
Under review as a conference paper at ICLR 2017

AN ACTOR-CRITIC ALGORITHM FOR LEARNING RATE
LEARNING

Chang Xu
Nankai University
changxu@nbjl.nankai.edu.cn

Tao Qin
Microsoft Research Asia
taoqin@microsoft.com

Gang Wang
Nankai University
wgzwp@nbjl.nankai.edu.cn

Tie-Yan Liu
Microsoft Research Asia
tie-yan.liu@microsoft.com

ABSTRACT

Stochastic gradient descent (SGD), which updates the model parameters by adding
a local gradient times a learning rate at each step, is widely used in model training
of machine learning algorithms such as neural networks. It is observed that the
models trained by SGD are sensitive to learning rates and good learning rates
are problem specific. To avoid manually searching of learning rates, which is
tedious and inefficient, we propose an algorithm to automatically learn learning
rates using actor-critic methods from reinforcement learning (RL). In particular,
we train a policy network called actor to decide the learning rate at each step
during training, and a value network called critic to give feedback about quality of
the decision (e.g., the goodness of the learning rate outputted by the actor) that the
actor made. Experiments show that our method leads to good convergence of SGD
and can prevent overfitting to a certain extent, resulting in better performance than
human-designed competitors.

1 INTRODUCTION

While facing large scale of training data, stochastic learning such as stochastic gradient descent
(SGD) is usually much faster than batch learning and often results in better models. An observation
for SGD methods is that their performances are highly sensitive to the choice of learning rate LeCun
et al. (2012). Clearly, setting a static learning rate for the whole training process is insufficient, since
intuitively the learning rate should decrease when the model becomes more and more close to a
(local) optimum as the training goes on over time Maclaurin et al. (2015). Although there are some
empirical suggestions to guide how to adjust the learning rate over time in training, it is still a difficult
task to find a good policy to adjust the learning rate, given that good policies are problem specific and
depend on implementation details of a machine learning algorithm. One usually needs to try many
times and adjust the learning rate manually to accumulate knowledge about the problem. However,
human involvement often needs domain knowledge about the target problems, which is inefficient
and difficult to scale up to different problems. Thus, a natural question arises: can we automatically
adjust the learning rate? This is exactly the focus of this work and we aim to automatically learn the
learning rates for SGD based machine learning (ML) algorithms without human-designed rules or
hand-crafted features.

By examining the current practice of learning rate control/adjustment, we have two observations.
First, learning rate control is a sequential decision process. At the beginning, we set an initial
learning rate. Then at each step, we decide whether to change the learning rate and how to change
it, based on the current model and loss, training data at hand, and maybe history of the training
process. As suggested in Orr & Müller (2003), one well-principled method for estimating the ideal
learning rate that is to decrease the learning rate when the weight vector oscillates, and increase it
when the weight vector follows a relatively steady direction. Second, although at each step some
immediate reward (e.g., the loss decrement) can be obtained by taking actions, we care more about
the performance of the final model found by the ML algorithm. Consider two different learning rate

1



Under review as a conference paper at ICLR 2017

control policies: the first one leads to fast loss decrease at the beginning but gets saturated and stuck
in a local minimum quickly, while the second one starts with slower loss decrease but results in
much smaller final loss. Obviously, the second policy is better. That is, we prefer long-term rewards
over short-term rewards.

Combining the two observations, it is easy to see that the problem of finding a good policy to
control/adjust learning rate falls into the scope of reinforcement learning (RL) Sutton & Barto
(1998), if one is familiar with RL. Inspired by the recent success of RL for sequential decision
problems, in this work, we leverage RL techniques and try to learn the learning rate for SGD based
methods.

We propose an algorithm to learn the learning rate within the actor-critic framework Sutton (1984);
Sutton et al. (1999); Barto et al. (1983); Silver et al. (2014) from RL. In particular, an actor network is
trained to take an action that decides the learning rate for current step, and a critic network is trained
to give feedbacks to the actor network about long-term performance and help the actor network to
adjust itself so as to perform better in the future steps. The main contributions of this paper include:

• We propose an actor-critic algorithm to automatically learn the learning rate for ML algo-
rithms.

• Long-term rewards are exploited by the critic network in our algorithm to choose a better
learning rate at each step.

• We propose to feed different training examples to the actor network and the critic network,
which improve the generalization performance of the learnt ML model.

• A series of experiments validate the effectiveness of our proposed algorithm for learning
rate control.

2 RELATED WORK

2.1 IMPROVED GRADIENT METHODS

Our focus is to improve gradient based ML algorithm through automatic learning of learning rate.
Different approaches have been proposed to improve gradient methods, especially for deep neural
networks.

Since SGD solely rely on a given example (or a mini-batch of examples) to compare gradient, its
model update at each step tends to be unstable and it takes many steps to converge. To solve this
problem, momentum SGD Jacobs (1988) is proposed to accelerate SGD by using recent gradients.
RMSprop Tieleman & Hinton (2012) utilizes the magnitude of recent gradients to normalize the
gradients. It always keeps a moving average over the root mean squared gradients, by which it di-
vides the current gradient. Adagrad Duchi et al. (2011) adapts component-wise learning rates, and
performs larger updates for infrequent and smaller updates for frequent parameters. Adadelta Zeiler
(2012) extends Adagrad by reducing its aggressive, monotonically decreasing learning rate. Instead
of accumulating all past squared gradients, Adadelta restricts the window of accumulated past gra-
dients to some fixed size. Adam Kingma & Ba (2014) computes component-wise learning rates
using the estimates of first and second moments of the gradients, which combines the advantages of
AdaGrad and RMSProp.

Senior et al. (2013); Sutton (1992); Darken & Moody (1990) focus on predefining update rules to
adjust learning rates during training. A limitation of these methods is that they have additional free
parameters which need to be set manually. Another recent work Daniel et al. (2016) studies how to
automatically select step sizes, but it still requires hand-tuned features. Schaul et al. (2013) proposes
a method to choose good learning rate for SGD, which relies on the square norm of the expectation
of the gradient, and the expectation of the square norm of the gradient. The method is much more
constrained than ours and several assumption should be met.

2.2 REINFORCEMENT LEARNING

Since our proposed algorithm is based on RL techniques, here we give a very brief introduction to
RL, which will ease the description of our algorithm in next section.

2



Under review as a conference paper at ICLR 2017

Reinforcement learning Sutton (1988) is concerned with how an agent acts in a stochastic envi-
ronment by sequentially choosing actions over a sequence of time steps, in order to maximize a
cumulative reward. In RL, a state st encodes the agents observation about the environment at a
time step t, and a policy function π(st) determines how the agent behaves (e.g., which action to
take) at state st. An action-value function (or, Q function) Qπ(st, at) is usually used to denote the
cumulative reward of taking action at at state st and then following policy π afterwards.

Many RL algorithms have been proposed Sutton & Barto (1998); Watkins & Dayan (1992), and
many RL algorithms Sutton (1984); Sutton et al. (1999); Barto et al. (1983); Silver et al. (2014) can
be described under the actor-critic framework. An actor-critic algorithm learns the policy function
and the value function simultaneously and interactively. The policy structure is known as the actor,
and is used to select actions; the estimated value function is known as the critic, and it criticizes the
actions made by the actor.

Recently, deep reinforcement learning, which uses deep neural networks to approximate/represent
the policy function and/or the value function, have shown promise in various domains, including
Atari games Mnih et al. (2015), Go Silver et al. (2016), machine translation Bahdanau et al.
(2016), image recognition Xu et al. (2015), etc.

3 METHOD

In this section, we present an actor-critic algorithm that can automate the learning rate control for
SGD based machine learning algorithms.

Optimizee
Actor Network

𝑠𝑡

First layer

𝛼𝑡
Action

Critic Network

Automatic Learning Rate Controller

𝑠i
𝑡 ,

First layer

𝑄

𝛼i
𝑡

Reward

𝜋𝜃 𝑠𝑡 = 𝛼𝑡 𝑄𝜑 𝑠𝑡 , 𝛼𝑡

∆𝑤

𝑠𝑡 = 𝜒(w𝑡 , 𝑋 )

Last layer

.. .

Last layer.. .

Figure 1: The framework of our proposed automatic learning rate controller.

Many machine learning tasks need to train a model with parameters ω by minimizing a loss function
f defined over a set X of training examples:

ω∗ = arg min
ω

fω(X). (1)

A standard approach for the loss function minimization is gradient descent, which sequentially up-
dates the parameters using gradients step by step:

ωt+1 = ωt − at∇f t, (2)
where at is the learning rate at step t, and ∇f t is the local gradient of f at ωt. Here one step can
be the whole batch of all the training data, a mini batch of tens/hundreds of examples, or a random
sample.

It is observed that the performance of SGD based methods is quite sensitive to the choice of at for
non-convex loss function f . Unfortunately, f is usually non-convex with respect to the parameters

3



Under review as a conference paper at ICLR 2017

w in many ML algorithms, especially for deep neural networks. We aim to learn a learning rate
controller using RL techniques that can automatically control at.

Figure 1 illustrates our automatic learning rate controller, which adopts the actor-critic framework
in RL. The basic idea is that at each step, given the current model ωt and training sample x, an
actor network is used to take an action (the learning rate at, and it will be used to update the model
ωt), and a critic network is used to estimate the goodness of the action. The actor network will be
updated using the estimated goodness of at, and the critic network will be updated by minimizing
temporal difference (TD) Sutton & Barto (1990) error. We describe the details of our algorithm in
the following subsections.

3.1 ACTOR NETWORK

The actor network, which is called policy network in RL, plays the key role in our algorithm: it
determines the learning rate control policy for the primary ML algorithm1 based on the current
model, training data, and maybe historical information during the training process.

Note that ωt could be of huge dimensions, e.g., one widely used image recognition model VGGNet
Simonyan & Zisserman (2014) has more than 140 million parameters. If the actor network takes all
of those parameters as the inputs, its computational complexity would dominate the complexity of
the primary algorithm, which is unfordable. Therefore, we propose to use a function χ(·) to process
and yield a compact vector st as the input of the actor network. Following the practice in RL, we
call χ(·) the state function, which takes ωt and the training data x as inputs:

st = χ(ωt, X). (3)

Then the actor network πθ(·) parameterized by θ yields an action at:

πθ(s
t) = at, (4)

where the action at ∈ R is a continuous value. When at is determined, we update the model of the
primary algorithm by Equation 2.

Note that the actor network has its own parameters and we need to learn them to output a good
action. To learn the actor network, we need to know how to evaluate the goodness of an actor
network. The critic network exactly plays this role.

3.2 CRITIC NETWORK

Recall that our goal is to find a good policy for learning rate control to ensure that a good model
can be learnt eventually by the primary ML algorithm. For this purpose, the actor network needs to
output a good action at at state st so that finally a low training loss f(·) can be achieved. In RL, the
Q function Qπ(s, a) is often used to denote the long term reward of the state-action pair s, a while
following the policy π to take future actions. In our problem, Qπ(st, at) indicates the accumulative
decrement of training loss starting from step t. We define the immediate reward at step t as the one
step loss decrement:

rt = f t − f t+1. (5)

The accumulative value Rtπ of policy π at step t is the total discounted reward from step t:

Rtπ = ΣTk=tγ
k−tr(sk, ak),

where γ ∈ (0, 1] is the discount factor.

Considering that both the states and actions are uncountable in our problem, the critic network uses
a parametric function Qϕ(s, a) with parameters ϕ to approximate the Q value function Qπ(s, a).

1Here we have two learning algorithms. We call the one with learning rate to adjust as the primary M-
L algorithm, and the other one which optimizes the learning rate of the primary one as the secondary ML
algorithm.

4



Under review as a conference paper at ICLR 2017

3.3 TRAINING OF ACTOR AND CRITIC NETWORKS

The critic network has its own parameters ϕ, which is updated at each step using TD learning. More
precisely, the critic is trained by minimizing the square error between the estimation Qϕ(st, at) and
the target yt:

yt = rt + γQϕ(st+1, at+1). (6)
The TD error is defined as:

δt = yt −Qϕ(st, at)
= rt + γQϕ(st+1, πθ(s

t+1))−Qϕ(st, at)
(7)

The weight update rule follows the on-policy deterministic actor-critic algorithm. The gradients of
critic network are:

∇ϕ = δt∇ϕQϕ(st, at), (8)

The policy parameters θ of the actor network is updated by ensuring that it can output the action
with the largest Q value at state st, i.e., a∗ = arg maxaQϕ(st, a). Mathematically,

∇θ = ∇θπθ(st+1)∇aQϕ(st+1, at+1)|a=πθ(s). (9)

Algorithm 1 Actor-Critic Algorithm for Learning Rate Learning

Require: Training steps T ; training set X; loss function f ; state function χ; discount factor: γ ;
Ensure: Model parameters w, policy parameters θ of the actor network, and value parameters ϕ of

the critic network;
1: Initial parameters ω0, θ0, ϕ0;
2: for t = 0, ..., T do
3: Sample xi ∈ X, i ∈ 1, ..., N .
4: Extract state vector: sti = χ(ωt, xi).
5: //Actor network selects an action.
6: Computes learning rate ati = πθ(s

t
i).

7: //Update model parameters ω.
8: Compute∇f t(xi).
9: Update ω: ωt+1 = ωt − ati∇f t(xi).

10: //Update critic network by minimizing square error between estimation and label.
11: rt = f t(xi)− f t+1(xi)
12: Extract state vector: st+1

i = χ(ωt+1, xi)

13: Compute Qϕ(st+1
i , πθ(s

t+1
i )), Qϕ(sti, a

t
i)

14: Compute δt according to Equation 7:
δt = rt + γQϕ(st+1

i , πθ(s
t+1
i ))−Qϕ(sti, a

t
i)

15: Update ϕ using the following gradients according to Equation 8 :
∇ϕ = δt∇ϕQϕ(sti, a

t
i)

16: // Update actor network
17: Sample xj ∈ X, j ∈ 1, ..., N, j 6= i.
18: Extract state vector: st+1

j = χ(ωt+1, xj).
19: Compute at+1

j = πθ(s
t+1
j ).

20: Update θ from Equation 9:
∇θ = ∇θπθ(st+1

j )∇aQϕ(st+1
j , at+1

j )|a=πθ(s)

21: end for
22: return ω, θ, ϕ;

3.4 THE ALGORITHM

The overall algorithm is shown in Algorithm 1. In each step, we sample an example (Line 3), extract
the current state vector (Line 4), compute the learning rate using the actor network (Line 6), update
the model (Lines 8-9), compute TD error (Lines 11-14), update the critic network (Line 15), and
sample another example (Line 17) to update the actor network (Line 18-20). We would like to make
some discussions about the algorithm.

5



Under review as a conference paper at ICLR 2017

First, in the current algorithm, for simplicity, we consider using only one example for model update.
It is easy to generalize to a mini batch of random examples.

Second, one may notice that we use one example (e.g., xi) for model and the critic network update,
but a different example (e.g., xj) for the actor network update. Doing so we can avoid that the al-
gorithm will overfit on some (too) hard examples and can improve the generalization performance
of the algorithm on the test set. Consider a hard example2 in a classification task. Since such an
example is difficult to be classified correctly, intuitively its gradient will be large and the learning
rate given by the actor network at this step will also be large. In other words, this hard example will
greatly change the model, while itself is not a good representative of its category and the learning
algorithm should not pay much attention to it. If we feed the same example to both the actor network
and the critic network, both of them will encourage the model to change a lot to fit the example, con-
sequently resulting in oscillation of the training, as shown in our experiments. By feeding different
examples to the actor and critic networks, it is very likely the critic network will find that the gradi-
ent direction of the example fed into the actor network is inconsistent with its own training example
and thus criticize the large learning rate suggested by the actor network. More precisely, the update
of ω is based on xi and the learning rate suggested by the actor network, while the training target
of the actor network is to maximize the output of the critic network on xj . If there is big gradient
disagreement between xi and xj , the update of ω, which is affected by actor’s decision, would cause
the critic’s output on xj to be small. To compensate this effect, the actor network is forced to predict
a small learning rate for a too hard xi in this situation.

4 EXPERIMENTS

We conducted a set of experiments to test the performance of our learning rate learning algorithm
and compared with several baseline methods. We report the experimental results in this section.

4.1 EXPERIMENTAL SETUP

We tested our method on two widely used image classification datasets: MNIST LeCun et al.
(1998) and CIFAR-10 Krizhevsky & Hinton (2009). Convolutional neural networks (CNNs) are the
standard model for image classification tasks in recent years, and thus the primary ML algorithm
adopted the CNN model in all our experiments.

We specified our actor-critic algorithm in experiments as follows. Given that stochastic mini-batch
training is a common practice in deep learning, the actor-critic algorithm also operated on mini-
batches, i.e., each step is a mini batch in our experiments. We defined the state st = χ(ωt, Xi) as
the average loss of learning model ωt on the input min-batch Xi. We specified the actor network as
a two-layer long short-term memory (LSTM) network with 20 units in each layer, considering that a
good learning rate for step t depends on and correlates with the learning rates at previous steps while
LSTM is well suited to model sequences with long-distance dependence. We used the absolute value
activation function for the output layer of the LSTM to ensure a positive learning rate. The LSTM
was unrolled for 20 steps during training. We specified the critic network as a simple neural network
with one hidden layer and 10 hidden units. We use Adam with the default setting in TensorFlow
optimizer toolbox Abadi et al. (2015) to train the actor and critic networks in all the experiments.

We compared our method with several mainstream SGD algorithms, including SGD, Adam Kingma
& Ba (2014), Adagrad Duchi et al. (2011) and RMSprop Tieleman & Hinton (2012). For each of
these algorithms and each dataset, we tried the following learning rates 10−4, 10−3, ..., 100. We
report the best performance of these algorithms over those learning rates. If an algorithm needs
some other parameters to set, such as decay coefficients for Adam, we used the default setting in
TensorFlow optimizer toolbox. For each benchmark and our proposed method, five independent
runs are averaged and reported in all of the following experiments.

4.2 RESULTS ON MNIST

MNIST is a dataset for handwritten digit classification task. Each example in the dataset is a 28×28
black and white image containing a digit in {0, 1, · · · , 9}. The CNN model used in the primary

2For example, an example may has an incorrect label because of the limited quality of labelers.

6



Under review as a conference paper at ICLR 2017

0

0.02

0.04

0.06

0.08

0.1

0 2000 4000 6000 8000 10000 12000

SGD ADAM Adagrad RMSprop Our method

(a)

0.025

0.035

0.045

0.055

0.065

0.075

0 2000 4000 6000 8000 10000 12000

SGD ADAM Adagrad RMSprop Our method

(b)

0.98

0.9825

0.985

0.9875

0.99

0.9925

0.995

0 2000 4000 6000 8000 10000 12000

SGD ADAM Adagrad RMSprop Our method

(c)

Figure 2: Results on MNIST. (a) Training loss. (b) Test loss. (c) Test accuracy. The x-axis is the
number of mini batches.

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20000 40000 60000 80000 100000

SGD ADAM Adagrad RMSprop Our method

(a)

0.6

0.7

0.8

0.9

1

1.1

0 20000 40000 60000 80000 100000

SGD ADAM Adagrad RMSprop Our method

(b)

0.75

0.76

0.77

0.78

0.79

0.8

10000 25000 40000 55000 70000 85000 100000

SGD ADAM Adagrad RMSprop Our method

(c)

Figure 3: Results on CIFAR10. (a) Training loss. (b) Test loss. (c) Test accuracy. The x-axis is the
number of mini batches.

ML algorithm is consist of two convolutional layers, each followed by a pooling layer, and finally a
fully connected layer. The first convolutional layer filters each input image using 32 kernels of size
5 × 5. The max-pooling layer following the first convolutional layer is performed over 2 × 2 pixel
windows, with stride 2. The second convolutional layer takes the outputs of the first max-pooling
layer as inputs and filters them with 64 kernels of size 5 × 5. The max-pooling layer following
the second convolutional layer is performed over 2 × 2 pixel windows, with stride 2. The outputs
of second max pooling layer are fed to a fully connected layer with 512 neurons. Dropout was
conducted on the fully connect layer with a dropout rate of 0.5. ReLU activation functions are used
in the CNN model. There are 60,000 training images and 10,000 test images in this dataset. We
scaled the pixel values to the [0,1] range before inputting to all the algorithms. Each mini batch
contains 50 randomly sampled images.

Figure 2 shows the results of our actor-critic algorithm for learning rate learning and the baseline
methods, including the curves of training loss, test loss, and test accuracy. The final accuracies of
these methods are summarized in Table 1. We have the following observations.

• In terms of training loss, our algorithm has similar convergence speed to the baseline meth-
ods. One may expect that our algorithm should have significantly faster convergence speed
considering that our algorithm learns both the learning rate and the CNN model while the
baselines only learn the CNN model and choose the learning rates per some predefined
rules. However, this is not correct. As discussed in Section 3.4, we carefully design the
algorithm and feed different samples to the actor network and critic network. Doing so we
can focus more on generalization performance than training loss: as shown in Figure 4, our
algorithm achieves the best test accuracy.

Table 1: Error rate comparison on MNIST.

Optimizer Error Rate (%)

SGD 0.75
ADAM 0.87
Adagrad 0.94
RMSprop 0.83
Our method 0.67

Table 2: Classification Accuracy on CIFAR-10.

Optimizer Accuracy

SGD 78.74
ADAM 77.46
Adagrad 78.46
RMSprop 62.3
Our method 79.34

7



Under review as a conference paper at ICLR 2017

0

0.5

1

1.5

2

2.5

0 5000 10000 15000 20000 25000 30000 35000 40000

SGD ADAM Adagrad RMSprop Our method

(a)

0.8

1

1.2

1.4

1.6

1.8

0 5000 10000 15000 20000 25000 30000 35000 40000

SGD ADAM Adagrad RMSprop Our method

(b)

Figure 4: Results on CIFAR-10 with 20% training data.
(a) Training loss. (b) Test loss.

10-2 10-1 100 101

Epoch

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

Le
a
rn

in
g
 r

a
te

CIFAR-10

Figure 5: The learning rate
learned by actor network for
CIFAR-10.

• Our algorithm achieves the lowest error rate on MNIST. Although the improvement looks
small, we would like to point out that given that the accuracy of CNN is already close to
100%, it is a very difficult task to further improve accuracy, not to mention that we only
changed learning rate policy without changing the CNN model.

4.3 RESULTS ON CIFAR-10

CIFAR-10 is a dataset consisting of 60000 natural 32 × 32 RGB images in 10 classes: 50,000
imagesfor training and 10,000 for test. We used a CNN with 2 convolutional layers (each followed
by max-pooling layer) and 2 fully connected layers for this task. There is a max pooling layer which
performed over 2× 2 pixel windows, with stride 2 after each convolutional layer. All convolutional
layers filter the input with 64 kernels of size 5× 5. The outputs of the second pooling layer are fed
to a fully connected layer with 384 neurons. The last fully connected layer has 192 neurons. Before
inputting an image to the CNN, we subtracted the per-pixel mean computed over the training set
from each image.

Figure 3 shows the results of all the algorithms on CIFAR-10, including the curves of training loss,
the test loss and test accuracy. Table 2 shows the final test accuracy. We get similar observations
as MNIST: our algorithm achieves similar convergence speed in terms of training loss and slightly
better test accuracy than baselines. Figure 5 shows the learning rate learned by our method on
CIFAR-10. To further understand the generalization performance of our algorithm, we ran all the

0

0.5

1

1.5

2

2.5

0 5000 10000 15000 20000 25000 30000 35000 40000

Different Same

0.9

1.1

1.2

1.3

1.4

1.5

1.6

1.7

(a)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 5000 10000 15000 20000 25000 30000 35000 40000

Different Same

(b)

Figure 6: Results on CIFAR-10 with 20% training data. (a) Training loss. (b) Test loss. Our
algorithm with xi = xj is shown with blue line, and Our algorithm with xi 6= xj is shown with
orange line.

algorithms on two subsets of training data on CIFAR-10: one with only 20% training data The
curves of training loss and test loss are shown in Figure 4. As can be seen from the figure, those
baseline methods are easy to overfit and their test loss increases after 5000 steps (mini batches). In
contrast, our algorithm is relatively robust and can prevent overfitting to some extent.

As we explained in Section 3.4, feeding different examples to the actor and critic networks is im-
portant to guarantee generalization ability. Here we conducted another experiment to verify our
intuitive explanation. Figure 6 shows the results of two different implementations of our actor-critic
algorithm on CIFAR-10. In the first implementation, we fed the sample examples to the two net-

8



Under review as a conference paper at ICLR 2017

Table 3: Error rate of different methods on different network architectures.

Network Methods
SGD ADAM Adagrad RMSprop vSGD-l vSGD-b vSGD-g Our method

M0 7.60 8.70 7.52 10.91 7.50 7.89 8.20 7.50
M1 2.34 4.12 2.70 6.17 2.42 2.44 4.14 2.04
M2 2.15 3.85 2.34 3.81 2.16 2.05 3.65 2.03

works, i.e., xi = xj in the algorithm, and in the second implementation, the input xj of the critic
network is different from the input xi of the actor network. It is easy to see from the figure that
setting xi = xj tends to oscillate during training and leads to poor test performance. Thus, we need
to feed different training data to the actor network and the critic network to ensure the performance
of the algorithm.

4.4 COMPARISON WITH OTHER ADAPTIVE LEARNING RATE METHOD

We also compare our method with “vSGD” from previous by work Schaul et al. (2013), which can
automatically adjust learning rates to minimize the expected error. This method tries to compute
learning rate at each update by optimizing the expected loss after the next update according to
the square norm of the expectation of the gradient, and the expectation of the square norm of the
gradient. Note that our method learns to predict a learning rate at each time step by utilizing the
long term reward predicted by a critic network.

For a fair comparison, we followed the experiments settings of Schaul et al. (2013), which designed
three different network architectures for MNIST task to measure the performance. The first one is
denoted by ‘M0’ which is simple softmax regression (i.e. a network with no hidden layer). The
second one (‘M1’) is a fully connected multi-layer perceptron, with a single hidden layer. The
third one (denoted ‘M2’) is a deep, fully connected multi-layer perceptron with two hidden layers.
The vSGD has three variants in their paper. We referred to the results reported in their paper and
compared our method with all of three variants of their algorithm (vSGD-l, vSGD-b, vSGD-g).
The learning rates of SGD are decreased according to a human designed schedule, and the hyper-
parameters of SGD, ADAM, Adagrad, RMSprop are carefully determined by their lowest test error
among a set of hyper-parameters. All hyper-parameters can be found in Schaul et al. (2013).

The experimental results are reported in Table 3. It shows that our proposed method performs better
than vSGD and other baseline methods, and is stable across different network architectures.

5 CONCLUSIONS AND FUTURE WORK

In this work, we have studied how to automatically learn learning rates for gradient based machine
learning methods and proposed an actor-critic algorithm, inspired by the recent success of reinforce-
ment learning. The experiments on two image classification datasets have shown that our method
(1) has comparable convergence speed with expert-designed optimizer while achieving better test
accuracy, and (2) can successfully adjust learning rate for different datasets and CNN model struc-
tures.

For the future work, we will explore the following directions. In this work, we have applied our
algorithm to control the learning rates of SGD. We will apply to other variants of SGD methods. We
have focused on learning a learning rate for all the model parameters. We will study how to learn
an individual learning rate for each parameter. We have considered learning learning rates using RL
techniques. We will consider learning other hyperparameters such as step-dependent dropout rates
for deep neural networks.

REFERENCES

Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous systems, 2015. Software available from tensorflow. org, 1, 2015.

9



Under review as a conference paper at ICLR 2017

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. An actor-critic algorithm for sequence prediction. arXiv preprint
arXiv:1607.07086, 2016.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE transactions on systems, man, and cybernetics,
(5):834–846, 1983.

Christian Daniel, Jonathan Taylor, and Sebastian Nowozin. Learning step size controllers for robust
neural network training. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

Christian Darken and John Moody. Fast adaptive k-means clustering: some empirical results. In
Neural Networks, 1990., 1990 IJCNN International Joint Conference on, pp. 233–238. IEEE,
1990.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Robert A Jacobs. Increased rates of convergence through learning rate adaptation. Neural networks,
1(4):295–307, 1988.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–48. Springer, 2012.

Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In Proceedings of the 32nd International Conference on Machine
Learning, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Genevieve B Orr and Klaus-Robert Müller. Neural networks: tricks of the trade. Springer, 2003.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. ICML (3), 28:343–351,
2013.

Andrew Senior, Georg Heigold, Ke Yang, et al. An empirical study of learning rates in deep neural
networks for speech recognition. In 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. 6724–6728. IEEE, 2013.

David Silver, Guy Lever, and Nicolas Heess. Deterministic policy gradient algorithms. 2014.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. CoRR, abs/1409.1556, 2014.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9–44, 1988.

Richard S Sutton. Adapting bias by gradient descent: An incremental version of delta-bar-delta. In
AAAI, pp. 171–176, 1992.

10



Under review as a conference paper at ICLR 2017

Richard S Sutton and Andrew G Barto. Time-derivative models of pavlovian reinforcement. pp.
497–537, 1990.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour, et al. Policy gradient
methods for reinforcement learning with function approximation. In NIPS, volume 99, pp. 1057–
1063, 1999.

Richard Stuart Sutton. Temporal credit assignment in reinforcement learning. 1984.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4(2),
2012.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov,
Richard S Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation
with visual attention. arXiv preprint arXiv:1502.03044, 2(3):5, 2015.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

11



Under review as a conference paper at ICLR 2017

A APPENDIX

A method of automatically controlling learning rate is proposed in the main body of the paper. The
learning rate controller adjusts itself during training to control the learning rate. Here, we propose
an improved version that can leverage experiences from several repeated training runs to learn a
fixed learning rate controller. Empirically, this algorithm can achieve better performance than the
previous one. Given that it requires more time for training the learning rate controller, this method
is more suitable for training offline models.

In this algorithm, during every training run, we fix the actor network and compute the weighted sum
of the gradients of its parameter θ. The parameter is updated after each run (modified from Equation
9):

∇θ = ΣTt=1h(t)∇θπθ(st+1)∇aQϕ(st+1, at+1)|a=πθ(s). (10)

h(t) is weighted function which is used to amplify the feedback signal from the initial training stage.
It is defined as h(t) = 1/t in our experiments. An error rate of 0.48% was achieved with 5 repeated
training runs in MNIST experiment (the same setting as Table 1), and in CIFAR-10 experiment (the
same setting as Table 2), 80.23% accuracy was achieved with 10 training runs. This method showed
better performance in both experiments.

12


	Introduction
	Related Work
	Improved Gradient Methods
	Reinforcement Learning

	Method
	Actor Network
	Critic Network
	Training of Actor and Critic Networks
	The Algorithm

	Experiments
	Experimental Setup
	Results on MNIST
	Results on CIFAR-10
	Comparison with Other Adaptive Learning Rate Method

	Conclusions and Future Work
	Appendix

