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ABSTRACT

Research on conversation has put emphasis on the importance of a multi-level
communication system, in which the interlocutors aim to establish and maintain
common ground. In natural conversations, repair mechanisms such as clarification
requests are frequently used to improve mutual understanding. Here we explore
the effects of conversational repair on languages emerging in signaling games.
We extend the basic Lewis signaling game setup with a feedback channel that
allows for the transmission of messages backwards from the receiver to the sender.
Further, we add noise to the communication channel so that repair mechanisms
become necessary for optimal performance.
We find that languages emerging in setups with feedback channel are less com-
positional. However, the models still achieve a substantially higher generalization
performance in conditions with noise, putting to question the role of composition-
ality for generalization. These findings generalize also to a more realistic case
involving a guessing game with naturalistic images.
More broadly speaking, this study provides an important step towards the creation
of signaling games that more closely resemble the conditions under which human
languages emerged.

1 INTRODUCTION

Conversation analysis has been describing human conversation as interactions between speaker and
listener, in which the interlocutors are using multiple communicative levels to negotiate mutual
understanding (Schegloff et al., 1977; Schegloff, 1982; Clark & Schaefer, 1989; Clark, 1996; Pick-
ering & Garrod, 2021). Whenever speakers are verbalizing their communicative intent to a listener,
thereby communicating some information, listeners can either acknowledge (explicitly or implicitly)
the receipt of this information or initiate a repair routine (e.g., ask for clarification in case they did
not understand the speaker correctly).

While conversational repair mechanisms such as clarification requests (also known as other-initiated
repairs) have been found to be present in a large range of human languages (Tabensky, 2001; Dinge-
manse & Enfield, 2015), most recent research on language evolution has focused on unidirectional
communication channels, thus only allowing information flow from the sender to the receiver, and
not backwards. However, for basic other-initiated repair to emerge, a feedback information flow
from the receiver to the sender is necessary.

In this work, we study the role of conversational repair for the nature of languages emerging in
signaling games (Lewis, 1969). We extend a widely-used basic signaling game setup to allow for
the flow of feedback messages from the receiver to the sender, thus implementing a bidirectional
model of communication.

By studying the languages emerging in this setup, we find that they generalize better to unseen test
examples under noisy conditions, while showing a substantially lower degree of compositionality
as measured by topographic similarity. We validate this result for a range of different noise levels,
messages lengths, and input space sizes.

∗Work performed at Aix-Marseille University.
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Finally, we develop a more realistic guessing game setup with naturalistic scenes based on the Guess-
What?! dataset (De Vries et al., 2017), in which the receiver needs to discriminate a target object
from a set of distractor objects within the same visual scene. Our findings regarding the improved
performance under noisy conditions generalize to this more realistic setup.

2 RELATED WORK

2.1 COMPUTATIONAL MODELING OF EMERGENT COMMUNICATION

Computational models of emergent communication aim to implement aspects of human language
evolution using communication games. While early attempts used Bayesian modeling to study the
emergence of syntax using the so-called iterated learning model (Kirby & Hurford, 2002; Kirby
et al., 2007), more recent approaches are leveraging deep reinforcement learning approaches to scale
the models up to more realistic learning scenarios (Lazaridou et al., 2017; Lazaridou & Baroni,
2020; Guo et al., 2022; Chaabouni et al., 2020; Lazaridou et al., 2018; Chaabouni et al., 2022;
Rodrı́guez Luna et al., 2020).

In many studies, emergent communication is studied in a basic Lewis signaling game (Lewis, 1969),
which involves a sender and a receiver. The sender is required to communicate some information
to the receiver through a communication channel with limited capacity. Most models only consider
a unidirectional communication channel, without any possibility for information flow backwards
from the receiver to the sender, therefore not allowing for any conversational repair mechanisms
to emerge. Exceptions are the game setups in Evtimova et al. (2018); Cao et al. (2018); Graesser
et al. (2020), which allow for multi-directional flow of information. However, these studies did not
consider communication channels with noise and consequently there exists no pressure for repair
mechanisms to emerge. Jorge et al. (2016) analyzes languages emerging in a bidirectional signaling
game with noise, but the noise is added to the communication channel in a way that it is not directly
detectable by the message receiver.

Here we focus on a bidirectional communication game setup, in which sender messages are replaced
by a special noise token with a certain probability. Thereby, the receiver can in principle learn to
detect the presence of the noise token and initiate a conversational repair routine.

Compositionality and Generalization A range of computational studies has explored composi-
tionality and generalization in emerging languages. Chaabouni et al. (2020) studies the phenomena
in a principled approach and found that agents can succeed to communicate and generalize even to
unseen objects without the emerged languages necessarily being compositional according to a range
of measures. The authors find that generalization capabilities emerge if the input space is large
enough. Rita et al. (2022a) looks into multi-agent game setups and finds that sufficiently hetero-
geneous populations produce more compositional languages with an increasing number of agents.
These results are in line with research on experimental studies with human subjects (e.g., Raviv
et al., 2019). Rita et al. (2022b) shows that the commonly used loss can be broken down into an
information term and a co-adaptation term, and that controlling for overfitting on the co-adaptation
loss increases compositionality and generalization performance. Other studies explore the role of
template transfer (Korbak et al., 2021), communication channel capacity (Gupta et al., 2020), or
communication over sets of objects (Mu & Goodman, 2021).

In our work we directly compare the generalization performance and compositionality of models
with unidirectional communication channel to those with an additional feedback channel.

2.2 CONVERSATIONAL REPAIR IN LANGUAGE EVOLUTION

Historically, a large portion of research in linguistics has been dedicated to find universals in the
syntax of human languages. While the existence of such a Universal Grammar is disputed, more
recent trends highlight the possibility to describe universals with respect to the use rather than the
structure of language. For example, it has been argued that certain communicative feedback devices
such as other-initiated repair could be universally present in human languages (Dingemanse et al.,
2013; 2015; Dingemanse & Enfield, 2015). Such universals of conversation are not explained by
innateness, but rather by a selective pressure towards the evolution of common optimised forms that
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is exerted by the conversational environments (Dingemanse et al., 2013; Roberts & Mills, 2016). As
such mechanisms form major building blocks of human communication, it is important to investigate
how they impact the emergence of structure in language (Silva & Roberts, 2016). Healey et al.
(2007) analyzes languages emerging between human interlocutors in a graphical language game
and finds that repair is key for the emergence of complex symbol systems. Mills & Redeker (2022)
suggests that self-repair increases the abstraction of emerging message systems.

Lemon (2022) sketches out a framework for emergent communication with conversational ground-
ing. Agents should be able to detect disagreements and resolve them, in order to maintain a common
ground. Targeted feedback signals facilitate the coordination between communication partners. Re-
lated computational implementations can be found for example in Steels (1995), where a model for
vocabulary formation within conversation that includes simple feedback mechanisms for responses
and message acknowledgements is proposed. Other examples include Tria et al. (2012), which fo-
cuses on ”blending repair”, a strategy that exploits the structure of the world to create new words,
as well as de Ruiter & Cummins (2012), proposing a bayesian model of communication in which
repair sequences are initiated if the entropy of the prior and posterior probability distributions over
possible intentions surpass a certain threshold. Finally, van Arkel et al. (2020) compares pragmatic
reasoning and other-initiated repair, using bayesian modeling and complexity analysis.

In our work, we explicitly study the role of conversational repair by directly comparing models with
and without feedback channel regarding the generalization performance and the compositionality
of the emerging languages. Crucially, we leverage deep-learning based models that scale to more
realistic input, instead of only small-scale toy language game setups.

3 METHODS

3.1 BASIC SIGNALING GAME

We implement a signaling game (Lewis, 1969) following common practices in the literature (Kottur
et al., 2017; Lazaridou et al., 2018; Chaabouni et al., 2020; Rita et al., 2022b). In the following, we
will describe the details for the baseline used in all experiments.

Two agents communicate using symbols in a discrimination game. A sender agent S is provided
with an input object oi, sends a message token m ∈ X using discrete symbols to the receiver
agent R. The vocabulary of possible tokens is denoted as X . The receiver needs to discriminate the
target object from a set of distractor objects O by using the information provided in the message M .
The input objects are defined by a number of attributes A each with possible values V . An object is
encoded using a concatenation of one-hot encodings for each attribute, i.e. the input dimensionality
is |A| · |V |. The capacity of the communication channel is defined by the number of symbols in the
vocabulary |X| and the message length |M |.
Both sender and receiver are implemented as gated Recurrent Neural Networks (RNNs) using single-
layer GRUs with layer normalization (Ba et al., 2016). In the basic setup, the number of distractor
objects (including the target) |O| is set to 2. The parameters θR of the receiver are optimized using
a cross-entropy loss:

Lreceiver(θR) = −log(πθR(oi|O,M) (1)
where πθR is the current policy of the receiver.

In parallel to the receiver, the sender agent is trained using REINFORCE (Williams, 1992):

Lsender(θS) = −
|M |∑
t=0

r · log(πθS (mt|oi,mt−1)) (2)

where πθS is the current policy of the sender, mt is the message token at time step t, and r is the
reward (r = 1 if the receiver chooses the correct object from the set of distractor objects and r = 0
otherwise). We further use a running mean baseline to reduce the variance of the gradients as well
as entropy regularization to encourage exploration. At training time, the messages from the speaker
are sampled from the current policy, at test time we employ greedy decoding.

We split the set of all possible objects into a training set (90%) and a test set (10%). Further hyper-
parameters and implementation details can be found in Appendix A.1. The source code of the mod-
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els and all experiments is publicly available at https://github.com/mitjanikolaus/
emergent_communication.

3.2 BASIC SIGNALING GAME WITH NOISE AND FEEDBACK

To explore the effects of feedback, we make two adjustments to the baseline model described in the
preceding section. First, we introduce noise to the communication channel: With a probability of
pnoise, each token in the message M is replaced with a special noise token.1 M ′ denotes the mes-
sage after manipulation with the noise. Secondly, we allow the receiver RNN to generate feedback
messages. At each timestep, the receiver RNN consumes the sender message token and produces a
feedback token n ∈ Y . The sender RNN consumes this feedback token in addition to its last turn’s
output (both tokens are embedded and afterwards concatenated).

The loss functions for the agents with feedback are as follows:

Lreceiver fb(θR) = −log(πθR(oi|O,M ′, N) (3)

Lsender fb(θS) = −
|M |∑
t=0

r · log(πθS (mt|oi,mt−1, nt−1)) (4)

We set |Y | to 2, i.e. the receiver only produces binary feedback. This allows a receiver agent
to use the feedback channel for example to send acknowledgements or open clarification requests
(Dingemanse & Enfield, 2015). We leave the study of larger feedback channels for future work. The
architecture of the model with feedback channel is displayed in Figure 1.
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Figure 1: Architecture of signaling game with feedback channel. Both the Sender RNN (RNNS)
and Receiver RNN (RNNR) are unrolled in time.

3.3 GUESSWHAT SIGNALING GAME

In order to test whether the results observed on the toy signaling game setup generalize to more
realistic game setups, we develop another game setup in which agents communicate about objects
in naturalistic images. In this game, the receiver has to discriminate a target object from a set
of distractor objects that are all present in the same visual scene. This task resembles a common
communicative task, in which a speaker is trying to refer to a single object within a visual scene.2

The proposed game is based on the GuessWhat?! dataset (De Vries et al., 2017), which was initially
designed to create models of grounded task-oriented dialog. Here, we only use the annotated image
data, which consists of images annotated with objects and their corresponding bounding boxes (Lin
et al., 2014). For each image, we select one of the objects as the input object oi and use the remaining
objects as distractor objects.3 The remaining task procedure as well as the model implementation

1See Section 4.1.4 for a discussion of alternative noise implementations.
2Related work has proposed to study emergent communication using images from ImageNet (Russakovsky

et al., 2015). Here, we propose a task which relies on discriminating objects within the same visual scene as
opposed to different images, which is arguably harder and at the same time close to communication problems
that humans are usually facing: Referring to an object in the shared visual environment.

3We constrain the maximum number of distractor objects to 10. If there are more objects available, we
randomly sample a subset of 10 objects.
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are identical to the basic signaling game (cf. Section 3.1). Two example images are shown in
Appendix A.2.

Following the procedure described in De Vries et al. (2017), we select all objects with bounding
boxes of a minimal size (area ≥ 500px2). We further discard all images that contain only one
object. For each object, we extract features from the corresponding bounding box using Vision
Transformer (vit-b-16; Dosovitskiy et al., 2020), which yields 768 dimensional vectors. We keep
the original train and validation splits as defined in CoCo (Lin et al., 2014). In total, there are 70,702
images (385,961 objects; 5.5 per image on average) in the training split and 8,460 (45,541 objects;
5.4 per image on average) in the validation split (which we use as test set).

3.4 EVALUATION

For each setting, we start 3 different runs with varying random seed and report the mean and 95%
confidence intervals for all metrics unless stated otherwise. We evaluate the models by measuring
accuracy on a held-out test split (test acc). We further report test accuracy in a separate forward pass
for which the channel noise is disabled (test acc no noise). This allows us to investigate how models
are performing under optimal conditions even if they were trained with exposure to noise. Finally,
we measure the compositionality of the emerged languages using topographic similarity (topsim;
Brighton & Kirby, 2006), as it is common practice in the language emergence literature (Lazaridou
et al., 2018; Chaabouni et al., 2020; Li & Bowling, 2019). For fair comparison, the compositionality
metric is calculated in the separate forward pass during which the channel noise is disabled.

4 RESULTS

4.1 BASIC SIGNALING GAME

4.1.1 EFFECT OF NOISE

We start by investigating the case of (|A|, |V |) = (4, 4) for increasing amount of noise: pnoise ∈
{0, 0.1, 0.3, 0.5, 0.7, 0.9}. To ensure convergence of the agents, following the results of Chaabouni
et al. (2020), we employ them with a large enough channel capacity: A vocabulary size |X| of 2 and
a message length |M | of 10.4

0 0.1 0.3 0.5 0.7 0.9
noise

0.70

0.75

0.80

0.85

0.90

0.95

1.00
test_acc

baseline
feedback

0 0.1 0.3 0.5 0.7 0.9
noise

0.75

0.80

0.85

0.90

0.95

1.00
test_acc_no_noise

0 0.1 0.3 0.5 0.7 0.9
noise

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
topsim

Figure 2: Generalization performance and compositionality scores for models as a function of chan-
nel noise pnoise.

As a first sanity check, we observe that without noise, both models perform optimally (test acc ≈ 1).
When comparing the test accuracy in settings with noise, we observe that for all settings the models
with feedback outperform the baseline models. This suggests that the feedback channel allows the
models to repair the communication under noisy conditions. Additionally, we find that higher noise
increases the performance advantage of a feedback channel up to a noise level of pnoise = 0.7. At

4In the case of (|A|, |V |) = (4, 4) the input space is |V ||A| = 44 = 256. In that way the channel capacity
is sufficiently larger than the input space: |X||M| = 210 = 1024 ≫ 256.
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pnoise = 0.9 the advantage decreases again and the model convergence becomes more unstable (as
indicated by the increased variability of performance between runs).

Under optimal conditions, if the channel noise is removed, both models perform approximately on
par, suggesting that while the feedback models can repair communication under noise, this does not
harm their performance when noise is absent.

While the test accuracy of feedback models under noise is clearly superior, we observe a substantial
drop in the topsim score for these models. This suggests that while the feedback allows the models
to increase test accuracy in conditions with noise, this is coinciding with an decrease in composi-
tionality (as measured by the topsim score). While Chaabouni et al. (2020) already observed that
compositionality is not necessary to achieve generalization, here we even observe an opposing trend.

Analysis of Feedback Messages In order to gain a better understanding of how the models employ
the feedback channel to repair the communication, we analyze the messages of a converged model
for the case pnoise = 0.5.5

To this end, we record the messages sent by the sender as well as the feedback messages sent by
the receiver for the test set. Then we calculate the correlation (Matthew’s Correlation Coefficient;
Matthews, 1975) of receiver messages with (1) the presence of noise in the sender messages, (2) the
sender messages (excluding messages that contain noise), as well as (3) the one-hot encodings of
the two input objects. Figure 3 visualizes the correlations using heatmaps.
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Figure 3: Matthew’s Correlation Coefficient between receiver messages and the presence of noise,
the sender messages, and the one-hot encodings of the two input objects. The messages are recorded
while the agents are playing the signaling game on the test set.

When observing the response patterns we find that the feedback message tokens do not depend on
the presence of a noise token in the previous turn (all correlation coefficients are close to 0 in the
leftmost graph). This indicates that the feedback tokens are not used as open clarification requests,
i.e. they are not simply signaling the presence of noise back to the sender.

The second graph shows that there is a however a positive correlation between the sender messages
and receiver messages in the subsequent turn. Following a 1 sent by the sender, the receiver usually
responds with 1 and vice versa. In this way, the feedback messages can function as an acknowl-
edgement, signaling the received message back to the sender. For later messages (after message 5
approximately), we find a negative correlation that is slightly delayed.

Finally, we find that there are also substantial correlations between the properties of the candidate
objects (target and distractor) and the receiver messages. This hints that the feedback messages
also serve to communicate certain aspects of the candidate objects to the sender (who does not have
access to both objects). In this way, sender and receiver can be co-constructing meaning during the
course of the interaction.

Understanding the exact mechanisms of the feedback messages remains challenging, as the models
could create any arbitrary messaging code. Still, we would like to estimate to which degree the
models actually develop an efficient code to solve the signaling game. We implement an additional
setup in which the receiver model is encouraged (using an additional loss term) to only signal the

5We also analyze the messages of 2 other runs with different seeds and observe highly similar patterns.
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presence of noise back to the listener. The details of this setup as well as result graphs can be found
in Appendix A.3. We find that while in this case the receivers indeed signal the presence of noise, the
generalization performance lacks behind that of models who develop their own feedback messaging
code (but is still better than baseline performance without any feedback). The best performing mod-
els leverage the feedback message channel to exchange information more efficiently than models
using the feedback channel for simple open clarification requests.

4.1.2 EFFECT OF INPUT SPACE

To ensure that the observed effects are not only a phenomenon of the specific input space, we ex-
periment with multiple other configurations of larger and smaller input spaces. We keep the noise
ratio at pnoise = 0.5 and vary the number of input attributes |A| and values |V |: (|A|, |V |) ∈
{(2, 10), (4, 4), (3, 10), (2, 100), (2, 1000), (10, 1000)}.

The results are depicted in Figure 4. We find that for all tested configurations, the feedback channel
alleviates the detrimental effects of noise. The largest effects are observed for very small input sizes
(|A|, |V |) = (2, 10) or very large ones (|A|, |V |) = (10, 1000). Notably, the input space is even
surpassing the channel capacity in the three larger input space settings. In line with the findings
of the previous section, we also observe a decrease in topsim scores for most settings. Also, the
models’ generalization performances are comparable if the channel noise is removed.
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Figure 4: Results for different input space dimensions.

4.1.3 EFFECT OF MESSAGE LENGTH

Another important hyperparameter of the game setup is the message length of the communication
channel. Here, we investigate the influence of this parameter on the performance advantage of a
feedback channel.
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Figure 5: Results as a function of message length |M |.
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We set pnoise = 0.7 and vary the message length: |M | ∈ {1, 3, 5, 10, 20, 30, 50}. As shown
in Figure 5, we find that starting from |M | = 5, a performance advantage for the models with
feedback emerges. The advantage increases until a length of 30, afterwards the gap between the
performance of two model types decreases again. With a sufficiently high message length, the
sender can simply repeat each message multiple times to increase chances of successful transmission
without the need for any receiver feedback. When comparing the conditions |M | = 10 and |M | =
20, we find that models with an additional feedback channel and |M | = 10 even outperform models
with a unidirectional message channel that is double in size (|M | = 20). This suggests that in this
configuration it is more efficient to allow models for feedback communication than to increase the
capacity of the unidirectional message channel.

4.1.4 EFFECT OF NOISE IMPLEMENTATION

In our basic game setup the noise is implemented using a special token and is therefore simply
detectable by the receiver agent. This relates to phenomena such as a listener not understanding a
syllable or word because of some increased background noise. In order to model other phenomena,
such as misunderstandings, the noise on the channel can be implemented as a random permutation
of the message token with another token from the vocabulary. In this case, the presence of noise is
not directly detectable by the listener and therefore more negotiation might be necessary in order
to obtain a common ground. We therefore expect a lower generalization performance with this
implementation of noise.

We run the experiments described in Section 4.1.1 with this alternative implementation of noise.
The results are shown in Appendix A.4. We find that for this kind of noise, the generalization
performance drops more substantially with increasing noise level (e.g. mean test acc of 0.70 vs.
0.89 for pnoise = 0.7), validating our hypothesis that this kind of noise is more challenging for
communication. However, we still observe that feedback partially alleviates the effects of noise:
The models with feedback outperform the baseline models. The compositionality of languages as
measured by topsim is again lower for the models with feedback.

4.2 GUESSWHAT SIGNALING GAME

Based on the GuessWhat signaling game described in Section 3.3, we perform a set of experiments
to investigate whether the findings on the basic signaling game also hold on more realistic commu-
nication game setups with naturalistic images.
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Figure 6: Generalization performance for models in the GuessWhat signaling game as a function of
channel noise pnoise (left) and message length |M | (right).

We initially keep the same channel capacity as in the basic signaling game setup, a vocabulary size
|X| of 2 and a message length |M | of 10. The left plot in Figure 6 shows the effect of increasing
noise on models with and without feedback channel. In line with the previous findings, we find that
the feedback channel alleviates the effects of noise, with a peak in performance difference that is
again around pnoise = 0.7.
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Regarding the role of message length, the right plot in Figure 6 shows that the performance ad-
vantage increases with increasing |M | (with a fixed channel noise of pnoise = 0.5). In contrast to
the findings on the basic signaling game, this advantage does not decrease for the largest message
length (|M | = 50). When evaluating the generalization capabilities without noise, both model types
perform comparably (see Appendix A.5).

5 DISCUSSION AND CONCLUSION

The findings of this work suggest that in signaling games with noisy conditions, a superior per-
formance can be achieved when models are allowed to send feedback messages backwards from
the receiver to the sender. While this increases the generalization performance of the models, the
compositionality of the emerged languages decreases.

This drop in compositionality might be explained by multiple factors. First, as already shown in
Chaabouni et al. (2020), there is not always a direct link between compositionality and generaliza-
tion performance. Secondly, natural languages are not perfectly compositional either, in many cases
meaning is dependent on context (Goldberg, 2015). When allowing for a bidirectional information
flow between sender and receiver, it is possible that both agents are jointly co-constructing mutual
understanding and thereby creating contextualized meanings. Consequently, the sender messages
become less compositional and more context-dependent (see also Section 4.1.1).6 Recently, Korbak
et al. (2020); Conklin & Smith (2023) also highlighted the limitations of topsim as a measure of
compositionality in emergent communication, to which our results add additional evidence.7

Lemon (2022) pointed to a lack of vision-and-language datasets that explicitly require conversational
grounding in additional to symbol (visual) grounding. In this work we designed a simple referential
signaling game that allows for the study of conversational repair in the context of a referential game
within naturalistic scenes. In line with the findings from the basic signaling game, we find that a
feedback channel allows models to improve their generalization performance under noise. With the
development of models for an efficient generation of clarifying questions in dialog being an open
challenge (Kiseleva et al., 2022), the proposed setup allows for the study of the emergence of crucial
mechanisms for successful dialog, such as basic communicative grounding acts (Clark & Schaefer,
1989; Clark, 1996).

So far, this work only investigated setups with binary message and feedback channels. To study the
emergence of more advanced repair mechanisms such as restricted requests or restricted offers as
opposed to open clarification requests (Dingemanse & Enfield, 2015), the capacity of the message
channel should be increased in subsequent works.

We experimented with two alternative implementations of noise (cf. Section 4.1.4), but even fur-
ther setups should be investigated in the future and might trigger the emergence of more advanced
repair mechanisms. This includes for example combining the two proposed noise implementations
(special noise token for modeling non-understanding, and token permutations for modeling misun-
derstanding) within a single model, as well as non-uniform distributions of noise. Relatedly, we
currently do not add any noise on the feedback messages from the receiver. While this design choice
was taken to study the emergence of basic conversational repair, it is not realistic and will need
to be adapted in the future to perform more extensive experiments on nested clarification requests
(van de Braak et al., 2021). Other axes of future work could extend the model to explore the emer-
gence of a preference for self-repair over other-initiated repair, which is typically found in human
conversation (Schegloff et al., 1977).

As indicated from these numerous opportunities for future work, the current work contributes an-
other important step to the ongoing efforts on closing the gap between signaling games and realistic
models of language evolution (Chaabouni et al., 2019; Rita et al., 2020; Galke et al., 2022).

6Kottur et al. (2017) also observe that agents exploit bidirectional communication channels to create non-
compositional languages. They counteract by limiting the vocabulary size and removing one agent’s memory
at every timestep, which prevents messages from being context-dependent.

7LaCroix (2019) questions compositionality as a target for language evolution research more generally.
The author argues that focus should instead be put on reflexivity, as it is more consistent with a gradualist
approach to language origins. Future work is required to operationalize measures of reflexivity and apply them
to computational emergent communication experiments.
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A APPENDIX

A.1 HYPERPARAMETERS

Hyperparameters were configured as indicated in Table 1, unless stated otherwise.

optimizer Adam
initial learning rate 0.001
batch size 1000
gradient clipping 1
message length 10
vocab size 2
sender embedding size 16
sender hidden dim 128
sender entropy coefficient 0.01
receiver embedding size 16
receiver hidden dim 128
receiver entropy coefficient 0.01

Table 1: Hyperparameter settings.

A.2 GUESSWHAT SIGNALING GAME EXAMPLES

Figure 7 shows two examples for the images used in the GuessWhat signaling game as described in
Section 3.3. The receiver agent needs to discriminate the target object (for example the gray parrot
in the left figure) from the other objects in the scene (the two other parrots). The task becomes
challenging for cases in which the target object is highly similar to some of the distractor objects
(for example, discriminating on of the sheep from the others in the right image).

Figure 7: Examples for images used in the GuessWhat signaling game. Candidate objects are high-
lighted with the colored bounding boxes.

A.3 RESULTS WITH ADDITIONAL LOSS TERM

We train models with an additional loss term on the receiver side, that is encouraging the receiver
messages to signal the presence of noise in the sender messages. The loss is defined as cross-entropy
between the receiver message token logits and the presence of noise in the preceding sender message
token (1 if noise is present and 0 otherwise). The performance of this model is displayed in Figure 8.

Additionally, we plot an analysis of the feedback messages (see also Section 4.1.1) for a model with
pnoise = 0.5 in Figure 9. This shows clearly that the model is signaling the presence of noise, and
(almost) no other information.
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Figure 8: Generalization performance and compositionality scores for models as a function of chan-
nel noise pnoise, including model with additional loss term.
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Figure 9: Matthew’s Correlation Coefficient between receiver messages and the presence of noise,
the sender messages, and the one-hot encodings of the two input objects.

A.4 RESULTS WITH ALTERNATIVE NOISE IMPLEMENTATION

Figure 10 presents the effect of the alternative noise implementation using message token permuta-
tion instead of a special noise token. Figure 11 presents an analysis of the feedback messages for
this setup.
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Figure 10: Generalization performance and compositionality scores for models as a function of
alternative channel noise pnoise.
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Figure 11: Matthew’s Correlation Coefficient between receiver messages and the presence of noise,
the sender messages, and the one-hot encodings of the two input objects for a model with alternative
channel noise of pnoise = 0.5. The correlation with the presence of noise is always 0, as there is no
explicit noise token in this setup.

A.5 ADDITIONAL RESULTS FOR GUESSWHAT SIGNALING GAME

Figure 12 presents the results on the GuessWhat signaling game when evaluated without channel
noise.
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Figure 12: Generalization performance without noise for models in the GuessWhat signaling game
as a function of channel noise during training pnoise (left) and message length |M | (right).
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