′

vk′n′ · exp ⟨qkn, kk′n′⟩∑
n exp ⟨qkn, kk′n⟩

. (5)

After further projecting the trajectory queries Z̃kk′n into q̃kn, k̃kk′n, ṽkk′n, we aggregate the cross-clip
connections along the trajectory path of object queries through:

Zkn =
∑
k′

ṽkk′n · exp ⟨q̃kn, k̃kk′n⟩∑
k exp ⟨q̃kn, k̃kkn⟩

. (6)

Temporal-ASPP While the above axial-trajectory attention reasons about the whole-video temporal
connections, it can be further enriched by a short-term tracking module. Motivated by the success of the
atrous spatial pyramid pooling (ASPP (Chen et al., 2017a; 2018)) in capturing spatially multi-scale context
information, we extend it to the temporal domain. Specifically, our Temporal-ASPP module contains three
parallel temporal atrous convolutions (Chen et al., 2015; 2017b) with different rates applied to the all clip
object queries Z for capturing motion at different time spans, as illustrated in Fig. 6.

Cross-Clip Tracking Module The proposed cross-clip tracking module iteratively stacks the axial-
trajectory attention and Temporal-ASPP to refine all the clip object queries {Ck}K

k=1 of a video, obtaining a
temporally consistent prediction at the video-level.

Video-Level (Offline) Inference With the proposed within-clip and cross-clip tracking modules, built
on top of any clip-level video segmenter, we can now inference the whole video in an offline fashion by
exploiting all the refined clip object queries. We first obtain the video features by concatenating all clip
features produced by the pixel decoder (totally K clips). The predicted video-level tubes are then generated
by multiplying all the clip object queries with the video features (similar to image mask transformers (Wang
et al., 2021a; Yu et al., 2022a)). To obtain the predicted classes for the video-level tubes, we exploit another
1D convolution layer (i.e., the “Temporal 1D Conv” in the top-right of Fig. 5) to generate the temporally
weighted class predictions, motivated by the fact that the object queries on the trajectory path should have
the same class prediction.
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Table 1: Video Panoptic Segmentation (VPS) results. We reproduce baseline Video-kMaX (column RP)
by taking non-overlapping clips as input and replacing their hierarchical matching scheme with simple Hungarian
Matching on object queries. We then compare our Axial-VS with other state-of-the-art works. Reported results of
Axial-VS are averaged over 3 runs. WC: Our Within-Clip tracking module. CC: Our Cross-Clip tracking module.

a) [VPS] Effects of proposed modules on VIPSeg val set
method backbone RP WC CC VPQ VPQTh VPQSt

Video-kMaX ResNet50 - - - 38.2 - -
Video-kMaX ResNet50 ✓ - - 42.7 42.5 42.9
Axial-VS ResNet50 ✓ ✓ - 46.1 45.6 46.6
Axial-VS ResNet50 ✓ ✓ ✓ 46.7 46.7 46.6
Video-kMaX ConvNeXt-L - - - 51.9 - -
Video-kMaX ConvNeXt-L ✓ - - 52.7 54.1 51.3
Axial-VS ConvNeXt-L ✓ ✓ - 56.2 58.4 54.0
Axial-VS ConvNeXt-L ✓ ✓ ✓ 57.1 59.3 54.8
Axial-VS ConvNeXtV2-L ✓ ✓ - 57.7 58.3 57.1
Axial-VS ConvNeXtV2-L ✓ ✓ ✓ 58.0 58.8 57.2

b) [VPS] Comparisons with others on VIPSeg val set
method backbone VPQ VPQTh VPQSt

online/near-online methods
TarVIS (Athar et al., 2023) ResNet50 33.5 39.2 28.5
DVIS (Zhang et al., 2023) ResNet50 39.2 39.3 39.0
TarVIS (Athar et al., 2023) Swin-L 48.0 58.2 39.0
DVIS (Zhang et al., 2023) Swin-L 54.7 54.8 54.6
Axial-VS w/ Video-kMaX ResNet50 46.1 45.6 46.6
Axial-VS w/ Video-kMaX ConvNeXt-L 56.2 58.4 54.0
Axial-VS w/ Video-kMaX ConvNeXtV2-L 57.7 58.3 57.1
offline methods
DVIS (Zhang et al., 2023) ResNet50 43.2 43.6 42.8
DVIS (Zhang et al., 2023) Swin-L 57.6 59.9 55.5
Axial-VS w/ Video-kMaX ResNet50 46.7 46.7 46.6
Axial-VS w/ Video-kMaX ConvNeXt-L 57.1 59.3 54.8
Axial-VS w/ Video-kMaX ConvNeXtV2-L 58.0 58.8 57.2

4 Experimental Results

We evaluate Axial-VS based on two different clip-level segmenters on four widely used video segmentation
benchmarks to show its generalizability. Specifically, for video panoptic segmentation (VPS), we build
Axial-VS based on Video-kMaX (Shin et al., 2024) and report performance on VIPSeg (Miao et al., 2022).
We also build Axial-VS on top of Tube-Link (Li et al., 2023b) for video instance segmentation (VIS) and
report the performance on Youtube-VIS 2021 (Yang et al., 2021a), 2022 (Yang et al., 2022), and OVIS (Qi
et al., 2022). Since Tube-Link is built on top of Mask2Former (Cheng et al., 2022) and thus already contains
six layers of Multi-Scale Deformable Attention (MSDeformAttn), we simplify our within-clip tracking module
by directly inserting axial-trajectory attention after each original MSDeformAttn. We follow the original
setting of Video-kMaX and Tube-Link to use the same training losses. Note that when training the cross-clip
tracking module, both the clip-level segmenter and the within-clip tracking module are frozen due to memory
constraint. We utilize Video Panoptic Quality (VPQ), as defined in VPSNet (Kim et al., 2020), and Average
Precision (AP), as defined in MaskTrack R-CNN (Yang et al., 2019), for evaluating the models on VPS and
VIS, respectively. We provide more implementation details in the appendix.

4.1 Improvements over Baselines

We first provide a systematic study to validate the effectiveness of the proposed modules.

Video Panoptic Segmentation (VPS) Tab. 1a summarizes the improvements over the baseline Video-
kMaX (Shin et al., 2024) on the VIPSeg dataset. For a fair comparison, we first reproduce Video-kMaX
in our PyTorch framework (which was originally implemented in TensorFlow (Weber et al., 2021a)). Our
re-implementation yields significantly improved VPQ results compared to the original model, with a 4.5%
and 0.8% VPQ improvement using ResNet50 and ConvNeXt-L, respectively, establishing a solid baseline.
As shown in the table, using the proposed within-clip tracking module improves over the reproduced solid
baseline by 3.4% and 3.5% VPQ with ResNet50 and ConvNeXt-L, respectively. Employing the proposed
cross-clip tracking module further improves the performance by additional 0.6% and 0.9% VPQ with ResNet50
and ConvNeXt-L, respectively. Finally, using the modern ConvNeXtV2-L brings another 1.5% and 0.9%
improvements, when compared to the ConvNeXt-L counterparts.

Video Instance Segmentation (VIS) Tab. 2 summarizes the improvements over the baseline Tube-
Link (Li et al., 2023b) on the Youtube-VIS-21, -22, and OVIS datasets. Similarly, for a fair comparison,
we first reproduce the Tube-Link results, using their official code-base. Our reproduction yields similar
performances to the original model, except OVIS, where we observe a gap of 4.1% AP for ResNet50. On
Youtube-VIS-21 (Tab. 2a), the proposed within-clip tracking module improves the reproduced baselines by
0.6% and 0.6% for ResNet50 and Swin-L, respectively. Using our cross-clip tracking module additionally
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Table 2: Video Instance Segmentation (VIS) results. We reproduce baseline Tube-Link (column RP) with their
official code-base. We then build on top of it with our Within-Clip tracking module (WC) and Cross-Clip tracking
module (CC). For Youtube-VIS-22, we mainly report APlong (for long videos) and see appendix for APshort (for short
videos) and APall (average of them). Reported results are averaged over 3 runs. §: Our best attempt to reproduce
Tube-Link’s performances (25.4%), lower than the results (29.5%) reported in the paper. Their provided checkpoints
also yield lower results (26.7%). N/A: Not available from their code-base, but we have attempted to reproduce.

a) [VIS] Youtube-VIS-21 val set
method backbone RP WC CC AP
Tube-Link ResNet50 - - - 47.9
Tube-Link ResNet50 ✓ - - 47.8
Axial-VS ResNet50 ✓ ✓ - 48.4
Axial-VS ResNet50 ✓ ✓ ✓ 48.5
Tube-Link Swin-L - - - 58.4
Tube-Link Swin-L ✓ - - 58.2
Axial-VS Swin-L ✓ ✓ - 58.8
Axial-VS Swin-L ✓ ✓ ✓ 59.1

b) [VIS] Youtube-VIS-22 val set
method backbone RP WC CC APlong

Tube-Link ResNet50 - - - 31.1
Tube-Link ResNet50 ✓ - - 32.1
Axial-VS ResNet50 ✓ ✓ - 36.5
Axial-VS ResNet50 ✓ ✓ ✓ 37.0
Tube-Link Swin-L - - - 34.2
Tube-Link Swin-L ✓ - - 34.2
Axial-VS Swin-L ✓ ✓ - 35.9
Axial-VS Swin-L ✓ ✓ ✓ 38.9

c) [VIS] OVIS val set
method backbone RP WC CC AP
Tube-Link ResNet50 - - - 29.5
Tube-Link ResNet50 ✓ - - 25.4§

Axial-VS ResNet50 ✓ ✓ - 27.6
Axial-VS ResNet50 ✓ ✓ ✓ 28.3
Tube-Link Swin-L - - - N/A
Tube-Link Swin-L ✓ - - 33.3
Axial-VS Swin-L ✓ ✓ - 39.1
Axial-VS Swin-L ✓ ✓ ✓ 39.8

improves the performance by 0.1% and 0.3% for ResNet50 and Swin-L, respectively. On Youtube-VIS-22
(Tab. 2b), our proposed modules bring more significant improvements, showing our method’s ability to handle
the challenging long videos in the dataset. Specifically, using our within-clip tracking module shows 4.4% and
1.7% APlong for ResNet50 and Swin-L, respectively. Our cross-clip tracking module further improves the
performances by 0.5% and 3.0% APlong for ResNet50 and Swin-L, respectively. On OVIS (Tab. 2c), even
though we did not successfully reproduce Tube-Link (using their provided config files), we still observe a
significant improvement brought by the proposed modules. Particularly, our within-clip tracking modules
improves the baselines by 2.2% and 5.8% AP for ResNet50 and Swin-L, respectively. Another improvements
of 0.7% and 0.7% AP for ResNet50 and Swin-L can be attained with the proposed cross-clip tracking module.
To summarize, our proposed modules bring more remarkable improvements for long and challenging datasets.

4.2 Comparisons with Other Methods

After analyzing the improvements brought by the proposed modules, we now move on to compare our
Axial-VS with other state-of-the-art methods.

Video Panoptic Segmentation (VPS) As shown in Tab. 1b, in the online/near-online setting, when
using ResNet50, our Axial-VS significantly outperforms TarVIS (Athar et al., 2023) (which co-trains and
exploits multiple video segmentation datasets) by a large margin of 12.6% VPQ. Axial-VS also outperforms
the recent ICCV 2023 work DVIS (Zhang et al., 2023) by a healthy margin of 6.9% VPQ. When using the
stronger backbones, Axial-VS with ConvNeXt-L still outperforms TarVIS and DVIS with Swin-L by 8.2%
and 1.5% VPQ, respectively. The performance is further improved by using the modern ConvNeXtV2-L
backbone, attaining 57.7% VPQ. In the offline setting, Axial-VS with ResNet50 outperforms DVIS by 3.5%
VPQ, while Axial-VS with ConvNeXt-L performs comparably to DVIS with Swin-L. Finally, when using the
modern ConvNeXtV2-L, Axial-VS achieves 58.0% VPQ, setting a new state-of-the-art.

Video Instance Segmentation (VIS) Tab. 3 compares Axial-VS with other state-of-the-art methods for
VIS. On Youtube-VIS-21 (Tab. 3a), Axial-VS exhibits a slight performance advantage over TarVIS (Athar
et al., 2023) and DVIS (Zhang et al., 2023) with an improvement of 0.1% and 1.1% AP, respectively. On
Youtube-VIS-22 (Tab. 3b), Axial-VS outperforms DVIS in both online/near-online and offline settings by
5.3% and 1.1% APlong, respectively.

4.3 Ablation Studies

We conduct ablation studies on VIPSeg, leveraging ResNet50 due to its scene diversity and long-length videos.
Here, we present ablations on attention operations and cross-clip tracking design, as well as hyper-parameters
such as the number of layers in the within-clip tracking and cross-clip tracking modules, clip length and
sampling range. We further provide GFlops comparisons, more visualizations and failure cases in the appendix.
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Table 3: Video Instance Segmentation (VIS) results. We compare our Axial-VS with other state-of-the-art
works on Youtube-VIS-21 and Youtube-VIS-22 val set. Reported results of Axial-VS are averaged over 3 runs. ∗: All
results are reproduced by us using their official checkpoints.

a) [VIS] Youtube-VIS-21 val set
method backbone AP
online/near-online methods
TarVIS (Athar et al., 2023) ResNet50 48.3
Axial-VS ResNet50 48.4
offline methods
VITA (Heo et al., 2022) ResNet50 45.7
DVIS (Zhang et al., 2023) ResNet50 47.4
Axial-VS ResNet50 48.5

b) [VIS] Youtube-VIS-22 val set
method backbone APlong

online/near-online methods
DVIS (Zhang et al., 2023)∗ ResNet50 31.2
Axial-VS ResNet50 36.5
offline methods
VITA (Heo et al., 2022)∗ ResNet50 31.9
DVIS (Zhang et al., 2023)∗ ResNet50 35.9
Axial-VS ResNet50 37.0

Table 4: Ablations on attention operations in the within-clip tracking module and cross-clip tracking
design. For the within-clip tracking module, we compare Joint Space-Time Attention (Vaswani et al., 2017), Divided
Space-Time Attention (Bertasius et al., 2021), Multi-Scale Deformable Attention (Zhu et al., 2020) (MSDeformAttn),
Axial-Trajectory Attention, and TarVIS Temporal Neck (Athar et al., 2023) (i.e., MSDeformAttn + Window Space-
Time Attention). Visualizations are provided in Fig. 7 to illustrate the differences between the compared attentions.
For the cross-clip tracking module, we compare VITA (Heo et al., 2022) and the proposed cross-clip tracking module.
Reported results are averaged over 3 runs. −: Not using any operations. Our final setting is marked in grey.

a) [Ablations] Attention in the within-clip tracking
attention operations VPQ
- 42.7
Joint Space-Time Attn (Vaswani et al., 2017) 43.2
Divided Space-Time Attn (Bertasius et al., 2021) 43.6
MSDeformAttn (Zhu et al., 2020) 44.5
Axial-Trajectory Attn 44.7
MSDeformAttn + Window Space-Time Attn (Athar et al., 2023) 44.9
MSDeformAttn + Axial-Trajectory Attn 46.1

b) [Ablations] Cross-clip tracking design

cross-clip tracking design video query encoder decoder VPQ

- - - - 46.1

VITA (Heo et al., 2022) ! ! ! 46.3

cross-clip tracking module % ! % 46.7

Attention Operations in Within-Clip Tracking Module In Tab. 4a, we ablate the attention operations
used in the within-clip tracking module. To begin with, we utilize joint space-time attention (Vaswani et al.,
2017), achieving a performance of 43.2% VPQ, which is a 0.5% improvement over the baseline. Subsequently,
we apply divided space-time attention (Bertasius et al., 2021) (i.e., decomposing space-time attention into
space- and time-axes), resulting in a performance of 43.6% VPQ. This represents a further improvement
of 0.4% VPQ over joint space-time attention, potentially due to its larger learning capacity, incorporating
distinct learning parameters for temporal and spatial attention. Afterwards, we employ either only Multi-Scale
Deformable Attention (Zhu et al., 2020) (MSDeformAttn) for spatial attention or only the proposed Axial-
Trajectory Attention (AxialTrjAttn), sequentially along H- and W -axes for temporal attention, obtaining
the performance of 44.5% and 44.7% VPQ, respectively. Replacing the attention operations with TarVIS
Temporal Neck (Athar et al., 2023) (i.e., MSDeformAttn + Window Space-Time Attention) increases the
performance to 44.9% VPQ. Finally, if we change the attention scheme to the proposed MSDeformAttn +
AxialTrjAttn, it brings another performance gain of 1.2% over TarVIS’s design, achieving 46.1% VPQ. To
better understand the distinctions among the four space-time self-attention schemes introduced above, we
illustrate them in Fig. 7. On the temporal side, “Joint Space-Time Attention” simply attends to all pixels,
while both “Divided Space-Time Attention” and “Window Space-Time Attention” focus on a fixed region
across time. In contrast, our proposed axial-trajectory attention effectively tracks the object across time,
capturing more accurate information and yielding more temporally consistent features.

Tracking Design in Cross-Clip Tracking Module In Tab. 4b, we ablate the cross-clip tracking design
in the cross-clip tracking module. We experiment with the design of VITA (Heo et al., 2022) to learn an
additional set of video object queries by introducing a decoder for decoding information from encoded clip
queries, yielding 46.3% VPQ, with a slight gain of 0.2% over the baseline. Replacing the VITA design with
the proposed simple encoder-only and video-query-free design leads to a better performance of 46.7% VPQ.

Within-Clip Tracking Module In Tab. 5, we ablate the design choices of the proposed within-clip
tracking module. To begin with, we employ one MSDeformAttn and one TrjAttn (Trajectory Attention)
with Nw = 2, obtaining the performance of 45.3% VPQ (+2.6% over the baseline). Replacing the TrjAttn
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Figure 7: Illustration of the four space-time self-attention schemes studied in this work. For clarity, we
represent the reference point at frame 1 in red and display its space-time attended pixels under each scheme in non-red
colors. Pixels without color are not involved in the self-attention computation of the reference point. Different colors
within a scheme represent attentions applied along distinct dimensions. Note that the visualizations of Multi-Scale
Deformable Attention (MSDeformAttn) and Axial-Trajectory Attention are simplified for improving visual clarity.

Table 5: Ablation on within-clip tracking module. We vary the number of Multi-Scale Deformable Attention
(#MSDeformAttn), number of Trajectory Attention (#TrjAttn), or number of Axial-Trajectory Attention (#AxialTr-
jAttn). Nw denotes the number of blocks (i.e., repetitions). Numbers are averaged over 3 runs. −: Not using any
operations. N/A: Not avaliable due to insufficient GPU memory capacity. The final setting is marked in grey.

#MSDeformAttn #TrjAttn #AxialTrjAttn Nw VPQ
- - - - 42.7
1 1 - 2 45.3
1 2 - 2 N/A
1 - 1 2 45.4
1 - 2 1 44.7
1 - 2 2 46.1
1 - 2 3 45.2
1 - 3 2 45.7
1 - 4 2 45.5
2 - 4 1 45.8

with AxialTrjAttn yields a comparable performance of 45.4%. We note that it will be Out-Of-Memory, if we
stack two TrjAttn layers in a V100 GPU. Stacking two AxialTrjAttn layers in each block leads to our final
setting with 46.1%. Increasing or decreasing the number of blocks Nw degrades the performance slightly. If
we employ one more AxialTrjAttn layers per block, the performance drops by 0.4%. Finally, if we change
the iterative stacking scheme to a sequential manner (i.e., stacking two MSDeformAttn, followed by four
AxialTrjAttn), the performance also decreases slightly by 0.3%.

Cross-Clip Tracking Module Tab. 6 summarizes our ablation studies on the design choices of the
proposed cross-clip tracking module. Particularly, in Tab. 6a, we adopt different operations in the module.
Using self-attention (SelfAttn), instead of axial-trajectory attention (AxialTrjAttn) degrades the performance
by 0.3% VPQ. Removing the Temporal-ASPP operation also decreases the performance by 0.2%. In Tab. 6b,
we ablate the atrous rates used in the three parallel temporal convolutions of the proposed Temporal-ASPP.
Using atrous rates (1, 2, 3) (i.e., rates set to 1, 2, and 3 for those three convolutions, respectively) leads to
the best performance. In Tab. 6c, we find that using Nc = 4 blocks in the cross-clip tracking module yields
the best result.
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Table 6: Ablation on cross-clip tracking module. We vary operations in the block, Temporal-ASPP (atrous
rates), and number of blocks Nc. Numbers are averaged over 3 runs. The final setting is marked in grey.

a) Operations
SelfAttn AxialTrjAttn Temporal-ASPP VPQ
! ! 46.4

! ! 46.7
! 46.5

b) Temporal-ASPP
atrous rates VPQ

(1, 2, 3) 46.7
(1, 2, 5) 46.5
(1, 3, 5) 46.4

c) Number of blocks Nc

Nc VPQ
4 46.7
6 46.7
8 46.2

Table 7: Ablation on clip length and clip sampling range. We vary the clip length T and sampling range (i.e.,
frame index interval) of a clip. Numbers are averaged over 3 runs. The final setting is marked in grey.

a) Clip length
clip length Video-kMaX Axial-VS (near-online) Axial-VS (offline)

2 42.7 46.1 46.7
3 42.1 45.1 45.5
4 41.4 44.2 44.7

b) Clip sampling range
range Axial-VS (near-online)

±1 46.1
±3 45.8
±10 43.9

Clip Length and Clip Sampling Range Tab. 7 summarizes our ablation studies on the clip length T
(i.e., number of frames in a clip) and clip sampling range (i.e., frame index interval). Concretely, in Tab. 7a,
we adopt different clip sizes for training the segmenters. As observed, the performance of Video-kMaX (Shin
et al., 2024) gradually decreases with the increase of clip size (42.7% → 42.1% → 41.4%). However, both our
Axial-VS near-online (with within-clip tracking module) and Axial-VS offline (with within-clip + cross-clip
tracking module) models consistently bring steady improvements. Specifically, for a clip size of 2, the
within-clip tracking module enhances Video-kMaX performance by 3.4%, achieving 46.1% VPQ. Subsequently,
our cross-clip tracking module further elevates the performance by 0.6% to 46.7% VPQ. These improvements
are also notable for other clip sizes. In conclusion, the observed performance drops are primarily influenced
by the performance variance of the deployed clip-level segmenters (i.e., Video-kMaX). We propose two main
hypotheses: Firstly, in existing video panoptic segmentation datasets such as VIPSeg, objects typically
exhibit slow movement. Therefore, neighboring frames contain the most informative data, with minimal
additional information gained from including more frames. Secondly, the transformer decoders employed
in Video-kMaX may encounter challenges when processing larger feature maps associated with longer clip
lengths. As indicated in their original paper, Video-kMaX also adopts a clip length of 2 in their final settings
when training on VIPSeg. In Tab. 7b, we ablate the sampling range used when constructing a training clip.
Using continuous frames (i.e., ±1) leads to the best performance. While slightly increasing the sampling
range to ±3 degrades the performance slightly by 0.3% to 45.8% VPQ, increasing it to ±10 greatly hampers
the learning of the within-clip tracking module, yielding only 43.9% VPQ.

5 Conclusion

In conclusion, our contribution, Axial-VS, represents a meta-architecture that elevates the capabilities of a
standard clip-level segmenter through the incorporation of within-clip and cross-clip tracking modules. These
modules, empowered by axial-trajectory attention, strategically enhance short-term and long-term temporal
consistency. The exemplary performance of Axial-VS on video segmentation benchmarks underscores its
efficacy in mitigating the limitations observed in contemporary clip-level video segmenters.
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Appendix

In the appendix, we provide additional information as listed below:

• Sec. A provides the implementation details.

• Sec. B provides additional experimental results, including computational cost (GFLOPs), running
time (FPS) and memory consumption (VRAM) comparison and more comparison with other methods
for video panoptic segmentation (VPS) and video instance segmentation (VIS).

• Sec. C provides prediction visualizations and additional axial-trajectory attention visualization results.

• Sec. D discusses our method’s limitations.

• Sec. E provides the dataset information.

• Sec. F discusses the broader impact of Axial-VS.

A Implementation Details

Implementation Details The proposed Axial-VS is a unified approach for both near-online and offline
video segmentation (i.e., the cross-clip tracking module is only used for the offline setting). For the near-online
setting (i.e., employing the within-clip tracking module), we use a clip size of two and four for VPS and VIS,
respectively. For the offline setting (i.e., employing the cross-clip tracking module), we adopt a video length
of 24 (i.e., 12 clips) for VPS and 20 (i.e., 5 clips) for VIS. At this stage, we only train the cross-clip tracking
module, while both the clip-level segmenter and the within-clip tracking module are frozen due to memory
constraint. During testing, we directly inference with the whole video with our full model.

We experiment with four backbones for Axial-VS: ResNet50 (He et al., 2016), Swin-L (Liu et al., 2021),
ConvNeXt-L (Liu et al., 2022b) and ConvNeXt V2-L (Woo et al., 2023). For VPS experiments, we first
reproduce Video-kMaX (Shin et al., 2024) based on the official PyTorch re-implementation of kMaX-
DeepLab (Yu et al., 2022b). We employ a specific pre-training protocol for VIPSeg, closely following
the prior works (Weber et al., 2021b; Kim et al., 2022; Shin et al., 2024). Concretely, starting with an
ImageNet (Russakovsky et al., 2015) pre-trained backbone, we pre-train the kMaX-DeepLab and Multi-Scale
Deformable Attention (MSDeformAttn) in our within-clip tracking module on COCO (Lin et al., 2014). The
within-clip and cross-clip tracking modules deploy Nw = 2 and Nc = 4 blocks, respectively, for VPS. On the
other hand, for VIS experiments, we use the official code-base of Tube-Link (Li et al., 2023b). Since Tube-Link
is built on top of Mask2Former (Cheng et al., 2022) and thus already contains six layers of MSDeformAttn,
we simplify our within-clip tracking module by directly inserting axial-trajectory attention after each original
MSDeformAttn. As a result, the within-clip and cross-clip tracking modules use Nw = 6 and Nc = 4 blocks,
respectively, for VIS. We note that we do not use any other video datasets (e.g., pseudo COCO videos) for
pre-training axial-trajectory attention.

We closely adhere to the training protocols established by the baseline clip-level segmenters. Specifically,
for the VPS task with ResNet50 as the backbone, we adopt the training methodology of Video-kMaX. Our
near-online Axial-VS is trained on the VIPSeg dataset with a clip size of 2 × 769 × 1345 and a batch size
of 32, utilizing 16 V100 32G GPUs for 40k iterations. This training regimen spans approximately 13 hours.
Additionally, our offline Axial-VS is trained on VIPSeg with a video size of 24 × 769 × 1345 (12 clips, each
comprising 2 frames) and a batch size of 16, employing 8 A100 80G GPUs for 15k iterations. This training
process requires approximately 10 hours. For the VIS task with ResNet50 as the backbone, we adopt the
Tube-Link training protocol. Our near-online Axial-VS is trained on Youtube-VIS with a batch size of 8
clips (each containing 4 frames) using 8 V100 32G GPUs for 15k iterations. We adhere to the literature by
randomly resizing the shortest edge of each clip to a predetermined size within the range [288, 320, 352, 384,
416, 448, 480, 512]. This training process takes approximately 7 hours. Additionally, our offline Axial-VS is
trained on Youtube-VIS with a batch size of 8 videos (each comprising 20 frames, equivalent to 5 clips) using
8 V100 32G GPUs for 10k iterations. This training process requires approximately 4 hours.
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Table 8: GFlops, FPS and VRAM comparisons on attention operations in the within-clip tracking
module. We compare Joint Space-Time Attention (Vaswani et al., 2017), Divided Space-Time Attention (Bertasius
et al., 2021), Multi-Scale Deformable Attention (Zhu et al., 2020) (MSDeformAttn), the proposed Axial-Trajectory
Attention, and TarVIS Temporal Neck (Athar et al., 2023) (i.e., MSDeformAttn + Window Space-Time Attention).
The GFLOPs and FPS are obtained by measuring on models with ResNet50 as the backbone using an A100 GPU.
We report the VRAM on two different input resolutions: 2 × 513 × 897 and 2 × 769 × 1345, respectively. Reported
results are averaged over 3 runs. −: Not using any operations. Our final setting is marked in grey.

input clip resolution

attention operations
2 × 513 × 897 2 × 769 × 1345

VRAM GFLOPs FPS VRAM VPQ
- 6.74G 354 14.3 11.90G 42.7
Joint Space-Time Attn (Vaswani et al., 2017) 9.87G 493 10.3 25.97G 43.2
Divided Space-Time Attn (Bertasius et al., 2021) 8.58G 430 12.6 19.58G 43.6
MSDeformAttn (Zhu et al., 2020) 7.75G 432 12.5 14.15G 44.5
Axial-Trajectory Attn 7.57G 443 11.7 13.81G 44.7
MSDeformAttn + Window Space-Time Attn (Athar et al., 2023) 8.21G 476 10.5 15.15G 44.9
MSDeformAttn + Axial-Trajectory Attn 8.38G 481 10.5 15.59G 46.1

Table 9: GFLOPs comparisons on cross-clip tracking design. For the cross-clip tracking module, we compare
VITA (Heo et al., 2022) and the proposed cross-clip tracking module and report GFLOPs of them only. Reported
results are averaged over 3 runs. −: Not using any operations. Our final setting is marked in grey.

cross-clip tracking design video query encoder decoder GFLOPs VPQ
- - - - - 46.1

VITA (Heo et al., 2022) ! ! ! 47 46.3
cross-clip tracking module % ! % 32 46.7

B Additional Experimental Results

In this section, we provide more experimental results, including the computational cost (GFLOPs), running
time (FPS) and memory consumption (VRAM) comparisons on the proposed within-clip tracking module
along with GFlops comparisons on the cross-clip tracking modules (Sec. B.1), as well as more detailed
comparisons with other state-of-the-art methods (Sec. B.2).

B.1 GFLOPs, FPS and VRAM Comparisons

We conduct the GFLOPs, FPS and VRAM comparisons on the VIPSeg dataset, using ResNet50.

GFLOPs, FPS and VRAM Comparisons on Attention Operations in Within-Clip Tracking
Module In Tab. 8, we present a comparison of the GFLOPs, FPS and VRAM for the attention operations
used in the within-clip tracking module. The GFlops and FPS are evaluated using a short clip of size
2 × 769 × 1345 on an A100 GPU. Additionally, VRAM is reported for two different input clip resolutions:
2 × 513 × 897 and 2 × 769 × 1345, respectively. The table highlights that the proposed "Axial-Trajectory
Attn" introduces a moderate increase in GFlops and VRAM, along with a modest decrease in FPS, while
significantly enhancing performance in VPQ. Notably, "Divided Space-Time Attn", "MSDeformAttn", and
"Axial-Trajectory Attn" exhibit comparable computational costs and GPU memory usage. Conversely,
"Joint Space-Time Attn" imposes the highest computational load and GPU memory consumption due to its
compute-intensive attention operations on high-resolution dense pixel feature maps.

GFLOPs Comparisons on Tracking Design in Cross-Clip Tracking Module In Tab. 9, we present
a comparison of the GFLOPs for the cross-clip tracking design. The numbers are computed using a video of
size 24 × 769 × 1345, specifically measuring the computational costs of the cross-clip tracking module. The
table shows that our cross-clip tracking module is more lightweight compared to VITA, yet achieves superior
performance, which can be attributed to the simple and effective design of our cross-clip tracking module.
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Table 10: VIPSeg val set results. We provide more complete comparisons with other state-of-the-art methods.
Numbers of Axial-VS are averaged over 3 runs. ‡: Evaluated using their open-source checkpoint.

method backbone VPQ VPQTh VPQSt

online/near-online methods
ViP-DeepLab (Qiao et al., 2021) ResNet50 16.0 - -
VPSNet-FuseTrack (Kim et al., 2020) ResNet50 17.0 - -
VPSNet-SiamTrack (Woo et al., 2021) ResNet50 17.2 - -
Clip-PanoFCN (Miao et al., 2022) ResNet50 22.9 - -
Video K-Net (Li et al., 2022) ResNet50 26.1 - -
TubeFormer (Kim et al., 2022) Axial-ResNet50-B3 31.2 - -
TarVIS (Athar et al., 2023) ResNet50 33.5 39.2 28.5
Video-kMaX (Shin et al., 2024) ResNet50 38.2 - -
Tube-Link (Li et al., 2023b) ResNet50 39.2 - -
DVIS (Zhang et al., 2023)‡ ResNet50 39.2 39.3 39.0
TarVIS (Athar et al., 2023) Swin-L 48.0 58.2 39.0
Video-kMaX (Shin et al., 2024) ConvNeXt-L 51.9 - -
DVIS (Zhang et al., 2023) Swin-L 54.7 54.8 54.6
Axial-VS w/ Video-kMaX (ours) ResNet50 46.1 45.6 46.6
Axial-VS w/ Video-kMaX (ours) ConvNeXt-L 56.2 58.4 54.0
Axial-VS w/ Video-kMaX (ours) ConvNeXt V2-L 57.7 58.3 57.1
offline methods
DVIS (Zhang et al., 2023) ResNet50 43.2 43.6 42.8
DVIS (Zhang et al., 2023) Swin-L 57.6 59.9 55.5
Axial-VS w/ Video-kMaX (ours) ResNet50 46.7 46.7 46.6
Axial-VS w/ Video-kMaX (ours) ConvNeXt-L 57.1 59.3 54.8
Axial-VS w/ Video-kMaX (ours) ConvNeXt V2-L 58.0 58.8 57.2

B.2 Comparisons with Other Methods

Video Panoptic Segmentation (VPS) In Tab. 10, we compare with more state-of-the-art methods on
the VIPSeg dataset. We observe the similar trend as discussed in the main paper, and thus simply list all the
other methods for a complete comparison.

Video Instance Segmentation (VIS) In Tab. 11, we report more state-of-the-art methods on the
Youtube-VIS-21 dataset. As shown in the table, our Axial-VS with ResNet50 backbone demonstrates a better
performance than the other methods as discussed in the main paper, while our Axial-VS with Swin-L performs
slightly worse than TarVIS (Athar et al., 2023) in the online/near-online setting and than DVIS (Zhang
et al., 2023) in the offline setting. We think the performance can be improved by exploiting more video
segmentation datasets, as TarVIS did, or by improving the clip-level segmenter. Particularly, our baseline
Tube-Link with Swin-L performs worse than the other state-of-the-art methods with Swin-L.

For the Youtube-VIS-22 results, we notice that the reported numbers in some recent papers are not comparable,
since some papers report APlong (AP for long videos) while some papers use APall, which is the average of
APlong and APshort (AP for short videos). To carefully and fairly compare between methods, we therefore
reproduce all the state-of-the-art results by using their official open-source checkpoints, and clearly report
their APall, APlong, and APshort in Tab. 12. Similar to the discussion in the main paper, our Axial-VS with
ResNet50 significantly improves over the baseline Tube-Link and performs better than other state-of-the-art
methods, particularly in APlong. However, our results with Swin-L lag behind other state-of-the-art methods
with Swin-L, whose gap may be bridged by improving the baseline Tube-Link Swin-L.

In Tab. 13, we summarize more comparisons with other state-of-the-art methods on OVIS. As shown in
the table, our method remarkably improves over the baseline, but performs worse than the state-of-the-art
methods, partially because we fail to fully reproduce the baseline Tube-Link that our method heavily depends
upon. Similar to our other VIS results, we think the improvement of clip-level segmenter will also lead to the
improvement of Axial-VS.
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Table 11: Youtube-VIS-21 val set results. We provide more complete comparisons with other state-of-the-art
methods. Numbers of Axial-VS are averaged over 3 runs.

method backbone AP AP50 AP75 AR1 AR10

online/near-online methods
MinVIS (Huang et al., 2022) ResNet50 44.2 66.0 48.1 39.2 51.7
IDOL (Wu et al., 2022c) ResNet50 43.9 68.0 49.6 38.0 50.9
GenVISnear-online (Heo et al., 2023) ResNet50 46.3 67.0 50.2 40.6 53.2
DVIS (Zhang et al., 2023) ResNet50 46.4 68.4 49.6 39.7 53.5
GenVISonline (Heo et al., 2023) ResNet50 47.1 67.5 51.5 41.6 54.7
Tube-Link (Li et al., 2023b) ResNet50 47.9 70.0 50.2 42.3 55.2
TarVIS (Athar et al., 2023) ResNet50 48.3 69.6 53.2 40.5 55.9
MinVIS (Huang et al., 2022) Swin-L 55.3 76.6 62.0 45.9 60.8
IDOL (Wu et al., 2022c) Swin-L 56.1 80.8 63.5 45.0 60.1
Tube-Link (Li et al., 2023b) Swin-L 58.4 79.4 64.3 47.5 63.6
DVIS (Zhang et al., 2023) Swin-L 58.7 80.4 66.6 47.5 64.6
GenVISonline (Heo et al., 2023) Swin-L 59.6 80.9 65.8 48.7 65.0
GenVISnear-online (Heo et al., 2023) Swin-L 60.1 80.9 66.5 49.1 64.7
TarVIS (Athar et al., 2023) Swin-L 60.2 81.4 67.6 47.6 64.8
Axial-VS w/ Tube-Link (ours) ResNet50 48.4 71.1 51.8 42.0 57.4
Axial-VS w/ Tube-Link (ours) Swin-L 58.8 81.3 65.0 46.7 62.7
offline methods
VITA (Heo et al., 2022) ResNet50 45.7 67.4 49.5 40.9 53.6
DVIS (Zhang et al., 2023) ResNet50 47.4 71.0 51.6 39.9 55.2
VITA (Heo et al., 2022) Swin-L 57.5 80.6 61.0 47.7 62.6
DVIS (Zhang et al., 2023) Swin-L 60.1 83.0 68.4 47.7 65.7
Axial-VS w/ Tube-Link (ours) ResNet50 48.5 70.9 52.4 42.3 57.9
Axial-VS w/ Tube-Link (ours) Swin-L 59.1 81.9 64.9 46.9 63.8

Table 12: Youtube-VIS-22 val set results. We provide more complete comparisons with other state-of-the-art
methods. Numbers of Axial-VS are averaged over 3 runs. ∗: All results are reproduced by us using their official
checkpoints. We report APshort and APlong for short and long videos, respectively, and APall by averaging them.

method backbone APall APshort AP50 AP75 AR1 AR10 APlong AP50 AP75 AR1 AR10

online/near-online methods
MinVIS (Huang et al., 2022)∗ ResNet50 32.8 43.9 66.9 47.5 38.8 51.9 21.6 42.9 18.1 18.8 25.6
GenVISnear-online (Heo et al., 2023)∗ ResNet50 38.1 45.9 66.3 50.2 40.8 53.7 30.3 50.9 32.7 25.5 36.2
DVIS (Zhang et al., 2023)∗ ResNet50 38.6 46.0 68.1 50.4 39.7 53.5 31.2 50.4 36.8 30.2 35.7
Tube-Link (Li et al., 2023b)∗ ResNet50 39.5 47.9 70.4 50.5 42.6 55.9 31.1 56.1 31.2 29.1 36.3
MinVIS (Huang et al., 2022)∗ Swin-L 43.5 55.0 77.8 60.6 45.3 60.3 31.9 51.4 33.0 28.2 35.3
Tube-Link (Li et al., 2023b)∗ Swin-L 46.0 57.8 78.7 63.4 47.0 62.7 34.2 53.2 37.9 31.5 38.9
DVIS (Zhang et al., 2023)∗ Swin-L 48.9 58.8 80.6 65.9 47.5 63.9 39.0 56.0 43.0 33.0 43.5
Axial-VS w/ Tube-Link (ours) ResNet50 41.6 46.8 68.1 50.5 41.5 56.2 36.5 61.1 41.7 32.3 42.3
Axial-VS w/ Tube-Link (ours) Swin-L 47.3 58.7 81.1 64.9 46.9 62.7 35.9 62.0 37.0 34.2 39.7
offline methods
VITA (Heo et al., 2022)∗ ResNet50 38.8 45.7 66.6 50.1 41.0 53.1 31.9 53.8 37.0 31.1 37.3
DVIS (Zhang et al., 2023)∗ ResNet50 41.6 47.2 70.8 51.0 40.0 54.9 35.9 58.4 39.9 32.2 41.9
VITA (Heo et al., 2022)∗ Swin-L 49.3 57.6 80.4 62.5 47.7 62.3 41.0 62.1 43.9 39.4 43.5
DVIS (Zhang et al., 2023)∗ Swin-L 52.4 59.9 82.7 68.3 47.8 65.2 44.9 66.3 48.9 37.1 53.2
Axial-VS w/ Tube-Link (ours) ResNet50 41.3 45.6 68.0 51.1 40.2 54.7 37.0 63.4 36.7 29.0 40.2
Axial-VS w/ Tube-Link (ours) Swin-L 48.8 58.7 81.0 64.2 46.6 63.5 38.9 64.4 39.3 32.0 42.3

C Visualization Results

Visualizations of Prediction We provide visualization results in Fig. 8, Fig. 9, Fig. 10, and Fig. 11
for different video sequences. We compare with DVIS (Zhang et al., 2023) and our re-implemented Video-
kMaX (Shin et al., 2024) with ResNet50 as backbone and inference in an online/near-online fashion.

Visualizations of Learned Axial-Trajectory Attention We provide more visualizations of the learned
axial-trajectory attention maps in Fig. 12, Fig. 13 and 14. Concretely, in Fig. 12, we illustrate the feasibility
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Table 13: OVIS val set results. We provide more complete comparisons with other state-of-the-art methods.
Numbers of Axial-VS are averaged over 3 runs. §: Reproduced by us using their official code-base.

method backbone AP AP50 AP75 AR1 AR10

online/near-online methods
MinVIS (Huang et al., 2022) ResNet50 25.0 45.5 24.0 13.9 29.7
Tube-Link (Li et al., 2023b)§ ResNet50 25.4 44.9 26.5 14.1 30.1
Tube-Link (Li et al., 2023b) ResNet50 29.5 51.5 30.2 15.5 34.5
IDOL (Wu et al., 2022c) ResNet50 30.2 51.3 30.0 15.0 37.5
DVIS (Zhang et al., 2023) ResNet50 30.2 55.0 30.5 14.5 37.3
TarVIS (Athar et al., 2023) ResNet50 31.1 52.5 30.4 15.9 39.9
GenVISnear-online (Heo et al., 2023) ResNet50 34.5 59.4 35.0 16.6 38.3
GenVISonline (Heo et al., 2023) ResNet50 35.8 60.8 36.2 16.3 39.6
Tube-Link (Li et al., 2023b)§ Swin-L 33.3 54.6 32.8 16.8 37.7
MinVIS (Huang et al., 2022) Swin-L 39.4 61.5 41.3 18.1 43.3
IDOL (Wu et al., 2022c) Swin-L 42.6 65.7 45.2 17.9 49.6
TarVIS (Athar et al., 2023) Swin-L 43.2 67.8 44.6 18.0 50.4
GenVISonline (Heo et al., 2023) Swin-L 45.2 69.1 48.4 19.1 48.6
GenVISnear-online (Heo et al., 2023) Swin-L 45.4 69.2 47.8 18.9 49.0
DVIS (Zhang et al., 2023) Swin-L 47.1 71.9 49.2 19.4 52.5
Axial-VS w/ Tube-Link ResNet50 27.6 50.1 27.2 14.6 32.5
Axial-VS w/ Tube-Link Swin-L 39.1 62.3 39.8 18.5 42.3
offline methods
VITA (Heo et al., 2022) ResNet50 19.6 41.2 17.4 11.7 26.0
DVIS (Zhang et al., 2023) ResNet50 33.8 60.4 33.5 15.3 39.5
VITA (Heo et al., 2022) Swin-L 27.7 51.9 24.9 14.9 33.0
DVIS (Zhang et al., 2023) Swin-L 48.6 74.7 50.5 18.8 53.8
Axial-VS w/ Tube-Link ResNet50 28.3 50.7 27.0 14.6 34.0
Axial-VS w/ Tube-Link Swin-L 39.8 64.5 40.1 17.9 43.7

of decomposing object motion into height- and width-axis components. We select the football in the first
frame as the reference point and show the height and width axial-trajectory attention separately. We then
multiply the height and width axial-trajectory attentions to visualize the trajectory of the reference point
over time. In Fig. 13, we select the basketball in the first frame as the reference point and show that our
axial-trajectory attention accurately tracks it along the moving trajectory. In Fig. 14, we select the black
table in the first frame as the reference point. We note that the camera motion is very small in this short clip
and the table thus remains static. Our axial-trajectory attention still accurately keeps tracking at the same
location as time goes by.

Failure Cases for Prediction We provide visualizations of failure cases of Axial-VS in Fig. 15 and 16.
In general, we observe three common patterns of errors: heavy occlusion, fast moving objects, and extreme
illumination. Specifically, the first challenge is that when there are heavy occlusions caused by multiple
close-by instances, Axial-VS suffers from ID switching, leading Axial-VS to assign inconsistent ID to the
same instance. For example, in clip (a) of Fig. 15, the ID of the human in red dress changes between frame 2
and 3, while in clip (b) of Fig. 15 the two humans in the back are recognized as only one human until frame 3
due to the heavy occlusion. The second common error is that in videos containing fast motion, Axial-VS
suffers from precisely predicting the boundary of the moving object. In clip (c) of Fig. 16, the human’s legs
are not segmented out in frame 1 and 3. The last common error is that in videos containing extreme or
varying illumination, Axial-VS might fail to detect the objects thus fails to generate consistent segmentation.
In clip (d) of Fig. 16, the objects under the extreme illumination can not be well segmented.

Failure Cases for Learned Axial-Trajectory Attention In Fig. 17 and 18, we show two failure cases of
axial-trajectory attention where the selected reference point is not discriminative enough, sometimes yielding
inaccurate axial-trajectory. To be specific, in Fig. 17, we select the left light of the subway in the first frame as
reference point. Though axial-trajectory attention precisely associates its position at the second frame, in the
third frame the attention becomes sparse, mostly because that there are many similar ‘light’ objects in the
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input frames DVIS Video-kMaX Axial-VS

Figure 8: Qualitative comparisons on videos with unusual viewpoints in VIPSeg. Axial-VS exhibits
consistency in prediction even with an unusual view while DVIS and Video-kMaX fail to consistently detect all animals
over time.

input frames DVIS Video-kMaX Axial-VS

Figure 9: Qualitative comparisons on videos with complex indoor scenes as background in VIPSeg.
Axial-VS accurately segments out the boundary of cat with correct classes, while DVIS and Video-kMaX fail.
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input frames DVIS Video-kMaX Axial-VS

Figure 10: Qualitative comparisons on videos with light and shade in VIPSeg. Axial-VS makes accurate
and consistent predictions under different illumination situations. DVIS fails at the junction between light and shade
(e.g., the fish tank) while Video-kMaX completely fails at dark places.

input frames DVIS Video-kMaX Axial-VS

Figure 11: Qualitative comparisons on videos with multiple instances in VIPSeg. Axial-VS detects more
instances with accurate boundary. DVIS fails to segment out the crowded humans while Video-kMaX performs badly
on the stuff classes.
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a) reference point at frame 1 b) height axial-trajectory attention

c) width axial-trajectory attention d) axial-trajectory attention at frame 2

Figure 12: Illustration of Tracking Objects along Axial Trajectories. In this short clip of two frames depicting
the action ‘playing football’ and the football at frame 1 is selected as the reference point (mark in red). We multiply
the height and width axial-trajectory attentions to visualize the trajectory of the reference point over time.

input frames axial-trajectory attention maps overlay results

Figure 13: Visualization of Learned Axial-Trajectory Attention. In this short clip of three frames depicting the
action ‘play basketball’, the basketball at frame 1 is selected as the reference point (mark in red). The axial-trajectory
attention can accurately track the moving basketball across frames. Best viewed by zooming in.

third frame and the attention dilutes. Similarly, in Fig. 18, we select the head of the human as the reference
point. Since the human wears a black jacket with a black hat, the selected reference point has similar but
ambiguous appearance to the human body, yielding sparse attention activation in the whole human region.
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input frames axial-trajectory attention maps overlay results

Figure 14: Visualization of Learned Axial-Trajectory Attention. In this short clip of three frames depicting a
student at class, the right static table at frame 1 is selected as the reference point (mark in red). Though the table
remains static across the frames, axial-trajectory attention can accurately track it. Best viewed by zooming in.

input frames (a) Axial-VS (a) input frames (b) Axial-VS (b)

Figure 15: Failure modes caused by heavy occlusion. Axial-VS fails to predict consistent ID for the same
instance when there is heavy occlusion. (a) The ID of the human changes between frame 2 and 3; refer to the red box
for details. (b) The two humans are recognized as only one until frame 3; refer to the red box for details.. Best viewed
by zooming in.
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input frames (c) Axial-VS (c) input frames (d) Axial-VS (d)

Figure 16: Failure modes caused by fast-moving and extreme illumination scenarios. Axial-VS fails to
predict accurate boundary due to the large motion and extreme illumination. (c) The human’s leg is not segmented
out in frame 1 and 3; refer to the red box for details. (d) The objects under extreme illumination can not be well
segmented; refer to the red box for details. Best viewed by zooming in.

D Limitations

The proposed Axial-VS builds on top of off-the-shelf clip-level segmenters with the proposed within-clip
and cross-clip tracking modules. Even though flexible, its performance depends on the underlying employed
clip-level segmenter. Additionally, when training the proposed cross-clip tracking module, the clip-level
segmenter and the within-clip tracking module are frozen due to insufficient GPU memory capacity, which
may lead to a sub-optimal result since ideally, end-to-end training leads to a better performance. We leave it
as a future work to efficiently fine-tune the whole model for processing long videos.

E Datasets

VIPSeg (Miao et al., 2022) is a new large-scale video panoptic segmentation dataset, targeting for diverse
in-the-wild scenes. The dataset contains 124 semantic classes, consisting of 58 ‘thing’ and 66 ‘stuff’ classes
with 3536 videos, where each video spans 3 to 10 seconds. The main adopted evaluation metric is video
panoptic quality (VPQ) (Kim et al., 2020) on this benchmark.

Youtube-VIS (Yang et al., 2019) is a popular benchmark on video instance segmentation, where only ‘thing’
classes are segmented and tracked. It contains multiple versions. The YouTube-VIS-2019 (Yang et al., 2019)
consists of 40 semantic classes, while the YouTube-VIS-2021 (Yang et al., 2021a) and YouTube-VIS-2022 (Yang
et al., 2022) are improved versions with higher number of instances and videos. Youtube-VIS adopts track
AP (Yang et al., 2019) for evaluation.

OVIS (Qi et al., 2022) is a challenging video instance segmentation dataset with focuses on long videos
with 12.77 seconds on average, and objects with severe occlusion and complex motion patterns. The dataset
contains 25 semantic classes and also adopt track AP (Yang et al., 2019) for evaluation.
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input frames axial-trajectory attention maps overlay results

Figure 17: [Failure mode] Visualization of Learned Axial-Trajectory Attention. In this short clip of three
frames depicting a moving subway, the left front light at frame 1 is selected as the reference point (mark in red).
While the axial-trajectory attention can still more or less capture the same front light at the frame 2, it gradually
loses the focus since there are many similar "light" objects in the clip. Best viewed by zooming in.

F Broader Impact Statement

This paper introduces Axial-VS, which enhances a standard clip-level segmenter with the proposed axial-
trajectory attention, thus advancing the field of video segmentation. While there may be potential societal
consequences, however, none of which we feel are necessary to highlight here.
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Figure 18: [Failure mode] Visualization of Learned Axial-Trajectory Attention. In this short clip of three
frames depicting the action ‘downhill ski’, the head of the human at frame 1 is selected as the reference point (mark in
red). Since the head and the human body have similar appearance, the axial-trajectory attention becomes diluted
among the human body. Best viewed by zooming in.
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