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ABSTRACT

Transferring knowledge from prior source tasks in solving a new target task can
be useful in several learning applications. The application of transfer poses two
serious challenges which have not been adequately addressed. First, the agent
should be able to avoid negative transfer, which happens when the transfer ham-
pers or slows down the learning instead of helping it. Second, the agent should
be able to selectively transfer, which is the ability to select and transfer from dif-
ferent and multiple source tasks for different parts of the state space of the target
task. We propose A2T (Attend, Adapt and Transfer), an attentive deep architec-
ture which adapts and transfers from these source tasks. Our model is generic
enough to effect transfer of either policies or value functions. Empirical evalua-
tions on different learning algorithms show that A2T is an effective architecture
for transfer by being able to avoid negative transfer while transferring selectively
from multiple source tasks in the same domain.

1 INTRODUCTION

One of the goals of Artificial Intelligence (AI) is to build autonomous agents that can learn and
adapt to new environments. Reinforcement Learning (RL) is a key technique for achieving such
adaptability. The goal of RL algorithms is to learn an optimal policy for choosing actions that
maximize some notion of long term performance. Transferring knowledge gained from tasks solved
earlier to solve a new target task can help, either in terms of speeding up the learning process or
in terms of achieving a better solution, among other performance measures. When applied to RL,
transfer could be accomplished in many ways (see Taylor & Stone (2009; 2011) for a very good
survey of the field). One could use the value function from the source task as an initial estimate in
the target task to cut down exploration [Sorg & Singh (2009)]. Alternatively one could use policies
from the source task(s) in the target task. This can take one of two forms - (i) the derived policies
can be used as initial exploratory trajectories [Atkeson & Schaal (1997); Niekum et al. (2013)] in
the target task and (ii) the derived policy could be used to define macro-actions which may then be
used by the agent in solving the target task [Mannor et al. (2004); Brunskill & Li (2014)].
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While transfer in RL has been much explored, there are two crucial issues that have not been ad-
equately addressed in the literature. The first is negative transfer, which occurs when the transfer
results in a performance that is worse when compared to learning from scratch in the target task.
This severely limits the applicability of many transfer techniques only to cases for which some mea-
sure of relatedness between source and target tasks can be guaranteed beforehand. This brings us
to the second problem with transfer, which is the issue of identifying an appropriate source task
from which to transfer. In some scenarios, different source tasks might be relevant and useful for
different parts of the state space of the target task. As a real world analogy, consider multiple players
(experts) who are good at different aspects of a game (say, tennis). For example, Player 1 is good at
playing backhand shots while Player 2 is good at playing forehand shots. Consider the case of a new
player (agent) who wants to learn tennis by selectively learning from these two experts. We handle
such a situation in our architecture by allowing the agent to learn how to pick and use solutions from
multiple and different source tasks while solving a target task, selectively applicable for different
parts of the state space. We call this selective transfer. Our agent can transfer knowledge from
Player 1 when required to play backhand shots and Player 2 for playing forehand shots. Further,
let us consider consider the situation that both Player 1 and Player 2 are bad at playing drop shots.
Apart from the source tasks, we maintain a base network that learns from scratch on the target task.
The agent can pick and use the solution of the base network when solving the target task at the parts
of the state space where transferring from the source tasks is negative. Such a situation could arise
when the source task solutions are irrelevant for solving the target task over a specific portion of the
state space, or when the transferring from the source tasks is negative over a specific portion of the
state space (for example, transferring the bad drop shot abilities of Players 1 and 2). This situation
also entails the first problem of avoiding negative transfer. Our framework allows an agent to avoid
transferring from both Players 1 and 2 while learning to play drop shots, and rather acquire the drop
shot skill by learning to use the base network. The architecture is trained such that the base network
uses not just the experience obtained through the usage of its solutions in the target task, but the
overall experience acquired using the combined knowledge of the source tasks and itself. This en-
ables the base network solutions to get closer to the behavior of the overall architecture (which uses
the source task solutions as well). This makes it easier for the base network to assist the architecture
to fine tune the useful source task solutions to suit the target task perfectly over time.

The key contribution in the architecture is a deep attention network, that decides which solutions to
attend to, for a given input state. The network learns solutions as a function of current state thereby
aiding the agent in adopting different solutions for different parts of the state space in the target task.

To this end, we propose A2T: Attend, Adapt and Transfer, an Attentive Deep Architecture for Adap-
tive Transfer, that avoids negative transfer while performing selective transfer from multiple source
tasks in the same domain. In addition to the tennis example, A2T is a fairly generic framework that
can be used to selectively transfer different skills available from different experts as appropriate to
the situation. For instance, a household robot can appropriately use skills from different experts
for different household chores. This would require the skill to transfer manipulation skills across
objects, tasks and robotic actuators. With a well developed attention mechanism, the most appropri-
ate and helpful combination of object-skill-controller can be identified for aiding the learning on a
related new task. Further, A2T is generic enough to effect transfer of either action policies or action-
value functions, as the case may be. We also adapt different algorithms in reinforcement learning
as appropriate for the different settings and empirically demonstrate that the A2T is effective for
transfer learning for each setting.

2 RELATED WORK

As mentioned earlier, transfer learning approaches could deal with transferring policies or value
functions. For example, Banerjee & Stone (2007) describe a method for transferring value functions
by constructing a Game tree. Similarly, Sorg & Singh (2009) use the value function from a source
task as the initial estimate of the value function in the target task.

Another method to achieve transfer is to reuse policies derived in the source task(s) in the target
task. Probabilistic Policy Reuse as discussed in Fernández & Veloso (2006) maintains a library of
policies and selects a policy based on a similarity metric, or a random policy, or a max-policy from
the knowledge obtained. This is different from the proposed approach in that the proposed approach
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can transfer policies at the granularity of individual states which is not possible in policy-reuse
rendering it unable to learn customized policy at that granularity.Atkeson & Schaal (1997); Niekum
et al. (2013) evaluated the idea of having the transferred policy from the source tasks as explorative
policies instead of having a random exploration policy. This provides better exploration behavior
provided the tasks are similar. Talvitie & Singh (2007) try to find the promising policy from a set
of candidate policies that are generated using different action mapping to a single solved task. In
contrast, we make use of one or more source tasks to selectively transfer policies at the granularity
of state. Apart from policy transfer and value transfer as discussed above, Ferguson & Mahadevan
(2006) discuss representation transfer using Proto Value Functions.

The idea of negative and selective transfer have been discussed earlier in the literature. For example,
Lazaric & Restelli (2011) address the issue of negative transfer in transferring samples for a related
task in a multi-task setting. Konidaris et al. (2012) discuss the idea of exploiting shared common
features across related tasks. They learn a shaping function that can be used in later tasks.

The two recent works that are very relevant to the proposed architecture are discussed in Parisotto
et al. (2015) and Rusu et al. (2016). Parisotto et al. (2015) explore transfer learning in RL across
Atari games by trying to learn a multi-task network over the source tasks available and directly fine-
tune the learned multi-task network on the target task. However, fine-tuning as a transfer paradigm
cannot address the issue of negative transfer which they do observe in many of their experiments.
Rusu et al. (2016) try to address the negative transfer issue by proposing a sequential learning mech-
anism where the filters of the network being learned for an ongoing task are dependent through
lateral connections on the lower level filters of the networks learned already for the previous tasks.
The idea is to ensure that dependencies that characterize similarity across tasks could be learned
through these lateral connections. Even though they do observe better transfer results than direct
fine-tuning, they are still not able to avoid negative transfer in some of their experiments.

3 PROPOSED ARCHITECTURE

Let there be N source tasks and let K1,K2, . . .KN be the solutions of these source tasks 1, . . . N
respectively. Let KT be the solution that we learn in the target task T . Source tasks refer to tasks
that we have already learnt to perform and target task refers to the task that we are interested in
learning now. These solutions could be for example policies or state-action values. Here the source
tasks should be in the same domain as the target task, having the same state and action spaces. We
propose a setting where KT is learned as a function of K1, . . . ,KN ,KB , where KB is the solution
of a base network which starts learning from scratch while acting on the target task. In this work,
we use a convex combination of the solutions to obtain KT .

KT (s) = wN+1,sKB(s) +
N∑
i=1

wi,sKi(s) (1)

N+1∑
i=1

wi,s = 1, wi,s ∈ [0, 1] (2)

wi,s is the weight given to the ith solution at state s.

The agent uses KT to act in the target task. Figure 1a shows the proposed architecture. While the
source task solutionsK1, . . . ,KN remain fixed, the base network solutions are learnt and henceKB

can change over time. There is a central network which learns the weights (wi,s, i ∈ 1, 2, . . . , N+1),
given the input state s. We refer to this network as the attention network. The [0, 1] weights deter-
mine the attention each solution gets allowing the agent to selectively accept or reject the different
solutions, depending on the input state. We adopt a soft-attention mechanism whereby more than
one weight can be non-zero [Bahdanau et al. (2014)] as opposed to a hard-attention mechanism
[Mnih et al. (2014)] where we are forced to have only one non-zero weight.

wi,s =
exp (ei,s)

N+1∑
j=1

exp (ej,s)

, i ∈ {1, 2, . . . , N + 1} (3)
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(a) (b)

Figure 1: (a) A2T architecture. The doted arrows represent the path of back propagation. (b) Actor-
Critic using A2T.

(e1,s, e2,s, . . . , eN+1,s) = f(s; θa) (4)

Here, f(s; θa) is a deep neural network (attention network), which could consist of convolution
layers and fully connected layers depending on the representation of input. It is parametrised by θa
and takes as input a state s and outputs a vector of length N + 1, which gives the attention scores
for the N + 1 solutions at state s. Eq.(3) normalises this score to get the weights that follow Eq.(2).

If the ith source task solution is useful at state s, then wi,s is set to a high value by the attention
network. Working at the granularity of states allows the attention network to attend to different
source tasks, for different parts of the state space of the target task, thus giving it the ability to
perform selective transfer. For parts of the state space in the target task, where the source task
solutions cause negative transfer or where the source task solutions are not relevant, the attention
network learns to give high weight to the base network solution (which can be learnt and improved),
thus avoiding negative transfer.

Depending on the feedback obtained from the environment upon following KT , the attention net-
work’s parameters θa are updated to improve performance.

As mentioned earlier, the source task solutions, K1, . . . ,KN remain fixed. Updating these source
task’s parameters would cause a significant amount of unlearning in the source tasks solutions and
result in a weaker transfer, which we observed empirically. This also enables the use of source task
solutions, as long as we have the outputs alone, irrespective of how and where they come from.

Even though the agent follows KT , we update the parameters of the base network that produces
KB , as if the action taken by the agent was based only on KB . Due to this special way of updating
KB , apart from the experience got through the unique and individual contribution of KB to KT in
parts of the state space where the source task solutions are not relevant, KB also uses the valuable
experience got by using KT which uses the solutions of the source tasks as well.

This also means that, if there is a source task whose solution Kj is useful for the target task in
some parts of its state space, then KB tries to replicate Kj in those parts of the state space. In
practise, the source task solutions though useful, might need to be modified to suit perfectly for the
target task. The base network takes care of these modifications required to make the useful source
task solutions perfect for the target task. The special way of training the base network assists the
architecture in achieving this faster. Note that the agent could follow/useKj throughKT even when
KB does not attain its replication in the corresponding parts of the state space. This allows for a
good performance of the agent in earlier stages training itself, when a useful source task is available
and identified.

Since the attention is soft, our model has the flexibility to combine multiple solutions. The use of
deep neural networks allow the model to work even for large, complex RL problems. The deep
attention network, allows the agent to learn complex selection functions, without worrying about

4



Published as a conference paper at ICLR 2017

representation issues a priori. To summarise, for a given state, A2T learns to attend to specific
solutions and adapts this attention over different states, hence attaining useful transfer. A2T is
general and can be used for transfer of solutions such as policy and value.

3.1 POLICY TRANSFER

The solutions that we transfer here are the source task policies, taking advantage of which, we learn
a policy for the target task. Thus, we have K1, . . . ,KN ,KB ,KT ← π1, . . . πN , πB , πT . Here π
represents a stochastic policy, a probability distribution over all the actions. The agent acts in the
target task, by sampling actions from the probability distribution πT . The target task policy πT is got
as described in Eq.(1) and Eq.(2). The attention network that produces the weights for the different
solutions, is trained by the feedback got after taking action following πT . The base network that
produces πB is trained as if the sampled action came from πB (though it originally came from πT ),
the implications of which were discussed in the previous section. When the attention network’s
weight for the policy πB is high, the mixture policy πT is dominated by πB , and the base network
learning is nearly on-policy. In the other cases, πB undergoes off-policy learning. But if we look
closely, even in the latter case, since πB moves towards πT , it tries to be nearly on-policy all the
time. Empirically, we observe that πB converges. This architecture for policy transfer can be used
alongside any algorithm that has an explicit representation of the policy. Here we describe two
instantiations of A2T for policy transfer, one for direct policy search using REINFORCE algorithm
and another in the Actor-Critic setup.

3.1.1 POLICY TRANSFER IN REINFORCE ALGORITHMS USING A2T:

REINFORCE algorithms [Williams (1992)] can be used for direct policy search by making weight
adjustments in a direction that lies along the gradient of the expected reinforcement. The full ar-
chitecture is same as the one shown in Fig.1a with K ← π. We do direct policy search, and the
parameters are updated using REINFORCE. Let the attention network be parametrized by θa and
the base network which outputs πB be parametrized by θb. The updates are given by:

θa ← θa + αθa(r − b)
∂
∑M
t=1 log(πT (st, at))

∂θa
(5)

θb ← θb + αθb(r − b)
∂
∑M
t=1 log(πB(st, at))

∂θb
(6)

where αθa , αθb are non-negative factors, r is the return obtained in the episode, b is some baseline
and M is the length of the episode. at is the action sampled by the agent at state st following πT .
Note that while πT (st, at) is used in the update of the attention network, πB(st, at) is used in the
update of the base network.

3.1.2 POLICY TRANSFER IN ACTOR-CRITIC USING A2T:

Actor-Critic methods [Konda & Tsitsiklis (2000)] are Temporal Difference (TD) methods that have
two separate components, viz., an actor and a critic. The actor proposes a policy whereas the critic
estimates the value function to critique the actor’s policy. The updates to the actor happens through
TD-error which is the one step estimation error that helps in reinforcing an agent’s behaviour.

We use A2T for the actor part of the Actor-Critic. The architecture is shown in Fig.1b. The actor,
A2T is aware of all the previous learnt tasks and tries to use those solution policies for its benefit.
The critic evaluates the action selection from πT on the basis of the performance on the target task.
With the same notations as REINFORCE for st, at, θa, θb, αθa , αθb , πB , πT ; let action at dictated
by πT lead the agent to next state st+1 with a reward rt+1 and let V (st) represent the value of state
st and γ the discount factor. Then, the update equations for the actor are as below:

δt = rt+1 + γV (st+1)− V (st) (7)

θa ← θa + αθaδt

∂ log πT (st,at)
∂θa∣∣∣∂ log πT (st,at)
∂θa

∣∣∣ (8)
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θb ← θb + αθbδt

∂ log πB(st,at)
∂θb∣∣∣∂ log πB(st,at)
∂θb

∣∣∣ (9)

Here, δt is the TD error. The state-value function V of the critic is learnt using TD learning.

3.2 VALUE TRANSFER

In this case, the solutions being transferred are the source tasks’ action-value functions, which we
will call as Q functions. Thus, K1, . . . ,KN ,KB ,KT ← Q1, . . . , QN , QB , QT . Let A represent
the discrete action space for the tasks and Qi(s) = {Q(s, aj) ∀ aj ∈ A}. The agent acts by using
QT in the target task, which is got as described in Eq.(1) and Eq.(2). The attention network and the
base network of A2T are updated as described in the architecture.

3.2.1 VALUE TRANSFER IN Q LEARNING USING A2T:

The state-action value Q function is used to guide the agent to selecting the optimal action a at a
state s, whereQ(s, a) is a measure of the long-term return obtained by taking action a at state s. One
way to learn optimal policies for an agent is to estimate the optimal Q(s, a) for the task. Q-learning
[Watkins & Dayan (1992)] is an off-policy Temporal Difference (TD) learning algorithm that does
so. The Q-values are updated iteratively through the Bellman optimality equation [Puterman (1994)]
with the rewards obtained from the task as below:

Q(s, a)← E[r(s, a, s′) + γmaxa′Q(s′, a′)]

In high dimensional state spaces, it is infeasible to update Q-value for all possible state-action pairs.
One way to address this issue is by approximating Q(s, a) through a parametrized function approx-
imator Q(s, a; θ),thereby generalizing over states and actions by operating on higher level features
[Sutton & Barto (1998)]. The DQN [Mnih et al. (2015)] approximates the Q-value function with a
deep neural network to be able to predict Q(s, a) over all actions a, for all states s.

The loss function used for learning a Deep Q Network is as below:

L(θ) = Es,a,r,s′ [
(
yDQN −Q(s, a; θ)

)2
],

with
yDQN =

(
r + γmaxa′Q(s′, a′, θ−)

)
Here, L represents the expected TD error corresponding to current parameter estimate θ. θ− rep-
resents the parameters of a separate target network, while θ represents the parameters of the online
network. The usage of a target network is to improve the stability of the learning updates. The
gradient descent step is shown below:

∇θL(θ) = Es,a,r,s′ [(yDQN −Q(s, a; θ))∇θQ(s, a)]

To avoid correlated updates from learning on the same transitions that the current network simulates,
an experience replay [Lin (1993)] D (of fixed maximum capacity) is used, where the experiences
are pooled in a FIFO fashion.

We use DQN to learn our expertsQi, i ∈ 1, 2 . . . N on the source tasks. Q-learning is used to ensure
QT (s) is driven to a good estimate of Q functions for the target task. Taking advantage of the off-
policy nature of Q-learning, both QB and QT can be learned from the experiences gathered by an
ε-greedy behavioral policy based on QT . Let the attention network that outputs w be parametrised
by θa and the base network outputting QB be parametrised by θb. Let θa− and θb− represent the
parameters of the respective target networks. Note that the usage of target here is to signify the
parameters (θ−a , θ

−
b ) used to calculate the target value in the Q-learning update and is different from

its usage in the context of the target task. The update equations are:

yQT = (r + γmaxa′QT (s′, a′; θa−, θb−)) (10)

LQT (θa, θb) = Es,a,r,s′ [(yQT −QT (s, a; θa, θb))2] (11)
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(a) Chain World (b) Puddle World 1 (c) Puddle World 2

Figure 2: Different worlds for policy transfer experiments

LQB (θb) = Es,a,r,s′ [(yQT −QB(s, a; θb))2] (12)

∇θaLQT = E[(yQT −QT (s, a))∇θaQT (s, a)] (13)

∇θbLQB = E[(yQT −QB(s, a))∇θbQR(s, a)] (14)
θa and θb are updated with the above gradients using RMSProp. Note that the Q-learning updates for
both the attention network (Eq.(11)) and the base network (Eq.(12)) use the target value generated
by QT . We use target networks for both QB and QT to stabilize the updates and reduce the non-
stationarity as in DQN training. The parameters of the target networks are periodically updated to
that of the online networks.

4 EXPERIMENTS AND DISCUSSION

We evaluate the performance of our architecture A2T on policy transfer using two simulated worlds,
viz., chain world and puddle world as described below. The main goal of these experiments is to test
the consistency of results with the algorithm motivation. Chain world: Figure 2a shows the chain
world where the goal of the agent is to go from one point in the chain (starting state) to another
point (goal state) in the least number of steps. At each state the agent can choose to either move
one position to the left or to the right. After reaching the goal state the agent gets a reward that is
inversely proportional to the number of steps taken to reach the goal.

Puddle worlds: Figures 2b and 2c show the discrete version of the standard puddle world that
is widely used in Reinforcement Learning literature. In this world, the goal of the agent is to go
from a specified start position to the goal position, maximising its return. At each state the agent
can choose one of these four actions: move one position to the north, south, east or west.With 0.9
probability the agent moves in the chosen direction and with 0.1 probability it moves in a random
direction irrespective of its choice of action. On reaching the goal state, the agent gets a reward
of +10. On reaching other parts of the grid the agent gets different penalties as mentioned in the
legend of the figures. . We evaluate the performance of our architecture on value transfer using the
Arcade Learning Environment (ALE) platform [Bellemare et al. (2012)]. Atari 2600: ALE provides
a simulator for Atari 2600 games. This is one of the most commonly used benchmark tasks for deep
reinforcement learning algorithms [Mnih et al. (2015), Mnih et al. (2016), Parisotto et al. (2015),
Rusu et al. (2016)]. We perform our adaptive transfer learning experiments on the Atari 2600 game
Pong.

4.1 ABILITY TO DO SELECTIVE TRANSFER

In this section, we consider the case when multiple partially favorable source tasks are available
such that each of them can assist the learning process for different parts of the state space of the
target task. The objective here is to first show the effectiveness of the attention network in learning
to focus only on the source task relevant to the state the agent encounters while trying to complete
the target task and then evaluating the full architecture with an additional randomly initialised base
network.
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(a) The weights given by the attention network. Selective
transfer in REINFORCE

(b) Selective transfer in Actor-Critic

Figure 3: Results of the selective policy transfer experiments

This is illustrated for the Policy Transfer setting using the chain world shown in (Fig. 2a). Consider
that the target task LT is to start in A or B with uniform probability and reach C in the least number
of steps. Now, consider that two learned source tasks, viz., L1 and L2, are available. L1 is the
source task where the agent has learned to reach the left end (A) starting from the right end (B). In
contrast, L2 is the source task where the agent has learned to reach the right end (B) starting from
the left end (A). Intuitively, it is clear that the target task should benefit from the policies learnt for
tasks L1 and L2. We learn to solve the task LT using REINFORCE given the policies learned for
L1 and L2. Figure 3a (i) shows the weights given by the attention network to the two source task
policies for different parts of the state space at the end of learning. We observe that the attention
network has learned to ignore L1, and L2 for the left, and right half of the state space of the target
task, respectively. Next, we add base network and evaluate the full architecture on this task. Figure
3a (ii) shows the weights given by the attention network to the different source policies for different
parts of the state space at the end of learning. We observe that the attention network has learned to
ignore L1, and L2 for the left, and right half of the state space of the target task, respectively. As the
base network replicates πT over time, it has a high weight throughout the state space of the target
task.

We also evaluate our architecture in a relatively more complex puddle world shown in Figure 2c. In
this case, L1 is the task of moving from S1 to G1, and L2 is the task of moving from S2 to G1.
In the target task LT , the agent has to learn to move to G1 starting from either S1 or S2 chosen
with uniform probability. We learn the task LT using Actor-Critic method, where the following are
available (i) learned policy for L1 (ii) learned policy for L2 and (iii) a randomly initialized policy
network (the base network). Figure 3b shows the performance results. We observe that actor-critic
using A2T is able to use the policies learned for L1, and L2 and performs better than a network
learning from scratch without any knowledge of source tasks.

We do a similar evaluation of the attention network, followed by our full architecture for value
transfer as well. We create partially useful source tasks through a modification of the Atari 2600
game Pong. We take inspiration from a real world scenario in the sport Tennis, where one could
imagine two different right-handed (or left) players with the first being an expert player on the
forehand but weak on the backhand, while the second is an expert player on the backhand but weak
on the forehand. For someone who is learning to play tennis with the same style (right/left) as the
experts, it is easy to follow the forehand expert player whenever he receives a ball on the forehand
and follow the backhand expert whenever he receives a ball on the backhand.

We try to simulate this scenario in Pong. The trick is to blur the part of the screen where we want
to force the agent to be weak at returning the ball. The blurring we use is to just black out all pixels
in the specific region required. To make sure the blurring doesn’t contrast with the background, we
modify Pong to be played with a black background (pixel value 0) instead of the existing gray (pixel
value 87). We construct two partially helpful source task experts L1 and L2. L1 is constructed by
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Figure 4: Visualisation of the attention weights in the Selective Transfer with Attention Network
experiment: Green and Blue bars signify the attention probabilities for Expert-1 (L1) and Expert-
2 (L2) respectively. We see that in the first two snapshots, the ball is in the lower quadrant and
as expected, the attention is high on Expert-1, while in the third and fourth snapshots, as the ball
bounces back into the upper quadrant, the attention increases on Expert-2.

training a DQN on Pong with the upper quadrant (the agent’s side) blurred, while L2 is constructed
by training a DQN with the lower quadrant (the agent’s side) blurred. This essentially results in
the ball being invisible when it is in the upper quadrant for L1 and lower quadrant for L2. We
therefore expect L1 to be useful in guiding to return balls on the lower quadrant, and L2 for the
upper quadrant. The goal of the attention network is to learn suitable filters and parameters so that it
will focus on the correct source task for a specific situation in the game. The source task experts L1
and L2 scored an average of 9.2 and 8 respectively on Pong game play with black background. With
an attention network to suitably weigh the value functions of L1 and L2, an average performance of
17.2 was recorded just after a single epoch (250,000 frames) of training. (The score in Pong is in the
range of [−21, 21]). This clearly shows that the attention mechanism has learned to take advantage
of the experts adaptively. Fig. 4 shows a visualisation of the attention weights for the same.

Figure 5: Selective Value Transfer.

We then evaluate our full architecture (A2T) in
this setting, i.e with an addition of DQN learn-
ing from scratch (base network) to the above set-
ting. The architecture can take advantage of the
knowledge of the source task experts selectively
early on during the training while using the ex-
pertise of the base network wherever required, to
perform well on the target task. Figure 5 sum-
marizes the results, where it is clear that learn-
ing with both the partially useful experts is better
than learning with only one of them which in turn
is better than learning from scratch without any
additional knowledge.

4.2 ABILITY TO
AVOID NEGATIVE TRANSFER AND ABILITY
TO TRANSFER FROM FAVORABLE TASK

We first consider the case when only one learned
source task is available such that its solution K1

(policy or value) can hamper the learning process of the new target task. We refer to such a source
task as an unfavorable source task. In such a scenario, the attention network shown in Figure 1a
should learn to assign a very low weight (ignore) to K1 . We also consider a modification of this
setting by adding another source task whose solution K2 is favorable to the target task. In such a
scenario, the attention network should learn to assign high weight (attend) to K2 while ignoringK1.

We now define an experiment using the puddle world from Figure 2b for policy transfer. The target
task in our experiment is to maximize the return in reaching the goal state G1 starting from any one
of the states S1, S2, S3, S4. We artificially construct an unfavorable source task by first learning
to solve the above task and then negating the weights of the topmost layer of the actor network.
We then add a favorable task to the above setting. We artificially construct a favorable source task
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(a) Avoiding negative transfer(Pong) and transferring
from a favorable task

(b) Avoiding negative transfer(Freeway) and transfer-
ring from a favorable task

Figure 7: Avoiding negative transfer and transferring value from a favorable task(higher the better).
Specific training and architecture details are mentioned in APPENDIX. The plots are averaged over
two runs with different random seeds.

simply by learning to solve the target task and using the learned actor network. Figure 6 shows
the results. The target task for the value transfer experiment is to reach expert level performance
on Pong. We construct two kinds of unfavorable source tasks for this experiment. Inverse-Pong:
A DQN on Pong trained with negated reward functions, that is with R′(s, a) = −R(s, a) where
R(s, a) is the reward provided by the ALE emulator for choosing action a at state s. Freeway:
An expert DQN on another Atari 2600 game, Freeway, which has the same range of optimal value
functions and same action space as Pong. We empirically verified that the Freeway expert DQN
leads to negative transfer when directly initialized and fine-tuned on Pong which makes this a good
proxy for a negative source task expert even though the target task Pong has a different state space.

Figure 6: Avoiding negative transfer and trans-
ferring policy from a favorable task(lower the
better).

We artificially construct a favorable source task
by learning a DQN to achieve expertise on the
target task (Pong) and use the learned network.
Figure 7a compares the performance of the var-
ious scenarios when the unfavorable source task
is Inverse-Pong, while Figure 7b offers a similar
comparison with the negative expert being Free-
way.

From all the above results, we can clearly see that
A2T does not get hampered by the unfavorable
source task by learning to ignore the same and
performs competitively with just a randomly ini-
tialized learning on the target task without any ex-
pert available. Secondly, in the presence of an ad-
ditional source task that is favorable, A2T learns
to transfer useful knowledge from the same while
ignoring the unfavorable task, thereby reaching
expertise on the target task much faster than the
other scenarios.

4.3 VISUALIZATION: EVOLUTION OF
ATTENTION WEIGHTS WITH ONE POSITIVE AND ONE NEGATIVE EXPERT

We present the evolution of attention weights for the experiment described in Section 4.2 where
we focus on the efficacy of the A2T framework in providing an agent the ability to avoid negative
transfer and transfer from a favorable source task (perfect expert). Figure 8 depicts the evolution of

10



Published as a conference paper at ICLR 2017

the attention weights (normalised in the range of [0, 1]) during the training of the A2T framework.
The corresponding experiment is the case where the target task is to solve Pong, while there are two
source task experts, one being a perfect Pong playing trained DQN (to serve as positive expert), and
the other being the Inverse-Pong DQN trained with negated reward functions (to serve as negative
expert). Additionally, there’s also the base network that learns from scratch using the experience
gathered by the attentively combined behavioral policy from the expert networks, the base network
and itself.

Figure 8: Evolution of attention weights with
one positive and one negative expert.

We train the framework for 30 epochs, and the
plot illustrates the attention weights every second
epoch. We clearly see from figure 8 that there is
no weird co-adaptation that happens in the train-
ing, and the attention on the negative expert is
uniformly low throughout. Initially, the frame-
work needs to collect some level of experience
to figure out that the positive expert is optimal
(or close to optimal). Till then, the attention is
mostly on the base network, which is learning
from scratch. The attention then shifts to the pos-
itive expert which in turn provides more reward-
ing episodes and transition tuples to learn from.
Finally, the attention drifts slowly to the base net-
work from the positive expert again, after which
the attention is roughly random in choosing be-
tween the execution of positive expert and the
base network. This is because the base network
has acquired sufficient expertise as the positive
expert which happens to be optimal for the tar-
get task. This visualization clearly shows that A2T is a powerful framework in ignoring a negative
expert throughout and using a positive expert appropriately to learn quickly from the experience
gathered and acquire sufficient expertise on the target task.

4.4 WHEN A PERFECT EXPERT IS NOT AVAILABLE AMONG THE SOURCE TASKS

Figure 9: Partial Positive Expert Experiment

In our experiments in the previous subsection
dealing with prevention of negative transfer and
using a favorable source task, we consider the
positive expert as a perfect (close to optimal) ex-
pert on the same task we treat as the target task.
This raises the question of relying on the pres-
ence of a perfect expert as a positive expert. If
we have such a situation, the obvious solution is
to execute each of the experts on the target task
and vote for them with probabilities proportional
to the average performance of each.

The A2T framework is however generic and not
intended to just do source task selection. We il-
lustrate this with an additional baseline experi-
ment, where the positive source task is an im-
perfect expert on the target task. In such a case,
just having a weighted average voting among the
available source task networks based on their in-
dividual average rewards is upper bounded by the
performance of the best available positive expert, which happens to be an imperfect expert on the tar-
get task. Rather, the base network has to acquire new skills not present in the source task networks.
We choose a partially trained network on Pong, that scores an average of 8 (max: 21). The graph
in figure 9 clearly shows that the A2T framework with a partial Pong expert and a negative expert
performs better than i) learning from scratch, ii) A2T with only one negative expert, and performs
worse than A2T with one perfect positive expert and one negative expert. This is expected because
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a partial expert cannot provide as much of expert knowledge as a perfect expert, but still provides
some useful knowledge in speeding the process of solving the target task. An important conclusion
from this experiment is that the A2T framework is capable of discovering new skills not available
among any of the experts when such skills are required for optimally solving the target task. To
maintain consistency, we perform the same number of runs for averaging scores and experimented
with both learning rates and pick the better performing one (0.00025).

5 CONCLUSION AND FUTURE WORK

In this paper we present a very general deep neural network architecture, A2T, for transfer learning
that avoids negative transfer while enabling selective transfer from multiple source tasks in the same
domain. We show simple ways of using A2T for policy transfer and value transfer. We empirically
evaluate its performance with different algorithms, using simulated worlds and games, and show
that it indeed achieves its stated goals. Apart from transferring task solutions, A2T can also be used
for transferring other useful knowledge such as the model of the world.

While in this work we focused on transfer between tasks that share the same state and action spaces
and are in the same domain, the use of deep networks opens up the possibility of going beyond this
setting. For example, a deep neural network can be used to learn common representations [Parisotto
et al. (2015)] for multiple tasks thereby enabling transfer between related tasks that could possibly
have different state-action spaces. A hierarchical attention over the lower level filters across source
task networks while learning the filters for the target task network is another natural extension to
transfer across tasks with different state-action spaces. The setup from Progressive Neural Networks
[Rusu et al. (2016)] could be borrowed for the filter transfer, while the A2T setup can be retained for
the policy/value transfer. Exploring this setting for continuous control tasks so as to transfer from
modular controllers as well avoid negative transfer is also a potential direction for future research.

The nature of tasks considered in our experiments is naturally connected to Hierarchical Reinforce-
ment Learning and Continual Learning. For instance, the blurring experiments inspired from Tennis
based on experts for specific skills like Forehand and Backhand could be considered as learning from
sub-goals (program modules) like Forehand and Backhand to solve a more complex and broader
task like Tennis by invoking the relevant sub-goals (program modules). This structure could be very
useful to build a household robot for general purpose navigation and manipulation whereby specific
skills such as manipulation of different objects, navigating across different source-destination points,
etc could be invoked when necessary. The attention network in the A2T framework is essentially
a soft meta-controller and hence presents itself as a powerful differentiable tool for Continual and
Meta Learning. Meta-Controllers have typically been been designed with discrete decision struc-
ture over high level subgoals. This paper presents an alternate differentiable meta-controller with a
soft-attention scheme. We believe this aspect can be exploited for differentiable meta-learning ar-
chitectures for hierarchical reinforcement learning. Over all, we believe that A2T is a novel way to
approach different problems like Transfer Learning, Meta-Learning and Hierarchical Reinforcement
Learning and further refinements on top of this design can be a good direction to explore.
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APPENDIX A: DETAILS OF THE NETWORK ARCHITECTURE IN VALUE
TRANSFER EXPERIMENTS

For the source task expert DQNs, we use the same architecture as [Mnih et al. (2015)] where the
input is 84 × 84 × 4 with 32 convolution filters, dimensions 8 × 8, stride 4 × 4 followed by 64
convolution filters with dimensions 4× 4 and stride 2× 2, again followed by 64 convolution filters
of size 3×3 and stride 1×1. This is then followed by a fully connected layer of 512 units and finally
by a fully connected output layer with as many units as the number of actions in Pong (Freeway)
which is 3. We use ReLU nonlinearity in all the hidden layers.

With respect to the A2T framework architecture, we have experimented with two possible architec-
tures:

• The base and attention networks following the NIPS architecture of Mnih et al. (2013)
except that the output layer is softmax for the attention network.

• The base and attention networks following the Nature architecture of Mnih et al. (2015)
with a softmax output layer for the attention network.

Specifically, the NIPS architecture of Mnih et al. (2013) takes in a batch of 84 × 84 × 4 inputs,
followed by 16 convolution filters of dimensions 8× 8 with stride 4× 4, 32 convolution filters with
dimensions 4 × 4 and stride 2 × 2, a fully connected hidden layer of 256 units, followed by the
output layer. For the Selective Transfer with Blurring experiments described in Section 4.1, we use
the second option above. For the other experiments in Section 4.2 and the additional experiments in
Appendix, we use the first option. The attention network has N + 1 outputs where N is the number
of source tasks.

APPENDIX B: TRAINING DETAILS

TRAINING ALGORITHM

For all our experiments in Value Transfer, we used RMSProp as in [Mnih et al. (2015)] for updating
gradient. For Policy Transfer, since the tasks were simple, stochastic gradient descent was sufficient
to provide stable updates. We also use reward clipping, target networks and experience replay for our
value transfer experiments in exactly the same way (all hyper parameters retained) as [Mnih et al.
(2015)]. A training epoch is 250,000 frames and for each training epoch, we evaluate the networks
with a testing epoch that lasts 125,000 frames. We report the average score over the completed
episodes for each testing epoch. The average scores obtained this way are averaged over 2 runs with
different random seeds. In the testing epochs, we use ε = 0.05 in the ε-greedy policy.

LEARNING RATE

In all our experiments, we trained the architecture using the learning rates, 0.0025 and 0.0005. In
general, the lower learning rate provided more stable (less variance) training curves. While com-
paring across algorithms, we picked the best performing learning rate out of the two (0.0025 and
0.0005) for each training curve.

APPENDIX C: BLURRING EXPERIMENTS ON PONG

The experts are trained with blurring (hiding the ball) and black background as illustrated in AP-
PENDIX A. Therefore, to compare the learning with that of a random network without any addi-
tional knowledge, we ran the baseline DQN on Pong with a black background too. Having a black
background provides a rich contrast between the white ball and the black background, thereby mak-
ing training easier and faster, which is why the performance curves in that setting are different to
the other two settings reported for Inverse Pong and Freeway Negative transfer experiments where
no blacking is done and Pong is played with a gray background. The blurring mechanism in Pong
is illustrated in APPENDIX E.
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APPENDIX E: BLURRING MECHANISM IN PONG - DETAILS

(a) Ball in upper quad (b) Blurred upper quad (c) Ball in lower quad (d) Blurred lower quad

Figure 10: The figures above explain the blurring mechanism for selective transfer experiments on
Pong. The background of the screen is made black. Let X (84 × 84) denote an array containing
the pixels of the screen. The paddle controlled by the agent is the one on the right. We focus on
the two quadrants X1 = X[: 42, 42 :] and X2 = X[42 :, 42 :] of the Pong screen relevant to the
agent controlled paddle. To simulate an expert that is weak at returning balls in the upper quadrant,
the portion of X1 till the horizontal location of agent-paddle, ie X1[:, : 31] is blacked out, while
similarly, for simulating weakness in the bottom quadrant, we blur the portion of X2 till the agent-
paddle’s horizontal location, ie X2[:, : 31] = 0. Figures 10a and 10b illustrate the scenarios of
blurring the upper quadrant before and after blurring; and similarly do 10c and 10d for blurring the
lower quadrant. Effectively, blurring this way with a black screen is equivalent to hiding the ball
(white pixel) in the appropriate quadrant where weakness is to be simulated. Hence, Figures 10b
and 10d are the mechanisms used while training a DQN on Pong to hide the ball at the respective
quadrants, so to create the partially useful experts which are analogous to forehand-backhand experts
in Tennis. X[: a, : b] indicates the subarray of X with all rows upto row index a and all columns
upto column index b.

APPENDIX D: BLURRING EXPERIMENTS ON BREAKOUT

Similar to our Blurring experiment on Pong, we additionally ran another experiment on the Atari
2600 game, Breakout, to validate the efficiency of our attention mechanism. We consider a setup
with two experts L1 and L2 along with our attention network. The experts L1 and L2 were trained
by blurring the lower left and right quadrants of the breakout screen respectively. We don’t have
to make the background black like in the case of Pong because the background is already black in
Breakout and direct blurring is sufficient to hiding the ball in the respective regions without any
contrasts introduced. We blur only the lower part so as to make it easy for the agent to at least
anticipate the ball based on the movement at the top. We empirically observed that blurring the top
half (as well) makes it hard to learn any meaningful partially useful experts L1 and L2.

The goal of this experiment is to show that the attention network can learn suitable filters so as to
dynamically adapt and learn to select the expert appropriate to the situation (game screen) in the
task. The expert L1 which was blurred on the left bottom half is bound to weak at returning balls on
that region while L2 is expected to be weak on the right. This is in the same vein as the forehand-
backhand example in Tennis and its synthetic simulation for Pong by blurring the upper and lower
quadrants. During game play, the attention mechanism is expected to ignore L2 when the ball is
on the bottom right half (while focusing on L1) and similarly ignore L2 (while focusing on L1)
when the ball is on the left bottom half. We learn experts L1 and L2 which score 42.2 and 39.8
respectively. Using the attention mechanism to select the correct expert, we were able to achieve
a score of 94.5 after training for 5 epochs. Each training epoch corresponds to 250, 000 decision
steps, while the scores are averaged over completed episodes run for 125, 000 decision steps. This
shows that the attention mechanism learns to select the suitable expert. Though the performance is
limited by the weaknesses of the respective experts, our goal is to show that the attention paradigm
is able to take advantage of both experts appropriately. This is evident from the scores achieved by
standalone experts and the attention mechanism. Additionally, we also present a visualization of the
attention mechanism weights assigned to the experts L1 and L2 during game play in APPENDIX
G. The weights assigned are in agreement with what we expect in terms of selective attention. The
blurring mechanism is visually illustrated in APPENDIX F.
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APPENDIX F: BLURRING MECHANISM IN BREAKOUT - DETAILS

(a) Ball in lower-left quad (b) Blurred lower-left quad (c) Ball in lower-right quad (d) Blurred lower-right quad

Figure 11: The figures above explain the blurring mechanism used for selective transfer experiments
on Breakout. The background of the screen is already black. Let X (84 × 84) denote an array
containing the pixels of the screen. We focus on the two quadrants X1 = X[31 : 81, 4 : 42] and
X2 = X[31 : 81, 42 : 80]. We perform blurring in each case by ensuring X1 = 0 and X2 = 0 for
all pixels within them for training L1 and L2 respectively. Effectively, this is equivalent to hiding
the ball in the appropriate quadrants. Blurring X1 simulates weakness in the lower left quadrant,
while blurring X2 simulates weakness in the lower right quadrant. We don’t blur all the way down
upto the last row to ensure the paddle controlled by the agent is visible on the screen. We also don’t
black the rectangular border with a width of 4 pixels surrounding the screen. Figures 11a and 11b
illustrate the scenarios of blurring the lower left quadrant before and after blurring; and similarly do
11c and 11d for blurring the lower right quadrant.

APPENDIX G: BLURRING ATTENTION VISUALIZATION ON BREAKOUT

Figure 12: Visualisation of the attention weights in the Selective Transfer with Attention for Break-
out: Green and Blue bars signify the attention probabilities for Expert-1 (L1) and Expert-2 (L2)
respectively on a scale of [0, 1]. We see that in the first two snapshots, the ball is in the lower right
quadrant and as expected, the attention is high on Expert-1, while in the third and fourth snapshots,
the ball is in the lower right quadrant and hence the attention is high on Expert-2.

17



Published as a conference paper at ICLR 2017

APPENDIX J: CASE STUDY OF TARGET TASK PERFORMANCE LIMITED BY
DATA AVAILABILITY

(a) Comparison of Sparse Pong to Normal Pong (b) A2T with a positive and negative expert

Figure 13: This experiment is a case study on a target task where the performance is limited by data
availability. So far, we focused on experiments where the target task is to solve Pong (normal or
black background) for Value Transfer, and Puddle Worlds for Policy Transfer. In both these cases, a
randomly initialized value (or policy) network learning without the aid of any expert network is able
to solve the target task within a reasonable number of epochs (or iterations). We want to illustrate a
case where solving the target task in reasonable time is hard and the presence of a favorable source
task significantly impacts the speed of learning. To do so, we consider a variant of Pong as our target
task. In this variant, only a small probability ρ of transition tuples (s, a, r, s′) with non-zero reward r
are added to the Replay Memory (and used for learning through random batch sampling). This way,
the performance on the target task is limited by the availability of rewarding (positive or negative)
transitions in the replay memory. This synthetically makes the target task of Pong a sparse reward
problem because the replay memory is largely filled with transition tuples that have zero reward. We
do not use any prioritized sampling so as to make sure the sparsity has a negative effect on learning
to solve the target task. We use a version of Pong with black background (as used in Section 4.1
for the Blurring experiments) for faster experimentation. ρ = 0.1 was used for the plots illustrated
above. Figure 13a clearly shows the difference between a normal Pong task without any synthetic
sparsity and the new variant we introduce. The learning is much slower and is clearly limited by data
availability even after 20 epochs (20 million frames) due to reward sparsity. Figure 13b describes
a comparison between the A2T setting with one positive expert which expertly solves the target
task and one negative expert, learning from scratch, and direct fine-tuning on a negative expert. We
clearly see the effect of having the positive expert in one of the source tasks speeding up the learning
process significantly when compared to learning from scratch, and also see that fine-tuning on top
of a negative expert severely limits learning even after 20 epochs of training. We also see that the
A2T framework is powerful to work in sparse reward settings and avoids negative transfer even in
such cases, while also clearly learning to benefit from the presence of a target task expert among
the source task networks. Importantly, this experiment demonstrates that transfer learning has a
significant effect on tasks which may be hard (infeasible to solve within a reasonable training time)
without any expert available. Further, A2T is also beneficial for such (sparse reward) situations when
accessing the weights of an expert network is not possible, and only outputs of the expert (policy
or value-function) can be used. Such synthetic sparse variants of existing tasks is a good way to
explore future directions in the intersection of Inverse Reinforcement Learning and Reward-Based
Learning, with A2T providing a viable framework for off-policy and on-policy learning.
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