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ABSTRACT

Due to the substantial computational cost, training state-of-the-art deep neural
networks for large-scale datasets often requires distributed training using multiple
computation workers. However, by nature, workers need to frequently communi-
cate gradients, causing severe bottlenecks, especially on lower bandwidth connec-
tions. A few methods have been proposed to compress gradient for efficient com-
munication, but they either suffer a low compression ratio or significantly harm
the resulting model accuracy, particularly when applied to convolutional neural
networks. To address these issues, we propose a method to reduce the communi-
cation overhead of distributed deep learning. Our key observation is that gradient
updates can be delayed until an unambiguous (high amplitude, low variance) gra-
dient has been calculated. We also present an efficient algorithm to compute the
variance with negligible additional cost. We experimentally show that our method
can achieve very high compression ratio while maintaining the result model accu-
racy. We also analyze the efficiency using computation and communication cost
models and provide the evidence that this method enables distributed deep learn-
ing for many scenarios with commodity environments.

1 INTRODUCTION

Deep neural networks are attracting attention because of their outstanding prediction power in many
application fields such as image recognition, natural language processing, and speech recognition.
In addition, software frameworks are publicly available, making it easier to apply deep learning.
However, their crucial drawback is the substantial computational cost on training. For example, it
takes over a week to train ResNet-50 on the ImageNet dataset if using a single GPU. Such long
training time limits the number of trials possible when creating models.

Therefore, we must conduct distributed training using multiple computation workers (e.g., multiple
GPUs in different nodes). However, by nature, workers need to frequently communicate gradients,
which yields a severe bottleneck for scalability, especially when using lower bandwidth connec-
tions. For example, when using 1000BASE-T Ethernet, communication takes at least ten times
longer than forward and backward computation for ResNet-50, making multiple nodes impractical.
High performance interconnections such as InfiniBand and Omni-Path are an order of magnitude
more expensive than commodity interconnections, which limits research and development of deep
learning using large-scale datasets to a small number of researchers.

Although several methods have been proposed to compress gradient for efficient communication,
they either suffer a low compression ratio or significantly harm the resulting model accuracy, par-
ticularly when applied to convolutional neural networks. There are mainly two lines of research:
quantization and sparsification. Quantization-based methods include 1-bit SGD (Seide et al., 2014)
and TernGrad (Wen et al., 2017). Though they achieve small loss of accuracy by using at least one
bit for each parameter, the compression ratio is limited. Sparsification-based methods include Strom
(2015) and QSGD (Alistarh et al., 2017). While they can achieve high compression ratio, as we will
see in our experiments, they harm the resulting model accuracy or suffer a low compression ratio,
particularly when applied to convolutional neural networks.
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To address these issues, we propose a new gradient compression algorithm to reduce the commu-
nication overhead of distributed deep learning. The proposed method belongs to the sparsification
approaches. Our key observation is that the variance of the gradient for each parameter point over
iterations is a useful signal for compression. As almost all previous approaches of both sparsification
and quantization only look at the magnitude of gradient, we believe that we are opening a new door
for this field. In addition, we also show that our method can be combined with previous compres-
sion methods to further boost performance. We also present an efficient algorithm to compute the
variance and prove that it can be obtained with negligible additional cost.

We experimentally demonstrate that our method can achieve a high compression ratio while main-
taining result model accuracy. We also analyze the efficiency using computation and communication
cost models and provide evidence that our method enables distributed deep learning for many sce-
narios with commodity environments.

Organization. The remainder of this paper is organized as follows: Section 2 provides the defini-
tions and notations used in this paper. Section 3 reviews related work in this field. Section 4 presents
the proposed method. Section 5 analyzes performance. Section 6 shows our experimental results,
and we conclude in Section 7.

2 PRELIMINARIES

In this section, we describe an overview of distributed deep learning and parameter updates with
compressed gradients.

2.1 CHALLENGES IN DATA PARALLEL STOCHASTIC GRADIENT DESCENT

In data parallel distributed Stochastic Gradient Descent (SGD), all workers have identical copies of
the same model and calculate gradients using different subsets of training data. Gradients are shared
across all workers, and each worker updates its local model using the shared gradients.

There are two well-known approaches to communication of gradients: synchronous and asyn-
chronous. Even though our method can be applied to both of them, we focus on the synchronous
approach in this paper. Each worker computes gradients and shares them with other workers using
a synchronized group communication routine in every single training iteration, typically using a
communication routine known as allreduce.

The challenge is that the communication is possibly a severe bottleneck in a training process. Gra-
dients typically consist of tens of millions of floating point values so the total size of exchanged
data can be large. For example, the model size of ResNet-50 (He et al. (2016)) is over 110 MB, and
the size of gradients becomes large accordingly. Thus, the communication time has a significant
effect on the total training time in environments equipped with a commodity interconnect hardware,
such as 1Gb Ethernet. Also, in the synchronous approach, workers have to wait for completion
of communication and their computing resources including GPUs are idle, which is a significant
performance loss.

2.2 PROBLEM FORMULATION

In basic procedures of SGD, model parameters are updated as

xt+1 = xt − γ∇ft(xt),

where xt and ∇ft(xt) are model parameters and calculated gradients in time step t, respectively. ft
is a loss function and it differs between samples used in a mini-batch. γ is a step size.

To reduce an amount of data to be exchanged over a network, either quantization or sparsification or
both are used as explained in Sec. 3.

3 RELATED WORK

There are two main approaches to gradient compression: quantization-based approaches and
sparsification-based approaches. Quantization-based approaches reduce communication cost by ex-
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pressing each gradient with fewer bits. If a baseline uses 32-bit floating points in communication,
then it can reduce the amount of communication by up to 32 times. Seide et al. (2014) showed
that neural networks can be trained using only one sign bit per parameter. There are two key tech-
niques in their algorithm. First, they use different threshold to encode and decode gradient elements
for each column of weight matrix. Second, quantization errors are added to the gradients calcu-
lated in the next step. Its effectiveness has been experimentally verified on speech applications.
Wen et al. (2017) proposed TernGrad to encode gradients with 2 bits per parameter. The algorithm
is characterized by its theoretically-guaranteed convergence and reported that it can successfully
train GoogLeNet (Szegedy et al., 2015) on ImageNet with an average loss of accuracy of less than
2%.

As a second approach, sparsification-based approaches reduce communication cost by sending only
a small fraction of gradients. Even though they require sending not only the values of gradients
but also parameters’ indexes, their strong sparsification reduces transmission requirements signif-
icantly. Strom (2015) proposed sending only gradients whose absolute values are greater than a
user-defined threshold. The algorithm sends only sign bits and encoded indexes of parameters. Gra-
dients are decoded up to the threshold and quantization errors are added to the gradients calculated
in the next step as 1-bit stochastic gradients. Its effectiveness has also been experimentally verified
on speech applications. Dryden et al. (2016) extended Strom’s method. They proposed to use an
adaptive threshold instead of using a user-defined threshold. They also introduced repeated sparsi-
fication of gradients in order to combine the algorithm with an efficient communication algorithm.
Alistarh et al. (2017) proposed QSGD. QSGD stochastically rounds gradients to linearly quantized
values, which are calculated in the algorithm. Their work enjoys strong theoretical properties in con-
vex optimizations. Furthermore, they can control the trade-off between accuracy and compression.
On the other hand, Strom’s method does not work with small or large thresholds.

4 PROPOSED METHODS

In this section, we describe the proposed method. An efficient implementation and combination
with other compression methods are also explained.

Our work belongs to the sparsification-based approaches. In this section, we explicitly denote a gra-
dient vector (∇f(x)) and a gradient element (∇if(x)) for clarity. Previous works in this direction
have focused on gradient elements with small magnitudes, and they rounded them to zero to spar-
sify. Our work diverges at this point. We propose using approximated variances of gradient elements
instead of magnitudes. Our method do not transmit ambiguous elements until additional data reduce
their ambiguity and significantly reduces communication while maintaining accuracy. This method
enables shifting the balance between accuracy and compression, as necessary. Furthermore, we can
combine our work with sparsity-promoting quantization like QSGD and Strom’s method. We show
the way of combination with the Strom’s method later.

4.1 KEY CONCEPTS

The key idea of our method is delaying sending ambiguously estimated gradient elements. We
consider a gradient element to be ambiguous when its amplitude is small compared to its variance
over the data points. We extend the standard updating method to the following:

xt+1 − γrt+1 = xt − γ(∇ft(xt) + rt).

This extension follows Seide et al. (2014) and Strom (2015).

In previous works, the approximation errors are accumulated in rt and used in future updates. In
each step, parameters are updated only with approximated gradient elements represented by less
number of bits. In our work, we interpret rt as a delayed update, not approximation errors.

We send the gradient element corresponding to the i-th parameter only when it satisfies the following
criterion,

α′

|B|
VB [∇ifz(x)] < (∇ifB(x))

2, (1)

where |B| is a size of the mini-batch and α′ is a hyper parameter representing required estimation
accuracy. z is each sample and B is a mini-batch, respectively and fz and fB are corresponding
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loss functions. VB [∇ifz(x)] is the sample variance of the gradient element corresponding to the i-th
parameter over a mini-batch B.

If we do not send some gradient elements, we add them to the next batch and recalculate (1) with
increased batch size. For example, if we postpone sending a gradient element nine times consec-
utively, the criterion (1) is calculated as if ten times larger batch than usual mini-batch in the next
step. Note that even though the criterion (1) is calculated as if we used a larger batch, what is used
for an update is not the mean of the mini-batches across steps but the sum of them.

Following lemma supports our formulation.
Lemma 4.1. (De et al., 2017) A sufficient condition that a vector -g is a descent direction is

∥g −∇f(x)∥22 < ∥g∥22. (2)

We are interested in the case of g = ∇fB(x), the gradient vector of the loss function over B. By
the weak law of large numbers, when |B| > 1, the left hand side of Eq. 2 with g = ∇fB(x) can be
estimated as follows:

E[∥∇fB(x)−∇f(x)∥22] ∼
1

|B|
VB [∇fz(x)].

Thus our formulation with α′ ≥ 1 corresponds to an elementwise estimation of the sufficient con-
dition (2) that a gradient vector decreases the loss function. Gradient elements become more likely
to be sent as sample size increases. However, if once gradient elements are estimated with too high
variances, it takes too long for the elements to be sent. Thus, we decay variance at every step. De-
tails are described in subsection 4.4. In the combination with optimization methods like Momentum
SGD, gradient elements not sent are assumed to be equal to zero.

4.2 QUANTIZATION AND PARAMETER ENCODING

To allow for comparison with other compression methods, we propose a basic quantization process.
In this section, we refer to a gradient as an accumulated gradient. After deciding which gradient
elements to send, each worker sends pairs of a value of a gradient element and its parameter index as
Strom (2015) and Alistarh et al. (2017). We quantize each element to 4-bit so that we can represent
each pair in 32-bit as per Strom (2015). The 4-bit consists of one sign bit and three exponent bits.

Our quantization except for the sign bit is as follows. For a weight matrix Wk (or a weight tensor
in CNN), there is a group of gradient elements corresponding to the matrix. Let Mk be the maxi-
mum absolute value in the group. First, for each element gi in the k-th group, if |gi| is larger than
2⌊log2 Mk⌋ truncate it to 2⌊log2 Mk⌋, otherwise, round to the closer value of 2⌊log2|gi|⌋ or 2⌈log2|gi|⌉.
Let g′i be the preprocessed gradient element. Next, calculate a integer di := ⌊log2 Mk⌋ − log2 g

′
i.

If di > 7 then we do not send the value, otherwise, encode the integer from 0 to 7 using 3 bits.
⌊log2 Mk⌋ is also sent for every weight matrix. An efficient implementation is presented in subsec-
tion 4.4. We do not adopt stochastic rounding like Alistarh et al. (2017) nor accumulate rounding
error gi − g′i for the next batch because this simple rounding does not harm accuracy empirically.
Appendix B has a running example of this quantization.

Because the variance-based sparsification method described in subsection 4.1 is orthogonal to the
quantization shown above, we can reduce communication cost further using sparsity promoting
quantization methods such as QSGD instead. However, we used the quantization to show that
enough level of sparsity is gained solely by our variance-based sparsification because the quanti-
zation rounds only a small fraction of gradient elements to zero. We show how to combine our
method with a method in Strom (2015) later in this paper because the way of the combination is less
obvious. We use a naive encoding for parameter indexes because the rest 28-bits are enough. We can
further reduce the number of bits by compressing parameter indexes (Strom, 2015; Alistarh et al.,
2017).

4.3 COMMUNICATION BETWEEN WORKERS

In distributed deep learning, the most important operation is to take the global mean of the gradient
elements calculated in each worker. The operation is referred to as “allreduce.” It consists of three
steps: (1) collects all local arrays in each worker, (2) reduce them using a given arithmetic operator,
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which is summation in this case, and (3) broadcast the result back to all workers so that all workers
obtain the identical copies of the array.

Conventional data parallel deep learning applications can enjoy the benefit of highly optimized allre-
duce implementations thanks to the fact that only the sum of the values has to be kept during the
communication. However, after applying the proposed method to the local gradient elements, they
are converted to a sparse data structure so the allreduce operation can no longer apply.

Dryden et al. (2016) and Aji & Heafield (2017) proposed sparsifying gradient elements multiple
times to utilize a kind of allreduce for sparsification-based compressions. However, the accuracy is
possibly degraded when the elements are highly compressed through repetitive compressions. In-
stead, we adopt allgatherv for communication, where each worker just sends the calculated elements
to other workers. We avoid to encode and decode elements multiple times by allgatherv. In allgath-
erv communication cost hardly increase from a kind of allreduce because index overlap, which is
needed for summation, rarely occur if the compression ratio is sufficiently higher than the number of
workers. Thanks to the high compression ratio possible with this algorithm and its combination with
other compression methods, even large numbers of workers can be supported. Some optimization
methods, such as ADAM (Ba & Kingma, 2015), require preprocessing for parameter updates. They
are calculated locally after the communication.

4.4 EFFICIENT IMPLEMENTATION

We first describe the efficient computation of the criterion (1) and second how to quantize gradient
elements without additional floating points operations. We can efficiently compare squared mean
and variance in the criterion (1) by just comparing squared mean of gradient elements and sum of
squared gradient elements. That is,(∑

z∈B

1

|B|
∇ifz(x)

)2

> α
∑
z∈B

(
1

|B|
∇ifz(x)

)2

(3)

achieves our goal. Thus, we have to maintain only the sum of gradient elements and sum of squared
gradient elements. Details are described in Appendix A. Decay of variance, described in subsection
4.1, is accomplished by multiplying hyperparameter ζ(< 1) to the sum of squared gradient elements
at every step. Alpha in Eq. 3 controls how much unambiguity the algorithm require. The algorithm
compress more aggressively with larger alpha. A range from one to two is good for alpha from its
derivation. Fig. 1 shows the final algorithm.

The quantization of parameters described in subsection 4.2 can also be efficiently implemented with
the standard binary floating point representation using only binary operations and integer arithmetic
as follows. We can calculate 2⌊log2 x⌋ by truncating the mantissa. We can also round values by
adding one to the most significant bit of mantissa as if x is an unsigned integer and then masking
mantissa to 0.

4.5 HYBRID ALGORITHM

We describe the way to combine our method with Strom’s method. It becomes problematic how to
modify variance when only parts of gradient elements are exchanged. We solve the issue simply by
modifying a2 to (a−b)2. Let S be the value sent in a step (i.e. threshold, -threshold or 0). We correct
squared gradient elements

∑
(∇if)

2 to
∑

(∇if)
2 − 2S

∑
(∇if) +S2. Fig. 2 shows the algorithm.

We show the effictiveness of this combined algorithm by experiments in Sec. 6. Combinations with
other works like QSGD and TernGrad are rather straightforward and we do not explore further in
this paper.

5 PERFORMANCE ANALYSIS

Because common deep learning libraries do not currently support access to gradients of each sample,
it is difficult to contrast practical performance of an efficient implementation in the commonly used
software environment. In light of this, we estimate speedup of each iteration by gradient compres-
sion with a performance model of communication and computation. The total speed up of the whole
training process is just the summation of each iteration because we adopt a synchronized approach.
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Algorithm 1: Basic
hyperparam: B = batch size, ζ, α
foreach parameters:

ri = 0;
vi = 0;

while not converged:
CalcGrad();
foreach parameters:

ri +=
∑ ∇ifz

B ;
vi +=

∑
(∇ifz

B )2;
if r2i > αvi:

Encode(ri);
ri = 0;
vi = 0;

else:
vi ∗= ζ;

CommunicateAndUpdate();

Figure 1: Basic algorithm of our variance-
based compression. ζ and α are hyperparam-
eters. Recommended value for ζ is 0.999.
α controls compression and accuracy. ∇ifz
denotes a gradient element of parameter i
for each sample z in mini-batch. CalcGrad()
is backward and forward computaion. En-
code() includes quantization and encoding of
indexes. CommunicateAndUpdate() requires
sharing gradient elements and decode, then
update parameters.

Algorithm 2: Hybrid
hyperparam: B = batch size, ζ, α, τ
foreach parameters:

ri = 0;
vi = 0;

while not converged:
CalcGrad();
foreach parameters:

ri +=
∑ ∇ifz

B ;
vi +=

∑
(∇ifz

B )2;
if |ri| > τ and r2i > αvi:

Encode(Sign(ri));
ri −= Sign(ri) τ ;
vi =
max(vi − 2|ri|τ + τ2, 0);

vi ∗= ζ;
CommunicateAndUpdate();

Figure 2: Hybrid algorithm of our variance-
based compression and Strom’s method. τ is
a user-defined threshold required in Strom’s
method. Other parameters and notations are
the same with Fig. 1.

In the communication part, the pairs of the quantized values and the parameter indexes in each
node are broadcast to all nodes. The i-th node’s input data size ni(i = 1, ..., p) may be different
among nodes, where p denotes the number of nodes. An MPI function called allgatherv realizes
such an operation. Because recent successful image recognition neural network models like VGG
(Simonyan & Zisserman, 2015) or ResNet (He et al., 2016) have a large number of parameters, the
latency term in communication cost can be ignored even if we achieve very high compression ratio
such as c > 1, 000. In such cases, a type of collective communication algorithms called the ring
algorithm is efficient (Thakur et al., 2005). Its bandwidth term is relatively small even though its
latency term is proportional to p. Although the naive ring allgatherv algorithm costs unacceptable
O(maxini ·p) time, Träff et al. (2008) proposed a method to mitigate it by dividing large input data,
which is called pipelined ring algorithm. For example, an allgatherv implementation in MVAPICH
adopts a pipelined ring algorithm for large input data.

The calculation of variance of gradients dominates in the additional cost for the computation part of
the proposed method. The leading term of the number of multiply-add operations in it is 2N |B|,
where N and |B| are the number of parameters and the local batch size, respectively. Other terms
such as determination of sent indexes and application of decay are at most O(N). Therefore here-
after we ignore the additional cost for the computation part and concentrate to the communication
part.

We discuss the relationship between the compression ratio and the speedup of the communication
part. As stated above, we ignore the latency term. The baseline is ring allreduce for uncompressed
gradients. Its elapsed time is Tr = 2(p − 1)Nsβ/p, where s and β are the bit size of each param-
eter and the transfer time per bit, respectively. On the other hand, elapsed time of pipelined ring
allgatherv is Tv =

∑
⌈((ni/m)− 1)mβ⌉, where m is the block size of pipelining. Defining c as the

averaged compression ratio including change of the number of bits per parameter, Tv is evaluated as
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Tv ≤ (
∑

ni + (p − 1)m)β = (Nsp/c + (p − 1)m)β. If we set m small enough, relative speedup
is Tr/Tv ≥ 2(p− 1)c/p2. Therefore we expect linear speedup in c > p/2 range.

6 EXPERIMENTS

In this section, we experimentally evaluate the proposed method. Specifically, we demonstrate that
our method can significantly reduce the communication cost while maintaining test accuracy. We
also show that it can reduce communication cost further when combined with other sparsification
methods, and even improves test accuracy in some settings.

We used CIFAR-10 (Krizhevsky, 2009) and ImageNet (Russakovsky et al., 2015), the two most
popular benchmark datasets of image classification. We fixed the hyperparameter ζ in Fig. 1 and
Fig. 2 to 0.999 in all experiments. We evaluated gradient compression algorithms from the following
two viewpoints: accuracy and compression ratio. The accuracy is defined as the test accuracy at the
last epoch, and the compression ratio is defined as the number of the total parameters of networks
divided by the average number of parameters sent. We do not consider the size of other non-essential
information required for the communication, because they are negligible. In addition, we can ignore
the number of bits to express each gradient because we assume that both a gradient and a parameter
index are enclosed in a 32 bit word as Strom (2015) in all algorithms. Please note that, as all methods
use allgatherv for communication, communication cost increases in proportion to the number of
workers. Thus, high compression ratio is required to achieve sufficient speed up when using tens or
hundreds of workers. We have visualization of results in Appendix C.

6.1 CIFAR-10

For experiments on CIFAR-10, we used a convolutional neural network similar to VGG
(Simonyan & Zisserman, 2015). The details of the network architecture are described in Ap-
pendix D. We trained the network for 300 epochs with weight decay of 0.0005. A total number
of workers was 8 and batch size was 64 for each worker. We applied no data augmentation to train-
ing images and center-cropped both training and test images into 32x32. We used two different
optimization methods: Adam (Ba & Kingma, 2015) and momentum SGD (Sutskever et al., 2013).
For Adam, we used Adam’s default parameter described in Ba & Kingma (2015). For momentum
SGD, we set the initial learning rate to 0.05 × 8 and halved it at every 25 epochs. We used two’s
complement in implementation of QSGD and ”bit” represents the number of bits used to represent
each element of gradients. ”d” represents a bucket size. For each configuration, we report the me-
dian of the accuracy from five independent runs. Compression ratios are calculated based on the
execution that achieved the reported accuracy.

Table 1 summarizes the results. Our method successfully trained the network with slight accuracy
gain for the Adam setting and 2 to 3 % of accuracy degradation for the Momentum SGD setting.
Compression ratios were also sufficiently high, and our method reduced communication cost beyond
quantization-based approaches described in section 3. The hybrid algorithm’s compression ratio is
several orders higher than existing compression methods with a low reduction in accuracy. This
indicates the algorithm can make computation with a large number of nodes feasible on commodity
level infrastructure that would have previously required high-end interconnections. Even though
QSGD achieved higher accuracy than our method, its compression power is limited and our algo-
rithm can reduce communication cost more aggressively. On the other hand, Strom’s method caused
significant accuracy degradation. Counter-intuitively, the hybrid algorithm improved its accuracy, in
addition to the further reduction of communication.

Our hypothesis for this phenomena is as follows. In Strom’s algorithm, when a large positive gradi-
ent appears, it has no choice but send positive values for consequent steps even if calculated gradi-
ents in following mini-batches have negative values. On the other hand, in the hybrid algorithm, if
following gradients have a different sign with a residual, the residual is not likely to be sent. We as-
sume that this effect helped the training procedure and led to better accuracy. We also would like to
mention the difficulty of hyperparameter tuning in Strom’s method. As Table 1 shows, using lower
threshold does not necessarily always lead to higher accuracy. This is because the hyperparameter
controls both its sparsification and quantization. Thus, users do not know whether to use a larger
or smaller value as a threshold to maintain accuracy. We note that we observed unstable behaviors
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Table 1: Training of a VGG-like network on CIFAR-10. τ denotes the threshold in Strom’s method.
α is the hyperparameter of our method described in the criterion (3). The number of bits of QSGD
refers the number of bits to express gradients except for the sign bits. For each configuration, the
median of the accuracy from five independent runs is reported. The compression column lists the
compression ratio defined at the beginning of Sec. 6.

Adam Momentum SGD
Method Accuracy Compression Accuracy Compression

no compression 88.1 1 91.7 1

Strom, τ = 0.001 62.8 88.5 84.8 6.5
Strom, τ = 0.01 85.0 230.1 10.6 990.7
Strom, τ = 0.1 88.0 6,942.8 71.6 8,485.0

our method, α = 1 88.9 120.7 90.3 52.4
our method, α = 1.5 88.9 453.3 89.6 169.2
our method, α = 2.0 88.9 913.4 88.4 383.6

hybrid, τ = 0.01, α = 2.0 85.0 1,942.2 87.6 983.9
hybrid, τ = 0.1, α = 2.0 88.2 12,822.4 87.1 12,396.8

QSGD (2bit, d = 128) 88.8 12.3 90.8 6.6
QSGD (3bit, d = 512) 87.4 14.4 91.4 7.0
QSGD (4bit, d = 512) 88.2 11.0 91.7 4.0

Table 2: Training ResNet50 on ImageNet. τ denotes a threshold in Strom’s method. α is the
hyperparameter of our method described in the criterion (3). Accuracy is the test accuracy at the last
epoch. Compression refers compression ratio defined in the beginning of Sec. 6.

Adam Momentum SGD
Method Accuracy Compression Accuracy Compression

no compression 56.2 1 76.0 1

Strom, τ = 0.001 28.6 38.6 75.2 2.1
Strom, τ = 0.01 50.0 156.2 75.5 35.2
Strom, τ = 0.1 48.1 6,969.0 75.5 2,002.2

our method, α = 1 55.3 1,542.8 74.7 103.8
our method, α = 1.5 57.4 2,953.1 75.5 400.7
our method, α = 2.0 57.8 5,173.8 75.1 990.7

hybrid, τ = 0.01, α = 2.0 52.2 2,374.2 75.0 470.9
hybrid, τ = 0.1, α = 2.0 43.1 28,954.2 75.1 4,345.0

with other thresholds around 0.01. On the other hand, our algorithm are free from such problem.
Moreover, when we know good threshold for Strom’s algorithm, we can just combine it with ours
to get further compression.

6.2 IMAGENET

As larger scale experiments, we trained ResNet-50 (He et al., 2016) on ImageNet. We followed
training procedure of Goyal et al. (2017) including optimizer, hyperparameters and data augmenta-
tion. We also evaluated algorithms with replacing MomentumSGD and its learning rate scheduling
to Adam with its default hyperparameter. We used batch size 32 for each worker and used 16 work-
ers.

Table 2 summarizes the results. In this example as well as the previous CIFAR10 example, Variance-
based Gradient Compression shows a significantly high compression ratio, with comparable accu-
racy. While in this case, Strom’s method’s accuracy was comparable with no compression, given
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the significant accuracy degradation with Strom’s method on CIFAR10, it appears Variance-based
Gradient Compression provides a more robust solution. Note that the training configuration with
MomentumSGD is highly optimized to training without any compression. For reference, the orig-
inal paper of ResNet-50 reports its accuracy as 75.3% (He et al., 2016). Wen et al. (2017) reports
that it caused up to 2% accuracy degradation in training with GoogLeNet (Szegedy et al., 2015) on
ImageNet and our method causes no more degradation compared to quantization-based approaches.

7 CONCLUSION

We proposed a novel method for gradient compression. Our method can reduce communication
cost significantly with no or only slight accuracy degradation. Contributions of our work can be
summarized in the following three points. First, we proposed a novel measurement of ambiguity
(high variance, low amplitude) to determine when a gradient update is required. Second, we showed
the application of this measurement as a threshold for updates significantly reduces update require-
ments, while providing comparable accuracy. Third, we demonstrated this method can be combined
with other efficient gradient compression approaches to further reduce communication cost.
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A A SIMPLIFIED VIEW OF THE VARIANCE-BASED CRITERION

We derive that the criterion (3) corresponds to the criterion (1).(∑
z∈B

1

|B|
∇ifz(x)

)2

> α
∑
z∈B

(
1

|B|
∇ifz(x)

)2

⇐⇒ |B| − α

|B|

(∑
z∈B

1

|B|
∇ifz(x)

)2

> α
1

|B|

(
1

|B|
∑
z∈B

(∇ifz(x))−
∑
z∈B

(
1

|B|
∇ifz(x)

)2
)

⇐⇒ |B| − α

|B|

(∑
z∈B

1

|B|
∇ifz(x)

)2

> α
1

|B|2
∑
z∈B

(
∇ifz(x)−

1

|B|
∑
z∈B

(∇ifz(x))

)2

⇐⇒ |B| − α

|B|

(∑
z∈B

1

|B|
∇ifz(x)

)2

> α
|B| − 1

|B|2
1

|B| − 1

∑
z∈B

(
∇ifz(x)−

1

|B|
∑
z∈B

(∇ifz(x))

)2

⇐⇒ |B| − α

|B|

(∑
z∈B

1

|B|
∇ifz(x)

)2

> α
|B| − 1

|B|2
VB [∇ifz(x)]

⇐⇒ ∇ifB(x)
2 > α

|B| − 1

|B| − α

1

|B|
VB [∇ifz(x)]

VB [∇ifz(x)]/|B| is an estimated variance of the means of gradients in mini-batches with size |B|.
For α = 1, the above criterion reduces to

∇fB(x)
2 >

1

|B|
VB [∇fz(x)],

which is an estimated version of the sufficient condition (2). The term (|B| − 1)/(|B| − α) is
approximately 1 in most settings.
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B RUNNING EXAMPLE OF QUANTIZATION

Let (0.04, 0.31,−6.25, 22.25,−35.75) be a part of gradient elements corresponding to a
matrix. Sign bits are separately processed and we consider their absolute values here:
(0.04, 0.31, 6.25, 22.25, 35.75). Now, Mk is the max of the elements: 35.75. 2⌊log2 Mk⌋ is 32.
After rounding, gi′ of each element become 0.03125, 0.25, 8, 16, 32 and di for each element be-
come 10, 7, 2, 1, 0. Note that higher di corresponds to smaller g′i. We can use only 3 bits and thus
we cannot represent 10 and it will not be sent, which means it will not be sent. Finally, we send them
with ⌊log2 Mk⌋, sign bits and index: {⌊log2 Mk⌋ : 5, ((+7, index : 1), (−2, index : 2), (+1, index :
2), (−0, index : 3))}.

C VISUAL REPRESENTATION OF EXPERIMENTAL RESULTS

Figure 3 are scatter plots of Table 1 and 2. The upper right corner is desirable. The figures suggests
superiority of our variance-based compression and hybrid algorithm.

Figure 3: Scatter plots of relation between accuracy and compression ratio. The four plots cor-
respond to the configurations on datasets and optimization methods as follows: (a) CIFAR-10 and
Adam, (b) CIFAR-10 and MomentumSGD, (c) ImageNet and Adam, (d) ImageNet and Momen-
tumSGD. No compression denotes the case where we do not use any compression methods. Variance
is a method described in Sec. 4.1 and 4.2. Hybrid is a combination of variance based compression
and Strom’s algorithm. Some outliers are not plotted. Upper right of these figures is desirable for
all compression algorithms.

D ARCHITECTURE OF VGG-LIKE NETWORK USED ON CIFAR-10

Table 3 shows the network architecture used for experiments on CIFAR-10. All convolutional layers
are followed by batch normalization and ReLU activation. The code is available in examples of
Chainer (Tokui et al., 2015) on GitHub.
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Table 3: The network architecture for the CIFAR-10 classification task

input (3x32x32)

conv3-64
dropout(0.3)

conv3-64

maxpool

conv3-128
dropout(0.4)
conv3-128

maxpool

conv3-256
dropout(0.4)
conv3-256

dropout(0.4)
conv3-256

maxpool

conv3-512
dropout(0.4)
conv3-512

dropout(0.4)
conv3-512

maxpool

conv3-512
dropout(0.4)
conv3-512

dropout(0.4)
conv3-512

maxpool

dropout(0.5)
fully connected 512

bn
relu

dropout(0.5)
fully connected 10

softmax
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