
Under review as submission to TMLR

Less Can Be More: Rethinking Message-Passing for Algo-
rithmic Alignment on Graphs

Anonymous authors
Paper under double-blind review

Abstract

Most Graph Neural Networks are based on the principle of message-passing, where all neigh-
boring nodes exchange messages with each other simultaneously. We introduce the Flood
and Echo Net, a novel architecture that aligns neural computation with the principles of dis-
tributed algorithms directly on the level of message-passing. In our method, nodes sparsely
activate upon receiving a message, leading to a wave-like activation pattern that traverses
the entire graph. Through these sparse but parallel activations, the Net becomes provably
more efficient in terms of message complexity. Moreover, the mechanism’s structure to gen-
eralize across graphs of varying sizes positions it as a practical architecture for the task of
graph algorithmic reasoning. We empirically validate the Flood and Echo Net improves gen-
eralization to larger graph sizes, including the SALSA-CLRS benchmark, improving graph
accuracy for instances 100 times larger than during training.

1 Introduction

The message-passing paradigm has become the cornerstone of graph learning, with Message-Passing Neural
Networks (MPNNs) emerging as a dominant framework (Gilmer et al., 2017). In these networks, nodes
iteratively update their states by simultaneously exchanging messages with all neighboring nodes, providing
the necessary flexibility to process arbitrary graph topologies of different sizes. Executing one message-
passing round propagates information by exactly one hop. To properly exchange information throughout
the entire graph, this procedure has to be performed repeatedly. As messages are sent over all edges, all nodes
throughout the entire graph have to update their state after every single step. This can result in unnecessary
computations, especially if the majority of the nodes do not play an active part in the computation and should
maintain their current state. This phenomenon is amplified if the network is applied to larger graphs.

We propose a new execution framework, the Flood and Echo Net (FE Net). While still rooted in the message-
passing paradigm, our approach employs a distinct message exchange strategy inspired by the flooding and
echo algorithmic design pattern from the field of distributed computing. It provides a mechanism that is
efficient as it exchanges fewer messages and naturally extends to graphs of larger sizes. The computation
unfolds in two phases, initiated by a single origin node. First, messages are propagated away from the origin
towards the rest of the graph. In this flooding part nodes only send messages to nodes that are farther
away from the origin. Once all nodes have received a message, the propagation flow reverses. Now, nodes
only send messages to neighbors closer to the origin, starting with the nodes that are farthest away. This
process creates a wave-like activation pattern that expands equally in all directions before returning to the
origin, as illustrated in Figure 1. This unique activation pattern forms the core of the FE Net offering a
more structured and algorithmically aligned computation at the level of message-passing.

Compared to regular MPNNs, the FE Net offers three distinct advantages that are of interest for graph
learning: improved message complexity, enhanced expressivity, and a natural way to generalize the compu-
tation to larger graph sizes. Standard MPNNs exchange information with their one-hop neighborhood in
each round, sending O(m) messages in total along all edges. In contrast, a single phase of a FE Net also
exchanges O(m) messages, but crucially, it updates node states with information collected throughout the
graph, thus going beyond the immediate local neighborhoods.

1

Under review as submission to TMLR

Figure 1: The FE Net propagates messages in a wave-like pattern throughout the entire graph. Starting
from an origin (orange), messages are sent towards its neighbors and then continuously “flooded” outwards
(blue). Once the farthest nodes are reached, the flow reverses, and messages are “echoed” back (red) toward
the origin. Throughout the computation, only a small subset of nodes is active at any given time, passing
messages efficiently throughout the entire graph. Moreover, the mechanism naturally generalizes to graphs
of larger sizes.

Finally, as the main application of the proposed method, we study how the mechanism generalises to larger
graph instances beyond what was seen during training. When MPNNs are applied to graphs of larger sizes,
they have to adapt the number of rounds to retain the same relative field of perception. This results in more
computation for each node. In comparison, the execution of the FE Net adapts to graphs of larger sizes more
naturally as the computation inherently involves the entire graph. As a result, from a node’s perspective
there is less of a shift, as the computation can be done with the same amount of phases.

We hypothesize that the algorithmic alignment of the underlying mechanism makes the FE Net particularly
well-suited for the challenge of graph neural algorithmic reasoning, where models must generalize learned
algorithms across much larger graph sizes. Advancing the field of Neural Algorithmic Reasoning can have
an impact in neural reasoning itself, but also across wider domains for downstream applications where
such architectures have shown improvements in tasks related to biological vessel networks Numeroso et al.
(2023), configuring networks Beurer-Kellner et al. (2022) or improving traffic engineering AlQiam et al.
(2024). We test our method on a diverse set of algorithmic problems, including SALSA-CLRS - a benchmark
specifically designed to evaluate scalable algorithmic reasoning on graphs. Our results demonstrate that the
FE Net significantly enhances the ability to generalize learned algorithms to larger graph instances. Thus,
the proposed algorithmic alignment on the level of message-passing offers a promising new direction for
algorithmic reasoning on graphs.

We outline our main contributions as follows:

• We introduce the FE Net, a new execution framework aligned with principles of distributed algorithm
design. The computation follows a special node activation pattern, which allows it to send fewer
messages throughout the graph.

• We provide theoretical insights into the alternative computation flow, which proves that the FE Net
is more efficient in terms of message complexity and more expressive than common MPNNs.

• We empirically demonstrate that the algorithmic alignment of the architecture is beneficial for size
generalization in graph algorithm learning. This finding is empirically validated through extensive
experiments on a variety of synthetic tasks and the SALSA-CLRS benchmark where we improve
graph accuracy even for instances 100 times larger than encountered during training.

2

Under review as submission to TMLR

Algorithm 1 Flood and Echo Net
D ← distances(G, origin)
maxD← max(D)
x← Encoder(x)
for t = 1 to phases do

for d = 1 to maxD do
x[d]← FConvt(d− 1→ d)
x[d]← FCrossConvt(d→ d)

end for
for d = maxD to 1 do

x[d]← ECrossConvt(d→ d)
x[d− 1]← EConvt(d→ d− 1)

end for
x← Update(x)

end for
x← Decoder(x)

Figure 2: On the left, an algorithm describing the FE Net. First, the distances are pre-computed to activate
and update the proper nodes. The convolutions d − 1 → d send messages from nodes at distance d − 1 to
nodes at distance d, with only the nodes x[d] at distance d updating their state. On the right, an illustration
of a single phase of a FE Net. At every update step, only a subset of nodes is active and changes its state.
The origin is the top node of the graph, and the blue arrows depict the information flow in the flooding,
while the red arrows represent the echo part. Note that a single phase activates all nodes in the graph,
regardless of the graph size, while sending only a constant number of messages across each edge.

2 Related Work

Originally proposed by Scarselli et al. (2008) and Micheli (2009), Graph Neural Networks have seen a
resurgence with applications across multiple domains (Veličković et al., 2017; Kipf & Welling, 2016; Neun
et al., 2022). Notably, this line of research has gained theoretical insights through its connection to message-
passing models from distributed computing (Sato et al., 2019; Loukas, 2020; Papp & Wattenhofer, 2022a).
This includes strengthening existing architectures to achieve maximum expressiveness (Xu et al., 2018; Sato
et al., 2021) or going beyond traditional models by changing the graph topology (Papp et al., 2021; Alon
& Yahav, 2021b). In this context, multiple architectures have been investigated to combat information
bottlenecks in the graph (Alon & Yahav, 2021a), i.e. using graph transformers (Rampasek et al., 2022).
Similarly, higher order propagation mechanisms (Zhang et al., 2023b; Maron et al., 2020; Zhao et al., 2022),
which sometimes also include distance information, have been proposed to tackle this issue or gain more
expressiveness. Note that our work is orthogonal to this, as we focus on simple message-passing design on
the original graph topology. In recent work, even the synchronous message-passing among all nodes has
been questioned (Martinkus et al., 2023; Faber & Wattenhofer, 2023), giving rise to alternative neural graph
execution models.

How GNNs can generalize across graph sizes (Yehudai et al., 2021) and their generalization capabilities
for algorithmic tasks, attributed to their structurally aligned computation (Xu et al., 2020) has been of
much interest. This has led to investigations into the proper alignment of parts of the architecture (Dudzik
& Veličković, 2022; Engelmayer et al., 2023; Dudzik et al., 2023). A central focus has been on neural
algorithmic reasoning, the study how such networks can learn to solve algorithms (Veličković et al., 2022;
Ibarz et al., 2022; Minder et al., 2023; Bohde et al., 2024; Numeroso et al., 2023; Georgiev et al., 2024).
Moreover, the ability to extrapolate (Xu et al., 2021) and dynamically adjust the computation in order to
reason when confronted with more challenging instances remains a key aspect (Schwarzschild et al., 2021;
Grötschla et al., 2022; Tang et al., 2020).

3

Under review as submission to TMLR

3 Flood and Echo Net

The fields of distributed computing and graph learning share a fundamental connection through their use
of message-passing-based computation. Despite differences, the equivalence between certain models in these
domains has been established (Papp & Wattenhofer, 2022a). This enables the direct translation of results
such as theoretical bounds on width, number of rounds, and approximation ratios from the field of distributed
computing to the study of GNNs (Sato et al., 2019; Loukas, 2020). Furthermore, it has been demonstrated
that the alignment of neural network architectures with their underlying learning objectives can significantly
enhance both performance and sample complexity (Xu et al., 2020; Dudzik & Veličković, 2022). This synergy
between distributed computing and GNNs raises an intriguing question: can we leverage additional insights
from the distributed computing community to advance graph learning? We propose the Flood and Echo
Net (FE Net), a novel execution framework that directly incorporates design patterns from distributed
algorithms. To illustrate the differences of our method, let us first review the conventional MPNN approach.
Whenever we refer to an MPNN throughout this paper, we will refer to a GNN that operates on the original
graph topology and exchanges messages in the following way:

at
v = AGGREGATEk({{xt

u | u ∈ N(v)}})
xt+1

v = UPDATE(xt
v, at

v)

Where xt
v denotes the state of node v in round t and N(v) its neighborhood. In this traditional approach, all

nodes exchange messages simultaneously with all their neighbors in every round. We challenge this paradigm
by taking inspiration from a design pattern called flooding and echo (Chang, 1982), a common building block
in distributed algorithms (Kuhn et al., 2007). This pattern introduces a two-phase process: first, messages
are broadcast (flooded) throughout the entire graph (Dalal & Metcalfe, 1978), and then information is
gathered back (echoed) from all nodes. This approach allows for more structured and potentially more
efficient information propagation encompassing the entire graph.

The Flood and Echo Net aligns its computation flow directly with the flooding and echo design pattern. The
process begins at an origin node and proceeds through T phases, each comprising a flooding and an echo
part. Figure 2 provides a pseudo-code outline of the FE Net algorithm. Initially, nodes are partitioned based
on their distance from the origin, then the T phases are executed. During the flooding phase, messages
propagate outward from the origin. We iterate through distances in ascending order, using two types of
convolutions: FConv, which sends messages from nodes at distance d− 1 to nodes at distance d. Crucially,
only nodes at distance d update their state (denoted as x[d]), and FCrossConv, which exchanges messages
between nodes at the same distance d. In the subsequent echo phase, the message flow reverses and is echoed
back towards the origin. Now we iterate through distances in descending order, again using two types of
convolutions: ECrossConv for updating nodes at the same distance, and EConv for sending messages from
nodes at distance d to nodes at distance d−1, updating the latter. Note that only a subset of nodes, located
at the same distance from the origin, are activated simultaneously. Therefore, FE Net can make use of
a sparse but parallel activation pattern that propagates throughout the entire graph. Figure 2 provides a
visual illustration of a complete phase, with colors indicating active edges and updated nodes. For a more
in-depth discussion of the FE Net, including a comparison with regular MPNNs and their computation tree,
we refer to Appendix B.

Modes of Operation The computation of the FE Net starts from an origin node. This allows for different
usages of the proposed method. In the following, we outline three different strategies, which we will refer
to as different modes of operations: fixed, random and all. Across all modes of operation, once the origin is
chosen, the same flooding and echo parts are executed to compute node embeddings.

In the fixed mode, the origin is given or defined by the problem instance, i.e. by a marked source node
specific to the task. In contrast, the random mode selects an origin uniformly at random from all nodes. In
the all mode, we execute the FE Net once for every node. In every run, we keep only the node embedding
for the chosen origin. This can be seen as a form of ego graph prediction (Zhao et al., 2021a) for each node.
Although computationally more expensive, it could also be used for efficient inference on tasks where only a
subset of nodes is of interest.

4

Under review as submission to TMLR

4 Theoretical Analysis

In this section, we provide a theoretical analysis of the Flood and Echo Net. While the FE Net is based
on message-passing over the original graph topology, its unique propagation mechanism sets it apart from
conventional message-passing GNNs. Our analysis focuses on two critical aspects: message complexity
and expressiveness. We show that through the sparse activation of nodes the FE Net achieves improved
efficiency in terms of message complexity. This enables it to solve tasks with significantly fewer messages
than traditional MPNNs. Furthermore, we demonstrate that the FE Net not only matches but exceeds the
expressiveness of regular MPNNs, surpassing the limitations of the 1-WL test. The complete proofs of these
theoretical insights are contained in Appendix F.

4.1 Message Complexity

The FE Net significantly differs regarding the number of messages it needs to exchange in order to involve the
entire graph in its computation. In standard MPNNs, a single round of message-passing updates all n node
states by exchanging messages over all edges. Therefore, every single round exchanges O(m) messages while
propagating information by exactly one hop. Consequently, if any information needs to be propagated
over a distance of D hops, the total number of node updates is O(Dn) and the total number of exchanged
messages is O(Dm).

The FE Net, in contrast, employs a more efficient message-passing strategy. During its execution, only a
subset of nodes is active during each timestep, sending messages either away from or towards the origin. This
key difference results in nodes being sequentially activated, with messages passing information throughout
the entire graph instead of only their immediate one-hop neighborhood. More precisely, in a single phase of
a FE Net, consisting of one flooding followed by one echo part, each node is activated a constant number
of times, while there are also at most a constant number of messages passed along each edge. Therefore, a
single phase performs O(n) node updates and exchanges O(m) messages. Crucially, using a constant number
of phases, the information can be propagated throughout the entire graph. Therefore, it is possible to
exchange information over a distance of D hops using only O(m) messages compared to O(Dm) messages
used by MPNNs.
Theorem 4.1. There exist tasks that Flood and Echo Net can solve using O(m) messages, whereas no
MPNN can solve them using less than O(nm) messages.

As a consequence of this insight, it follows that there exist tasks that can be solved more efficiently using
the FE Net. If information must be exchanged throughout the entire graph, it can be that MPNNs must
use O(nm) messages, while a constant amount of Flood and Echo phases with O(m) messages each would
suffice. Moreover, we will later proof in Theorem 4.2, that by simulating the execution of other MPNNs,
FE Net also uses at most the same number of messages. For a more detailed discussion on the runtime and
message complexity, we refer to Appendix H.

4.2 Expressiveness

The expressiveness of GNNs is tightly linked to the Weisfeiler-Lehman (WL) test (Leman & Weisfeiler, 1968).
Most common message-passing architectures, which work on the original graph topology without higher-
order message-passing, are typically bounded by the expressiveness of the 1-WL test (Papp & Wattenhofer,
2022b). First, we show that the FE Net, despite its distinct operational mechanism, not only matches the
expressiveness of MPNNs but does so with at most the same number of messages:
Theorem 4.2. On connected graphs, the Flood and Echo Net is at least as expressive as any MPNN .
Furthermore, it exchanges at most as many messages.

However, while MPNNs are limited by the 1-WL test, the FE Net is more expressive. Although it also
exchanges messages solely on the original graph topology, the mechanism can implicitly leverage more in-
formation to distinguish more nodes through the alignment of the message propagation with the distance to
the origin in the graph.

5

Under review as submission to TMLR

Theorem 4.3. On connected graphs, Flood and Echo Net is strictly more expressive than 1-WL and, by
extension, standard MPNNs.

Figure 3: Example of two 4-regular graphs which can-
not be distinguished using standard MPNNs as they
are 1-WL equivalent. However, no matter which ori-
gin is chosen, the FE Net can easily distinguish them
through the derived distance to the origin.

This enhanced expressiveness comes from the FE
Net’s ability to implicitly leverage additional in-
formation through its unique message propagation
strategy. From a single node’s perspective, the
flooding and echo mechanism introduces a notion
of edge “direction” relative to the origin. This al-
lows to differentiate between edges leading towards
or away from the origin (or those at equal distances).
This leads to more possibilities to distinguish nodes
in the local neighborhood and leverage non-local in-
formation as the wave pattern transitions through
the whole graph. At the same time, the net could
ignore this additional directionality information of
the edges and simulate the execution of a standard
MPNN. Next to these theoretical insights, we also
empirically validate that the FE Net is more ex-
pressive on a variety of datasets which we include in
Appendix D.

Note, that the FE Net’s design intentionally breaks certain symmetries present in traditional MPNNs through
the introduction of the origin node. This can be emulated to a certain extent with MPNNs as we show
in Theorem F.1 in the Appendix. However, the FE Net still requires fewer messages and structures the
mechanism for algorithmic alignment. Importantly, our theoretical results hold regardless of the FE Net
operational mode. As seen in Figure 3, no matter the origin, the graphs can always be distinguished. The
key insight is that the origin gives an ego perspective of the graph, similar to Identity-aware GNNs (You
et al., 2021) or Subgraph GNNs (Zhao et al., 2021b). However, while these mechanisms share similar ideas,
our design differs as it leverages this information implicitly and makes changes on the message-passing flow
itself. While this design choice affects the equivariance properties, this symmetry breaking benefits the FE
Net to be algorithmically aligned and leverage additional structural information, contributing to its enhanced
expressiveness, efficiency and algorithmic alignment.

5 Generalization in Algorithmic Tasks

In this section, we study neural algorithmic reasoning and specifically graph algorithm learning. The con-
cept of an algorithm is best understood as a sequence of instructions that can be applied to compute a
desired output given the respective input. Algorithms have the inherent advantage to generalize across their
entire domain. If we want to multiply two numbers, we can easily illustrate and explain the multiplica-
tion algorithm using small numbers. However, the same procedure generalizes, i.e. the algorithm can be
used to extrapolate and multiply together much larger numbers using the same algorithmic steps. Neural
algorithmic reasoning aims to grasp these underlying principles and incorporate them into machine learning
architectures. The ultimate aim is to combine both domains to get models that can learn the algorithmic
principles and generalize them properly, even for unseen larger inputs.

A key challenge in studying generalization is properly adapting the architecture to larger problem sizes.
Without any adjustment, it might be that the amount of compute does not suffice to solve the task at hand,
or in the case of graph tasks, that the required information is no longer located in the same receptive field,
but is farther away. Therefore, a common strategy is to adjust the compute, or number of rounds, according
to the increase of the problem size. The FE Net offers an alternative on how to adapt when generalizing
to larger graphs. In fact, during a single phase, messages propagate throughout the entire graph and can
therefore be updated using information beyond the immediate neighborhood.

6

Under review as submission to TMLR

Table 1: Extrapolation experiments on algorithmic datasets, all models were trained with graphs of size 10
and then tested on larger graphs of size 100. We compare the different Flood and Echo models against a
regular GIN, which executes L rounds, PGN and RecGNN, which adapts the number of rounds. The random
mode picks a starting node at random, while the fixed mode starts at a predefined location. The all chooses
each node as a start once. We report both the node accuracy with n() and the graph accuracy with g().

Model Messages PrefixSum Distance Path Finding
n(10) n(100) g(100) n(10) n(100) g(100) n(10) n(100) g(100)

GIN O(Lm) 0.78 ± 0.01 0.53 ± 0.00 0.00 ± 0.00 0.97 ± 0.01 0.91 ± 0.01 0.04 ± 0.06 0.99 ± 0.01 0.70 ± 0.05 0.00 ± 0.00
PGN O(nm) 0.94 ± 0.12 0.52 ± 0.01 0.00 ± 0.00 0.99 ± 0.01 0.89 ± 0.01 0.01 ± 0.02 1.00 ± 0.00 0.77 ± 0.03 0.00 ± 0.00
RecGNN O(nm) 1.00 ± 0.00 0.93 ± 0.07 0.66 ± 0.31 1.00 ± 0.00 0.99 ± 0.02 0.93 ± 0.15 1.00 ± 0.00 0.95 ± 0.04 0.45 ± 0.33
Flood and Echo all O(nm) 1.00 ± 0.00 1.00 ± 0.01 0.96 ± 0.07 1.00 ± 0.00 0.99 ± 0.03 0.87 ± 0.25 1.00 ± 0.00 0.92 ± 0.05 0.14 ± 0.22
Flood and Echo random O(m) 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00 0.97 ± 0.04 0.77 ± 0.30 1.00 ± 0.00 0.82 ± 0.01 0.01 ± 0.00
Flood and Echo fixed O(m) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Previous work has indicated that changes in the architecture or so-called “algorithmic alignment” (Engel-
mayer et al., 2023; Dudzik & Veličković, 2022; Xu et al., 2020) can be beneficial for learning and generalization.
In our work, we propose to incorporate such an alignment on the architectural level, adjusting the
message-passing itself to match the flooding and echo paradigm, an algorithm design pattern from distributed
computing.

In the following, we empirically validate our hypothesis on a variety of tasks related to graph algorithm
learning. First, we test the architecture on synthetic algorithmic tasks, which allow us both fine-grained
control and theoretical insights into what is needed to solve the tasks at hand. Then, we proceed to
test our method on the more challenging SALSA-CLRS benchmark, which consists of well-known graph
algorithms and is specifically designed to test graph algorithms at scale. One aspect how the method differs
in generalisation is that a node in an MPNNs performs more computations (as the number of rounds is
increased to cover the graph). In the FE Net, the number of phases can remain unchanged. As a consequence,
for a node, there is no change in the computation, even though from a graph perspective more steps are
executed.

5.1 Algorithmic Tasks

Our initial study focuses on three algorithmic tasks PrefixSum, Distance and Path Finding adapted to the
graph domain by Grötschla et al. (2022). In the Distance task, nodes have to infer their distance to a marked
node modulo 2. For the Path Finding task, nodes in a tree have to predict whether they are part of the path
between two given nodes. Finally, in the PrefixSum task, the cumulative sum modulo 2 has to be computed
on a path graph. For a more detailed description of the datasets, we refer to Appendix K.1. Although these
tasks may appear simple compared to more elaborate algorithms, their simplicity enables a rigorous analysis
of the requirements to complete the task, thus providing crucial insights into the fundamental capabilities
of our FE Net architecture. For a more thorough analysis of the FE Net on the PrefixSum task, including a
theoretical analysis of the exchanged information, we refer to Appendix E.
Corollary 5.1. Let D be the diameter of the graph. In order to correctly solve the Distance, Path-finding,
and PrefixSum tasks, nodes require information that is O(D) hops away.

We evaluate the performance of the different FE Net modes: fixed, random and all. All modes execute
two phases, which results in O(m) messages exchanged per chosen origin. Moreover, we choose the marked
nodes in the tasks for the origin in the fixed mode. Note that the all mode, requires n executions, one for
each node, therefore, we only consider it for graphs of size at most one hundred. Nevertheless, the other
modes can scale more easily and we believe them to be better suited for the study of algorithm learning. As
a baseline comparison, we consider three models also used later on in the SALSA-CLRS evaluation. Most
importantly, their architectures should be scalable to larger graph sizes and should operate on the original
graph topology. We consider GIN as a representative of a maximal expressive MPNN which executes a fixed
number of rounds. More precisely, five rounds are executed as the model begins to destabilize for more
rounds.

7

Under review as submission to TMLR

Corollary 5.2. Let D be the diameter of the Graph. Every MPNN that correctly solves the PrefixSum,
Distance, or Path Finding for all graph sizes n must execute at least O(D) rounds and exchange O(mD)
messages.

Due to the above corollary, we also consider two recurrent baselines, which adapt the number of rounds
according to the graph size. Therefore, we consider RecGNN Grötschla et al. (2022) and PGN (Veličković
et al., 2020). We scale the number of rounds by 1.2n, where n denotes the number of nodes in the graph.

16 80 160 800 1600
Graph Size

0

20

40

60

80

100

No
de

 A
cc

ur
ac

y

Number of Phases
16
8
4
2
1
Algorithm Length

Figure 4: We illustrate node accuracy on the Dijk-
stra task. Adjusting the number of phases can have
a positive impact on performance, both on node (Di-
jkstra) or graph level (MIS). All models are run on
Erdős–Rényi graphs for a different amount of phases,
Algorithm Length indicates that the number of phases
is set equal to the given algorithm sequence length.

In our experimental setup, we train all models on
small graphs of size 10 to assess their ability to learn
underlying algorithmic patterns and then evaluate
their generalization capabilities on larger graphs of
size 100. From the results in Table 1, we can observe
that the baseline using a fixed number of layers al-
ready struggles to fit the training data and deteri-
orates when tested on larger instances. Similarly,
the performance of PGN drops for larger graphs.
The other models exhibit better generalization, es-
pecially the node accuracy remains high. To provide
a more comprehensive evaluation, we also report
graph accuracy, which quantifies the proportion of
graph instances where all nodes are correctly clas-
sified. This metric offers insights into the models’
ability to maintain consistent performance across
entire graph structures, which is required in order
to solve an instance correctly in algorithmic reason-
ing. There, we can see that the overall model perfor-
mance of the baselines drops compared to the fixed
variant of FE Net. Moreover, we can test extrapola-
tion to even larger instances of size 1000, as shown
in the Appendix. Note that even though the node accuracy for many entries is quite high, the graph accu-
racy deteriorates as the graph sizes increase. The contrast between node and graph accuracies underscores
a critical aspect of graph algorithm learning: while models may perform well on individual node classifica-
tions, ensuring correct and consistent performance across the entire graph becomes increasingly challenging
as graphs grow in size. The FE Net ’s seem to be more robust to this phenomena, especially for the fixed
origin variant. This underscores that our proposed algorithmic alignment is beneficial for size generalization.

We continue our empirical evaluation of the FE Net on more challenging algorithmic tasks. Note, that
the focus of our study lies on the algorithmic alignment of our method, especially in the context of size
generalization. In many real-world graph settings such size generalization might not be a priority and the
usage of standard message-passing might be more suitable to emphasise the importance of local relations
and features. Therefore, we leave the study how our proposed method could be adjusted or combined with
existing techniques to tackle such challenges to future work. Instead, we focus on graph algorithm learning,
where we expect the applications and effects of the algorithmic alignment to be directly applicable.

5.2 SALSA - CLRS

Building on our previous findings, where the FE Net architecture demonstrated strong generalization to
larger graph instances on simple algorithmic tasks, we now extend our evaluation to more challenging and
complex graph algorithms. Our goal is to test if the FE Net can face more intricate tasks that demand
more sophisticated algorithmic techniques. We evaluate on the SALSA-CLRS benchmark (Minder et al.,
2023), which comprises a diverse set of six graph algorithms derived from the CLRS (Veličković et al., 2022)
collection.

The SALSA-CLRS benchmark is particularly relevant for our study as it emphasizes sparsity and scalability,
two critical aspects in for graph algorithm learning. While it builds upon tasks from the CLRS-30 benchmark,

8

Under review as submission to TMLR

Table 2: We evaluate the FE Net on the SALSA-CLRS benchmark, all models are trained on graphs of size
16 and then tested on larger graph sizes. We report the graph accuracy over 5 runs on Erdős–Rényi graphs
of different sizes. The FE Net achieves good performance, especially on the BFS and Eccentricity task on
which it exhibits strong generalization.

Task Model 16 80 160 800 1600
BFS FE Net 100.0 ± 0.0 99.7 ± 0.3 96.6 ± 1.7 22.9 ± 12.5 4.4 ± 5.7

GIN(E) 99.4 ± 0.8 84.3 ± 13.9 57.5 ± 15.3 2.2 ± 4.1 0.1 ± 0.2

PGN 100.0 ± 0.0 88.7 ± 5.9 54.9 ± 21.5 0.2 ± 0.1 0.0 ± 0.0

RecGNN 99.9 ± 0.2 87.9 ± 8.8 55.8 ± 24.8 4.6 ± 6.5 0.4 ± 0.6

DFS FE Net 88.9 ± 3.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

GIN(E) 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 18.4 ± 37.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RecGNN 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Dijkstra FE Net 91.8 ± 0.7 13.2 ± 1.7 0.5 ± 0.2 0.0 ± 0.0 0.0 ± 0.0

GIN(E) 73.4 ± 2.6 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 94.6 ± 1.1 37.8 ± 6.9 5.2 ± 1.9 0.0 ± 0.0 0.0 ± 0.0

RecGNN 81.7 ± 16.1 6.8 ± 6.1 0.3 ± 0.5 0.0 ± 0.0 0.0 ± 0.0

Task Model 16 80 160 800 1600
Eccentricity FE Net 99.9 ± 0.0 99.9 ± 0.1 98.8 ± 0.4 99.5 ± 0.3 81.1 ± 5.4

GIN(E) 57.3 ± 21.2 77.1 ± 17.5 72.3 ± 18.0 51.3 ± 34.2 36.7 ± 17.6

PGN 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 64.6 ± 14.9

RecGNN 75.8 ± 26.2 80.5 ± 35.0 75.0 ± 39.1 72.7 ± 27.9 63.0 ± 24.8

MIS FE Net 98.3 ± 0.5 91.5 ± 2.4 83.8 ± 4.5 27.9 ± 12.5 13.9 ± 9.6

GIN(E) 6.2 ± 3.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 98.8 ± 0.2 89.2 ± 4.6 74.1 ± 10.1 10.7 ± 10.5 2.0 ± 2.5

RecGNN 56.1 ± 13.1 5.5 ± 7.1 0.8 ± 1.6 0.0 ± 0.0 0.0 ± 0.0

MST FE Net 58.5 ± 4.6 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

GIN(E) 43.2 ± 4.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 79.2 ± 4.3 2.0 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RecGNN 56.8 ± 15.9 0.6 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

it is important to clarify why we chose the SALSA-CLRS extension for our evaluation. The CLRS-30
collection aims to capture a wide range of algorithmic concepts, including geometry, sorting, and string tasks,
not limited to graphs. To provide a unified interface for these diverse tasks, it employs an abstract graph view
using fully connected graphs, enabling the modeling of relationships and reasoning between objects through
generalist algorithmic reasoners and suitable architectures such as the triplet reasoner (Ibarz et al., 2022;
Bohde et al., 2024). These methods heavily rely on the fully connected graph structures and use processors
with higher order computations. We focus on graph algorithm learning, where the graph structure is crucial
to the task and carries inherent information. A key aspect of our study is the generalization to substantially
larger graphs, which extends beyond the typical 4x size increase evaluated in the CLRS framework. While
CLRS-30 can accommodate larger tests, its fully connected, dense graph structure and computationally
intensive baselines present scalability challenges. Moreover, applying the FE Net on fully connected graphs
would be ineffective, as it relies on leveraging inherent graph structure and alignment.

In our evaluation, we use the fixed variant of the FE Net and choose the origin to match the starting node
s provided by the SALSA-CLRS data whenever possible, i.e. in the Dijkstra or BFS task. Otherwise, we
choose the node with id 0 to be the origin. For all runs of the FE Net , unless explicitly stated otherwise,
we do not use hints during training and execute a constant number of phases. Note that compared to
the other baselines, the FE Net does not explicitly rely on being given the number of steps to be executed.
All models are trained on graphs of size at most 16 and then tested on larger graph sizes. We conduct a
parameter search between 1 and 16 phases for each task. In Table 2, we report the mean graph accuracy
and standard deviation across 5 runs. We report the baseline performances from Minder et al. (2023). For
further details on the technical setup, we refer to Appendix J. The FE Net achieves good performance across
the algorithms, improving graph accuracy even to the largest graphs 100 times larger than during training.
Most notably, the BFS and Eccentricity task can benefit from the algorithmic alignment. This is further
underlined for the BFS task, where FE Net achieves almost perfect scores on graphs up to size 160, while the
baselines already experience a significant drop off. To further investigate the impact of number of phases,
we run an additional ablation on the Dijkstra task illustrated in Figure 4 and find that the performance
increases when the number of phases is increased. For the complete results, we refer to Appendix J which
also include tests on a variety of different graph distributions.

Overall, the FE Net architecture demonstrates strong performance on SALSA-CLRS. It achieves the best
scores in 9 out of 15 extrapolation settings where non-trivial performance is achieved, while being within
a percent in another 3. For some algorithms, we observe enhanced performance when increasing the num-
ber of executed phases, suggesting a potential adaptation strategy for tasks less naturally aligned with the
flooding and echo paradigm. Remarkably, even without relying on predetermined step counts or interme-
diate hints during training, our method can achieve superior results on multiple tasks. This improvement
extends to graph accuracy, underscoring the FE Net’s capacity to enhance generalization of graphs 100 times
larger. These findings highlight that the algorithmic alignment on the level of message-passing benefits graph
algorithm learning.

9

Under review as submission to TMLR

6 Conclusion

In this work, we challenge the standard message-passing paradigm commonly used in graph learning and
introduce the Flood and Echo Net. Our method aligns its execution to send fewer messages throughout
the entire graph in a wave-like activation. This improves message complexity, as it can facilitate messages
throughout the entire graph more easily and can also increase expressivity. Crucially, the execution of the FE
Net naturally generalizes to graphs of larger sizes, which we find to be beneficial in improving generalization
in graph algorithm learning. We empirically validate our findings on simple algorithmic tasks as well as
more challenging graph algorithms from the SALSA-CLRS benchmark. Our results demonstrate that the
algorithmic alignment of the FE Net significantly enhances performance on multiple algorithms even in the
challenging graph accuracy, particularly when generalizing to larger graphs where it improves results on
extrapolation on graphs 100 times larger. These findings underscore our method’s potential to improve
performance through algorithmic alignment on the level of message-passing.

References
Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications, 2021a.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications. In
International Conference on Learning Representations, 2021b. URL https://openreview.net/forum?
id=i80OPhOCVH2.

Abd AlRhman AlQiam, Yuanjun Yao, Zhaodong Wang, Satyajeet Singh Ahuja, Ying Zhang, Sanjay G.
Rao, Bruno Ribeiro, and Mohit Tawarmalani. Transferable neural wan te for changing topologies. In
Proceedings of the ACM SIGCOMM 2024 Conference, ACM SIGCOMM ’24, pp. 86–102, New York, NY,
USA, 2024. Association for Computing Machinery. ISBN 9798400706141. doi: 10.1145/3651890.3672237.
URL https://doi.org/10.1145/3651890.3672237.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Luca Beurer-Kellner, Martin Vechev, Laurent Vanbever, and Petar Veličković. Learning to configure com-
puter networks with neural algorithmic reasoning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 730–
742. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/04cc90ec6868b97b7423dc38ced1e35c-Paper-Conference.pdf.

Montgomery Bohde, Meng Liu, Alexandra Saxton, and Shuiwang Ji. On the markov property of neural
algorithmic reasoning: Analyses and methods, 2024. URL https://arxiv.org/abs/2403.04929.

E.J.H. Chang. Echo algorithms: Depth parallel operations on general graphs. IEEE Transactions on Software
Engineering, SE-8(4):391–401, 1982. doi: 10.1109/TSE.1982.235573.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph isomorphism
testing and function approximation with gnns, 2023.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of
neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

Yogen K. Dalal and Robert M. Metcalfe. Reverse path forwarding of broadcast packets. Commun. ACM,
21:1040–1048, 1978. URL https://api.semanticscholar.org/CorpusID:5638057.

Andrew Dudzik and Petar Veličković. Graph neural networks are dynamic programmers, 2022.

Andrew Dudzik, Tamara von Glehn, Razvan Pascanu, and Petar Veličković. Asynchronous algorithmic
alignment with cocycles, 2023.

Valerie Engelmayer, Dobrik Georgiev, and Petar Veličković. Parallel algorithms align with neural execution,
2023.

10

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://doi.org/10.1145/3651890.3672237
https://proceedings.neurips.cc/paper_files/paper/2022/file/04cc90ec6868b97b7423dc38ced1e35c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/04cc90ec6868b97b7423dc38ced1e35c-Paper-Conference.pdf
https://arxiv.org/abs/2403.04929
https://api.semanticscholar.org/CorpusID:5638057

Under review as submission to TMLR

Lukas Faber and Roger Wattenhofer. Asynchronous message passing: A new framework for learning in
graphs, 2023. URL https://openreview.net/forum?id=2_I3JQ70U2.

Vikas K. Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of graph
neural networks, 2020.

Dobrik Georgiev Georgiev, Danilo Numeroso, Davide Bacciu, and Pietro Lio. Neural algorithmic reasoning
for combinatorial optimisation. In Soledad Villar and Benjamin Chamberlain (eds.), Proceedings of the
Second Learning on Graphs Conference, volume 231 of Proceedings of Machine Learning Research, pp.
28:1–28:15. PMLR, 27–30 Nov 2024. URL https://proceedings.mlr.press/v231/georgiev24a.html.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural message
passing for quantum chemistry, 2017. URL https://arxiv.org/abs/1704.01212.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio’, and Michael Bronstein.
On over-squashing in message passing neural networks: The impact of width, depth, and topology, 2023.

Florian Grötschla, Joël Mathys, and Roger Wattenhofer. Learning graph algorithms with recurrent graph
neural networks, 2022.

Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi Bennani, Róbert Csordás,
Andrew Dudzik, Matko Bošnjak, Alex Vitvitskyi, Yulia Rubanova, Andreea Deac, Beatrice Bevilacqua,
Yaroslav Ganin, Charles Blundell, and Petar Veličković. A generalist neural algorithmic learner, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Janne H Korhonen and Joel Rybicki. Deterministic subgraph detection in broadcast congest. arXiv preprint
arXiv:1705.10195, 2017.

Fabian Kuhn, Thomas Locher, and Roger Wattenhofer. Tight Bounds for Distributed Selection. In 19th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), San Diego, CA, USA, June
2007.

AA Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and an algebra arising during
this reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12–16, 1968.

Andreas Loukas. What graph neural networks cannot learn: depth vs width, 2020.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph networks,
2020.

Karolis Martinkus, Pál András Papp, Benedikt Schesch, and Roger Wattenhofer. Agent-based graph neural
networks, 2023.

Alessio Micheli. Neural network for graphs: A contextual constructive approach. IEEE Transactions on
Neural Networks, 20(3):498–511, 2009. doi: 10.1109/TNN.2008.2010350.

Julian Minder, Florian Grötschla, Joël Mathys, and Roger Wattenhofer. Salsa-clrs: A sparse and scalable
benchmark for algorithmic reasoning, 2023.

Moritz Neun, Christian Eichenberger, Henry Martin, Markus Spanring, Rahul Siripurapu, Daniel Springer,
Leyan Deng, Chenwang Wu, Defu Lian, Min Zhou, et al. Traffic4cast at neurips 2022–predict dynamics
along graph edges from sparse node data: Whole city traffic and eta from stationary vehicle detectors. In
NeurIPS 2022 Competition Track, pp. 251–278. PMLR, 2022.

11

https://openreview.net/forum?id=2_I3JQ70U2
https://proceedings.mlr.press/v231/georgiev24a.html
https://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1412.6980

Under review as submission to TMLR

Danilo Numeroso, Davide Bacciu, and Petar Veličković. Dual algorithmic reasoning, 2023. URL https:
//arxiv.org/abs/2302.04496.

Pál András Papp and Roger Wattenhofer. An introduction to graph neural networks from a distributed com-
puting perspective. In Raju Bapi, Sandeep Kulkarni, Swarup Mohalik, and Sathya Peri (eds.), Distributed
Computing and Intelligent Technology, pp. 26–44, Cham, 2022a. Springer International Publishing. ISBN
978-3-030-94876-4.

Pál András Papp and Roger Wattenhofer. A theoretical comparison of graph neural network extensions,
2022b.

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random dropouts
increase the expressiveness of graph neural networks, 2021.

Ladislav Rampasek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
Beaini. Recipe for a general, powerful, scalable graph transformer. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=lMMaNf6oxKM.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural networks for
combinatorial problems, 2019.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural networks,
2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum, and Tom
Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with recurrent networks.
Advances in Neural Information Processing Systems, 34:6695–6706, 2021.

Hao Tang, Zhiao Huang, Jiayuan Gu, Bao-Liang Lu, and Hao Su. Towards scale-invariant graph-related
problem solving by iterative homogeneous gnns. Advances in Neural Information Processing Systems, 33:
15811–15822, 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Petar Veličković, Adrià Puigdomènech Badia, David Budden, Razvan Pascanu, Andrea Banino, Misha Da-
shevskiy, Raia Hadsell, and Charles Blundell. The clrs algorithmic reasoning benchmark. In International
Conference on Machine Learning, pp. 22084–22102. PMLR, 2022.

Petar Veličković, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, and Charles Blundell.
Pointer graph networks, 2020.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393(6684):
440–442, 1998.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken ichi Kawarabayashi, and Stefanie Jegelka. What
can neural networks reason about?, 2020.

Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S. Du, Ken ichi Kawarabayashi, and Stefanie Jegelka. How
neural networks extrapolate: From feedforward to graph neural networks, 2021.

Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local structures to size
generalization in graph neural networks, 2021.

12

https://arxiv.org/abs/2302.04496
https://arxiv.org/abs/2302.04496
https://openreview.net/forum?id=lMMaNf6oxKM

Under review as submission to TMLR

Jiaxuan You, Jonathan Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph neural networks.
CoRR, abs/2101.10320, 2021. URL https://arxiv.org/abs/2101.10320.

Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness hierarchy for
subgraph gnns via subgraph weisfeiler-lehman tests, 2023a.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of gnns via graph
biconnectivity, 2023b.

Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie, and Yanfang Ye.
Gophormer: Ego-graph transformer for node classification, 2021a.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any GNN with
local structure awareness. CoRR, abs/2110.03753, 2021b. URL https://arxiv.org/abs/2110.03753.

Lingxiao Zhao, Louis Härtel, Neil Shah, and Leman Akoglu. A practical, progressively-expressive gnn, 2022.

A Appendix

B Flood and Echo Net Definition

Remark: In the main part of the paper there is a pseudo algorithm which outlines the computation using
for loops. We recommend the code view (or source code) for a more intuitive understanding as the formal
definition can seem quite complex.

Let r be the origin of the computation phase and let d(v) denote the shortest path distance from v to r.
Then, the update rule for of the FE Net looks is defined as follows, assume T phases are executed. At the
beginning of each phase t, the flooding is performed, where the nodes are sequentially activated one after
another depending on their distance towards the root. Each convolution is either from nodes at distance d to
d+1 (flood), from d+1 to d (echo) or between nodes at the same distance (floodcross, echocross). The term
x[d] denotes that only nodes at distance d update their state. The variable xd,t

v denotes the state of node v
after t phases and d updates within that phase. Unless updated in the formula, we have that xd,t

v = xd−1,t
v

and x0,0
v are the initial features. For each distance d from 1 to the max distance D in the graph the following

update is performed:

for each d = 1...D:
fd,t

v = AGGREGATEt
F lood({{xd−1,t

u | d(u) = d− 1, u ∈ N(v)}})
fupdd,t

v [d] = UPDATEt
F lood(xd−1,t

v , fd,t
v)

fcd,t
v = AGGREGATEt

F loodCross({{fupdd,t
v | d(u) = d, u ∈ N(v)}})

xd,t
v [d] = UPDATEt

F loodCross(xd−1,t
v , fcd,t

v)

And similarly for each distance d from max distance -1 to 0 the Echo phase

for each d = 1...D:, let d′ = D − d

ecd,t
v = AGGREGATEt

EchoCross({{xD+d−1,t
u | d(u) = d′ + 1, u ∈ N(v)}})

eupdd,t+1
v [d] = UPDATEt

EchoCross(xD+d−1,t
v , ecd,t

v)
ed,t

v = AGGREGATEt
Echo({{eupdd,t

v | d(u) = d′, u ∈ N(v)}})
xD+d,t

v [d] = UPDATEt
Echo(xD+d−1,t

v , ed,t
v)

13

https://arxiv.org/abs/2101.10320
https://arxiv.org/abs/2110.03753

Under review as submission to TMLR

Original Graph 1 Layer Update 2 Layer Update

Original Graph Flood Update Echo Update Flood and Echo update

M
PN

N
Fl

oo
d

an
d

Ec
ho

 N
et

Figure 5: Visualization of the computation executed on the same graph for a regular MPNN and a FE Net
from the perspective of the red node. The top row shows the computation for regular MPNN both for 1 and
2 layers of message-passing. Note that executing l layers takes into account the l-Hop neighborhood. On
the bottom row, the computation from the perspective of the red node in a FE Net is shown. Note that the
origin of the FE Net is the orange node. The two middle figures illustrate the updates in the flood and the
echo part respectively. Furthermore, the figure on the right shows the combined computation for an entire
phase.

The phase is completed after another update for all nodes.

x0,t+1
v = UPDATEt(x2D,t

v)

Note that the node activations are done in a sparse way, therefore, for all updates that take an empty
neighborhood set as the second argument no update is performed and the state is maintained. Furthermore,
in practise we did not find a significant difference in performing the last update step, which is why in the
implementation we do not include it. In Figure 5 we outline the differences between the computation of an
MPNN and a FE Net.

C Extended Related Work

A variety of GNNs that do not follow the 1 hop neighborhood aggregation scheme have been unified under
the view of so-called Subgraph GNNs. The work of Zhang et al. (2023a) analyses these models in terms of
their expressiveness and gives the following general definition:
Definition C.1. A general subgraph GNN layer has the form

h
(l+1)
G (u, v) = σ(l+1)(op1(u, v, G, h

(l)
G), · · · , opr(u, v, G, h

(l)
G)),

where σ(l+1) is an arbitrary (parameterized) continuous function, and each atomic operation opi(u, v, G, h)
can take any of the following expressions:

• Single-point: h(u, v), h(v, u), h(u, u), or h(v, v);
• Global:

∑
w∈VG

h(u, w) or
∑

w∈VG
h(w, v);

14

Under review as submission to TMLR

Figure 6: The top row shows a standard MPNN from the perspective of a specific node (orange) with 2
rounds of message-passing. The arrows denote messages. When applied to larger graphs, the same model
will have nodes (gray) that lie outside of the receptive field and cannot be part of the computation. The
bottom row shows the flooding phase of an FE Net . It generalises naturally to larger graphs, involving the
entire graph in its computation. Both models send the same number of messages in their computations.

• Local:
∑

w∈NGu (v) h(u, w) or
∑

w∈NGv (u) h(w, v).

We assume that h(u, v) is always present in some opi.

This allows us to capture a more general class of Graph Neural Networks, i.e., the work of Zhang et al.
(2023b), which can incorporate distance information into the aggregation mechanism this way. Note that
the proposed mechanism of the FE Net differs from that of this particular notion of subgraph GNNs. At
each update step, only a subset of nodes is active. This allows nodes to take into account nodes that are
activated earlier, which is not directly comparable to subgraph GNNs where the node updates still happen
simultaneously for the nodes in question.

Another important issue that GNNs often struggle with is the so-called phenomenon of oversquashing (Alon
& Yahav, 2021a). In simple terms, if too much information has to be propagated through the graph using a
few edges, a bottleneck occurs, squashing the relevant information together, leading to information loss and
subsequent problems for learning. Recent work of (Giovanni et al., 2023) theoretically analyses the reasons
leading to the oversquashing phenomena and identifies the width and depth of the network but also the
graph topology as key contributors. Note that the proposed FE Net is not designed to tackle the problem
of oversquashing. Rather, it tries to facilitate information throughout the graph, assuming that there is no
inherent (topological) bottleneck. It only affects the aforementioned depth aspect of the network. However,
as outlined by (Giovanni et al., 2023), the depth is likely to have a marginal effect compared to the graph
topology.

The works of Martinkus et al. (2023), namely AgentNet, and Faber & Wattenhofer (2023), who proposes AMP
(Asynchronous Message-Passing), also draw inspiration from the field of distributed computing. Although
they share some aspects in their mechanisms, their respective settings differ quite a bit. In AgentNet,
there exist agents which traverse the graph which gives them the possibility to solve problems on the graph
in sublinear time. In contrast, our approach tries to enable communication throughout the whole graph,
especially in the context of different graph sizes. On the other hand, AMP activates nodes one at a time,
benefiting from a similar computational sparsity as our method. However, note that the FE Net’s execution
is more structured. On one side, this leads to less flexible activation patterns, however, on the other hand, it
translates naturally across graph sizes. Whereas AMP has to additionally learn a termination criteria which
must generalize.

D 1-WL Expressive Experiments

We empirically validate our findings for the FE Net on multiple expressive datasets that go beyond 1-WL.
The tasks span both graph and node predictions, which include graphs that have multiple disconnected
components. We test two modes on these datasets. One variant performs an execution from a single node
using the random variant, while the other performs the all mode. Both modes compute node embeddings

15

Under review as submission to TMLR

Table 3: As the theory predicts, the GIN model cannot go beyond trivial performance. Whereas both the
single and all execution mode go beyond the limits of 1-WL. Note, that the datasets are imbalanced and
can contain multiple components, which can explain the performance of GIN and the account for the drop
of the single mode compared to the all execution.

Model GIN Flood and Echo single Flood and Echo all
Train Test Train Test Train Test

Triangles 0.80 ± 0.00 0.78 ± 0.00 0.92 ± 0.00 0.92 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
LCC 0.79 ± 0.00 0.79 ± 0.00 0.92 ± 0.00 0.91 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
4-Cycles 0.49 ± 0.02 0.50 ± 0.00 0.95 ± 0.01 0.95 ± 0.02 1.00 ± 0.00 0.96 ± 0.02
Limits-1 0.50 ± 0.00 0.50 ± 0.00 0.70 ± 0.06 0.80 ± 0.27 1.00 ± 0.00 1.00 ± 0.00
Limits-2 0.50 ± 0.00 0.50 ± 0.00 0.79 ± 0.05 0.90 ± 0.22 1.00 ± 0.00 1.00 ± 0.00
Skip-Circles 0.10 ± 0.00 0.10 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Messages O(Lm) O(m) O(nm)

1 0 0 1 1

1 1 1 0 1

1 0 0 1 1

? ? 0 1 1

1 1 1 1 0

1 1 1 0 1

Figure 7: Visualization of the information exchange in the PrefixSum task when choosing different origin
nodes for FE Net. We can derive theoretical upper bounds for the performance of FE Net depending on the
number of random origin nodes for a single phase. We show that the empirical performance closely follows
the theoretical analysis. This confirms the ability of the FE Net to distribute the available information
throughout the whole graph.

and can be used for the node prediction tasks without modification. Whereas for graph prediction tasks, the
sum of all node class predictions is used for the final graph prediction. Note that the second variant is fairer
for comparison against MPNNs, since for some datasets like Limits-1, Limits-2, and 4-Cycles, the graph is
not connected. Therefore, the single start mode struggles, as it cannot access all components.

In Table 3 we can see that the Flood and Echo all starts manages to almost perfectly solve all tasks. The
single start performs worse in the Limits-1 and Limits-2 due to the lack of access to all components. The GIN
model, as predicted by theory, performs no better than random guessing. The higher scores in the Triangles
and LCC datasets are due to the fact that these datasets are imbalanced. For an in-depth explanation of
the individual datasets, we refer to Appendix K.2. Comparing the message complexities of the different
methods, a GIN with L layers exchanges O(Lm) messages while the Flood and Echo model either exchanges
O(m) or O(nm) messages based on whether it executes the single or all starts mode.

E Information Propagation

In this section, we analyze the ability of the FE Net to distribute the available information throughout the
whole graph. We use a synthetic algorithmic dataset, the PrefixSum task. For this task, we can provably
determine what pieces of information must be gathered for each node to make correct predictions. If we
choose an appropriate origin point, we could easily send the information and solve the task. However, more
interestingly, what happens if we choose a random origin node instead? Can the Flood and Echo model still
distribute the relevant information, even if it does not suffice to fully solve the task? We derive theoretical

16

Under review as submission to TMLR

Table 4: Information propagation of the FE Net for graphs of size n on the PrefixSum task. As the number of
random origin points s increases, the model can distribute the additional information, as seen by the increase
in accuracy. Moreover, it can do so very effectively as the performance closely follows the theoretical upper
bound.

Model n = 10 n = 100
s = 1 s = 2 s = 3 s = 5 s = 1 s = 2 s = 3 s = 5

Theoretical Upper Bound 82.00 89.80 93.52 96.91 75.75 84.07 88.23 92.39
Flood and Echo 81.69 ± 0.51 88.10 ± 2.34 89.99 ± 0.28 93.90 ± 0.23 75.39 ± 0.29 83.43 ± 0.44 87.79 ± 0.34 91.86 ± 0.28

upper bounds for the best-performing instance given the information that theoretically could be available
during the execution depending on the number of origin nodes. Interestingly, even if the full information
is not available, the FE Net achieves performance that closely follows the theoretical upper bound. This
showcases the ability of our proposed method to distribute all available information throughout the whole
graph.

PrefixSum Task For this analysis, we use the PrefixSum dataset, which follows the task introduced by
Schwarzschild et al. (2021) and was later adapted for the graph setting (Grötschla et al., 2022). It consists
of a path graph, where one end is marked to distinguish left form right. Each node v independently and
uniformly at random gets assigned one bit xv, which is either 1 or 0, chosen with probability 1

2 each. The
task is to compute the prefix sum from left to right modulo 2. Therefore, the output yv of each node v is
the sum of the bits of all nodes to the left yv ≡2 (

∑
i≤v xi). Note, that in order to correctly predict a node

output, it has to take all bits left of it into consideration.
Lemma E.1. In the PrefixSum task, for every node v, the computation of the output ov must be dependent
on all bits of the nodes to its left. If not all bits are considered for the computation, the probability of a
correct prediction is bounded by Pr[ov = yv] ≤ 1

2

Note that from this lemma, it immediately follows that to solve the task correctly, information needs to be
exchanged throughout the whole graph. Nodes towards the end of the path must consider almost all nodes
of the graph for their computation.
Corollary E.2. The PrefixSum task requires information of nodes that are O(D) hops apart and therefore
must exchange information throughout the entire graph.

From Lemma E.1, we know that nodes can only correctly predict their output if the information of all nodes
left to them is taken into account. Whenever the initial origin of the FE Net is chosen at one of the ends,
this information should be available in either the flooding or echo part. However, what happens if we choose
one of the nodes in the graph at random to be the origin? Then, there will always be a right side whose
predictions are dependent on the computation of the left, which has not yet been exchanged. An example is
depicted in Figure 7. The top row indicates the origin node (orange) and illustrates the message exchange in
the flooding (top arrows) and echo phase (bottom arrows). The middle row indicates what parts of the graph
the purple-marked node can know about after a single phase. Note that on the right-hand side, it cannot
infer the initial features of the two leftmost nodes. Because of the missing information, the configuration on
the right can only correctly predict the nodes up to the initial origin node.

We can formally derive a theoretical upper bound for the expected number of correctly predicted nodes
depending on n, the number of nodes, and s, the number of origins. For the entire derivation and formula,
we refer to the Appendix.

In Table 4, we can compare the empirical performance of the FE Net with the theoretical upper bound.
Moreover, the measured performance closely follows the theoretical upper bound. The experiment clearly
shows that the accuracy of the model strictly increases when more starting nodes are chosen. This indicates,
that the model can make use of the additional provided information. Therefore, it can effectively incorporate
the information and propagate it in a sensible way throughout the graph.

17

Under review as submission to TMLR

F Proofs and Derivations

Derivation of E[X]:
Let us assume s starting nodes are chosen uniformly at random and sj denote the index of the j-th starting
nodes. If the beginning is chosen, then all nodes could be classified correctly. Otherwise, nodes can only
be correctly inferred up to t = maxj sj , the starting node farthest to the right. Moreover, the rest of the
n− t nodes can only be guessed correctly with probability 1

2 as the cumulative sum to the left is missingWe
can derive the closed-form solution for X, the expected number of correctly predicted nodes for a perfect
solution.

E[X] = Pr[min
j

sj = 1]n + (1− Pr[min
j

sj = 1])
n∑

i=2

n + maxj sj

2 Pr[max
j

sj = i]

=
(

1−
(

n− 1
n

)s)
n +

(
n− 1

n

)s n∑
i=2

n + i

2 (Pr[max
j

sj < i + 1]− Pr[max
j

sj < i])

=
(

1−
(

n− 1
n

)s)
n +

(
n− 1

n

)s n∑
i=2

n + i

2

((
i− 1
n− 1

)s

−
(

i− 2
n− 1

)s)

Proof of Theorem 4.2. It has been shown by the work of Xu et al. (2018) that the Graph Isomorphism
Network (GIN) achieves maximum expressiveness amongst MPNN. In the following, we will show that a FE
Net can simulate the execution of a GIN on connected graphs, therefore matching it in its expressive power.
Let GI be a GIN using a node state vector hk

v of dimension di.

h(k)
v = MLP(k)((1 + ϵ)h(k−1)

v +
∑

u∈N (v)

h(k−1)
u)

Let GF be a FE Net using node state vector q
(k)
v of dimension df = 2 · di. We partition the vector

q
(k)
v = o

(k)
v || n(k)

v into two vectors of dimension di. Initially, we assume that the encoder gives us o
(0)
v = h

(0)
v

and nv = 0di the zero vector. We now define the updates of flood, floodcross, echo, and echocross in a special
way, that after the flood and echo part o

(k)
v is equal to h

(k)
v and n

(k)
v is equal to

∑
u∈N (v) h

(k−1)
u . If this is

ensured, the final update in a flood and echo phase can update q
(k)
v = MLP(k)((1 + ϵ)o(k−1)

v + n
(k−1)
v) || 0di ,

which exactly mimics the GIN update. It is easy to verify that if we set the echo and flood updates to
add the full sum of the o

(k)
v part of the incoming messages (and similarly half of the sum of the incoming

messages during the cross updates) to n
(k−1)
v the desired property is fulfilled. Moreover, there are at most

four messages exchanged over each edge of the graph. Specifically, four is for cross edges and two is for all
other edges. Therefore, a total of O(m) messages are exchanged, which is asymptotically the same number
of messages GIN exchanges in a single update step. This enables a single phase of the FE Net to mimic the
execution of a single GIN round. Repeating this process the whole GIN computation can be simulated by
the FE Net.

Therefore, given a GIN network GI of width di, we can construct a FE Net GF of width O(d) that can
simulate one round of GI in a single flood and echo phase using O(m) messages.

Proof of Theorem 4.3. To show that the FE Net goes beyond 1-WL, it suffices to find two different graphs
that are equivalent under the 1-WL test but can be distinguished by a FE Net. Observe that a FE Net can
calculate its distance, in number of hops, to the root for each node. See the graphs illustrated in Figure 3
for a comparison. On the left is a cycle with 11 nodes, which have additional connections to the nodes that
are at distance two away. Similarly, the graph on the right has additional connections at a distance of three.

18

Under review as submission to TMLR

Both graphs are four regular and can, therefore, not be distinguished using the 1-WL test. However, no
matter where the starting node for Flood and Echo is placed, it can distinguish that there are nodes which
have distance four to the starting root in one graph, which is not the case in the other graph. Therefore,
FE Net can distinguish the two graphs and is more expressive than the 1-WL test. Moreover, due to the
Theorem 4.2 it matches the expressiveness of the 1-WL test on connected graphs by a reduction to the graph
isomorphism network.

Theorem F.1. On connected graphs, an MPNN that is given a uniquely marked node r in the graph and a
sufficient number of rounds is as expressive as a Flood and Echo Net with origin r.

Proof of Theorem F.1. We assume we have an MPNN that operates on a connected Graph G and executes
a sufficient number of rounds L. Moreover, the graph has one node q which is uniquely differentiated from
the rest of the nodes. This node will act as the origin node. Assume for now that each node knows its
distance to node q, the maximal distance d of any node to q and the overall number of rounds that has
already passed l′. If this were the case, the MPNN could simulate the FE Net by appropriately matching the
procedure outlined in the pseudocode of Figure 2. Each round would correspond to one of the convolutions,
which can be done as each node knows l′, d and its own distance to properly emulate the corresponding
computation. This simulation can be done as long as L = O(Td), where T denotes the number of phases of
the corresponding FE Net .

Each node can easily keep track of l′ during its execution. Furthermore, an MPNN could derive the distances
and d as follows. Distances are iteratively updated, the marked node marks itself as distance 0. All other
nodes will update their own distance to be the minimum distance of their neighbors plus one. If a node only
has neighbors that are of smaller distance, it will send a “return” message to its neighbors containing its
distance. Once a node has received such a return message from all its nodes with a higher distance it forwards
the maximum of these distances as a return message itself. The maximum can be easily determined in the
aggregation, however, it requires an additional (in-between) round where nodes communicate their distance
and if they have already sent such a return message. As the nodes only receive the multiset of messages we
have to do such a check which doubles the number of rounds. Once the node q has received a return message
from each of its neighbors it can determine d. It will send an ”initiate“ message (which will be forwarded
to all nodes), that in c · d steps, the simulation of the FE Net will begin, where c is an appropriate constant
so all nodes will receive the initiate message. Therefore all nodes know their own distance, d and l′ and can
simulate the process as outlined above.

Because the MPNN can simulate the FE Net computation given the described assumptions, it will be at
least as expressive as the FE Net . Further, we already know that the FE Net can simulate the computation
of any MPNN, which includes the described circumstances. Thus, they are equally expressive, given the
uniquely marked node and sufficient number of rounds.

Proof of Lemma 4.1. Consider either one of the PrefixSum, Distance, or Path Finding tasks presented in
Appendix K.1. All of them require information that is O(D) apart and must be exchanged. It follows that
all MPNNs must execute at least O(D) rounds of message-passing to facilitate this information. Moreover,
in these graphs, the graph diameter can be O(n). As in each round, there are O(m) messages exchanged,
MPNNs must use at least O(nm) messages to solve these tasks. Furthermore, from Lemma F.2, it follows
that FE Net can solve the task in a single phase using O(m) messages.

Proof of Lemma E.1. For the sake of contradiction, assume that not all bits of the nodes to the left have to
be considered for the computation. Therefore, at least one bit at a node u exists, which is not considered
for the computation of ov. We know that all bits x are drawn uniformly at random and are independent of
each other. Furthermore, we can rewrite the groundtruth yv ≡2

∑
i≤v xi ≡2 xu +

∑
i≤v,i̸=u xi ≡2 xu + s as

the sum of xu and the rest of the nodes. From there, it follows that the ground truth is dependent on xu,
even if all other bits are known Pr[yv = 0 | s] = Pr[s = xu] = 1

2 . On the other hand, we know that ov must
be completely determined by the information of the nodes that make up s and cannot change depending on
xu. Therefore, Pr[ov = yv | ov does not consider xu] ≤ 1

2 .

19

Under review as submission to TMLR

Proof of Corollary E.2. According to Lemma E.1, for each node v to derive the correct prediction, all xu for
nodes u that are left of v have to be considered. Therefore, look at the node r on the very right end of the
path graph. It has to take the bits of all other nodes into consideration. However, the leftmost bit at node l
is n− 1 hops away, which is also the diameter of the graph. Therefore, in order to solve the PrefixSum task,
information has to be exchanged throughout the entire graph by propagating it for at least O(D) hops.

Proof of Corollary 5.1. For the task PrefixSum, the statement follows from E.2. For the other tasks we
outline the proof as follows: Assume for the sake of contradiction that this is not the case and only information
has to be exchanged, which is d′ = o(D) hops away to solve the task. Therefore, as both tasks are node
prediction tasks, the output of each node is defined by its d′-hop neighborhood. For both tasks, we construct
a star-like graph G, which consists of a center node c and k paths of length n

k , which are connected to c for
a constant k. For the Path Finding task, let the center c be one marked node, and the end of path j be the
other marked node. Consider the nodes xi, i = 1, 2, ..., k which lie on the i-th path at distance n

2k from c.
Note that all xi are n

2k away from both their end of the path and c the root. Moreover, the diameter of the
graph is 2n

k . This means that neither the end of the i-th path nor the center c will ever be part of the d′hop
neighborhood. Therefore, if we can only consider the d′-hop neighborhood for each xi, they are all the same
and as a consequence will predict the same solution. However, xj lies on the path between the marked nodes
while the other xi’s do not. So they should have different solutions, a contradiction. A similar argument
holds for the Distance task. Again let c be the marked node in the graph and xi for i = 1, 2, ..., k be the
nodes which lie on the i-th path at distance n

2k for even i and n
2k + 1 for odd i. Again, note that the d′-hop

neighborhood of all xi is identical and therefore must compute the same solution. However, the solution of
even xi should be different from the odd xi, a contradiction.

Proof of Corollary 5.2. From Corollary 5.1 and E.2 it directly follows that information must be exchanged
for at least O(D) hops to infer a correct solution. As MPNNs only exchange information one hop and
exchange O(m) messages per round, the claim follows immediately.

Lemma F.2. FE Net can facilitate the required information for the PrefixSum, Distance and Path Finding
task in a single phase, which can be executed using O(m) messages.

Proof of Lemma F.2. We will prove that in all three mentioned tasks, there exists a configuration for a Flood
and Echo phase, which can propagate the necessary information throughout the graph in a single phase. Let
the origin s correspond to the marked node in the graph, or in the case of the Path Finding, any of the two
suffices. First, we consider the PrefixSum task. Note that in the flooding phase, information is propagated
from the start, which is the left end, towards the right. Therefore, in principle, each bit can be propagated
to the right, which suffices to solve the task according to E.1. For the Distance task, it is necessary that the
length of the shortest path between the root and each node can be inferred. Note that this is exactly the
path which is taken by the flooding messages, therefore, this should be sufficient to solve the task. Similarly,
for the Path Finding task, one phase is sufficient. Note that starting from the leaves of the graph during
the echo phase, nodes can decide that they are not part of the path between the two marked nodes (as only
marked leaves can be part of the path). However, when such a message is received at one of the marked
nodes, they can ignore it and tell their predecessor that they are on the path. This is correct, as one of the
marked ends is at the start of our computation, and this echo message travels from the other marked end on
the to-be-marked path back toward the root. This shows that for each of the above-mentioned tasks, there
exists a FE Net configuration that solves the task in a single phase, which exchanges O(m) messages.

G Model Architecture and Training

The following describes the setup of our experiments for PrefixSum, Path-Finding and Distance. We use a
GRUMLP convolution for all Flood and Echo models and the RecGNN, which is defined in equation 1. It
concatenates both endpoints of an edge for its message and passes it into a GRU cell (Cho et al., 2014). All
models use a hidden node state of 32. We use a multilayer perceptron with a hidden dimension 4 times the
input dimension and map back to the hidden node state. Further, we use LayerNorm introduced by (Ba
et al., 2016). We also adapt the PGN for the experiments following the implementation by Minder et al.

20

Under review as submission to TMLR

(2023). We concatenate the current, last and original input in each step and also adapt the number of rounds
to be linear in the graphs size by executing 1.2n rounds. For the expressiveness tasks, we perform one phase
of Flood and Echo to compute our node embeddings, while for the algorithmic tasks, we perform two phases
of Flood and Echo. We run for a maximum of 200 epochs, but do an early stop whenever the validation loss
does not increase for 25 epochs. We use the Adam optimizer with an initial learning rate of

xt+1
v = GRUCell

xt
v,

∑
u∈N(v)

ϕ(xt
v||xt

u)

 (1)

In all our experiments, we train our model using the ADAM optimizer Kingma & Ba (2015) with a learning
rate of 4 ·10−4 and batch size of 32 for 200 epochs. We also use a learning rate scheduler where we decay the
learning rate with patience of 3 epochs and perform early stopping if the validation loss does not decrease
for more than 25 epochs. All reported values are reported over the mean of 5 runs.

The model is implemented in pytorch lightning using the pyg library, and the code will be made public upon
publication.

H Runtime

H.1 Runtime Complexity

We denote n the number of nodes, m the number of edges and D the diameter of the graph. Furthermore,
let T be the number of phases for a FE Net and L be the number of layers for an MPNN.

A single round of regular message-passing exchanges O(m) messages. Therefore, executing L such rounds
results in O(L) steps and O(Lm) messages. Note that in order for communication between any two nodes
L has to be in the order of O(D).

A single phase of a FE Net, consisting of one starting node, exchanges O(m) messages and does so in O(D)
steps. Therefore, executing T phases of a FE Net results in O(Tm) messages exchanged in O(TD) steps.
Note, that it is sufficient for T to be constant O(1) in order to communicate throughout the whole graph
and does not necessarily have to be scaled according to the size of the graph.

The variations fixed and random perform their executions only for a specific single node. Contrary, the
all variation performs such an execution for each of its nodes individually. Therefore, both the number of
messages and the number of steps is increased by a factor of n.

H.2 Measurements

The FE Net is implemented using PyTorch Lightning and PyG, the code will be made publicly available
upon acceptance. The flood and echo are implemented in such a way, that they make use of the GPU
operations provided by PyTorch Geometric by masking out the non-relevant messages. This precomputation
implemented through message-passing on the GPU as well. In Table H we measure the execution of the
forward pass of all models on the PrefixSum task for graphs of size 10, 20, 50, and 100. Each run consists of
a 1000 graphs for which we report the mean execution time per graph and the standard deviation.

Note that we take the exact same setup as in the PrefixSum task. Therefore, GIN always executes 5 layers
and its runtime is not really impacted on larger graph. The RecGNN baseline performs 1.2n rounds of
message-passing, where n denotes the graph size. As the graphs grow larger, the runtime increases roughly
linear. A similar behaviour can be seen in the random and fixed variations of the FE Net. Note, that
they execute two phases, each consisting of a flooding and echoing part. Therefore, there are about 4n
steps of message-passing. Together with the precomputation of the distances for appropriate masking, this
can account for the relative difference in performance. The all variation of Flood and Echo performs n
single executions in a sequential order. It might be possible to at least partially parallelize these executions.

21

Under review as submission to TMLR

Table A: Runtime on the SALSA-CLRS benchmark on graphs of size 1600. Time reported is mean time
per graph in [ms] over the entire test set. The FE Net (FE-1) performs a single phase, which generalizes
across different graph sizes. Whereas the baseline (PGN) has to rely on the number of steps dictated by
the ground truth algorithm. Across BFS, MIS and Eccentricity the runtime is very comparable, for DFS,
Dijkstra and MST it is much faster - however, a single phase is likely not sufficient to solve the task. We
refer to the performance ablation on the number of rounds. Note that the main aim of the FE Net is not to
have a faster execution, but to leverage a new mechanism other than standard message-passing.

Task Model ER WS Delaunay
1600 1600 1600

BFS PGN 40.2 ± 3.0 32.0 ± 2.0 65.1 ± 2.6

FE-1 47.0 ± 2.0 50.1 ± 2.3 97.7 ± 3.6

DFS PGN 22360.4 ± 1107.0 10624.2 ± 247.1 11471.3 ± 8.7

FE-1 44.6 ± 1.8 73.1 ± 6.9 105.5 ± 3.9

Dijkstra PGN 11021.9 ± 384.2 4094.0 ± 96.8 4471.2 ± 23.4

FE-1 49.8 ± 1.2 87.5 ± 7.0 108.2 ± 3.9

Eccentricity PGN 56.8 ± 5.5 62.1 ± 3.7 116.2 ± 3.2

FE-1 40.2 ± 2.1 55.5 ± 2.8 94.7 ± 3.2

MIS PGN 45.7 ± 3.7 27.0 ± 1.2 22.4 ± 1.2

FE-1 40.2 ± 2.6 46.5 ± 2.2 98.1 ± 8.4

MST PGN 9162.6 ± 531.3 4589.2 ± 116.8 4793.6 ± 90.8

FE-1 47.0 ± 2.5 75.8 ± 5.6 106.1 ± 3.8

However, as the number of different runs scales with the number of nodes, we believe that the fixed and
random variants of the FE Net are more suited for the study of extrapolation.

Note that in this specific experiment, the diameter of the graph is n. Due to the way the mechanism couples
the number of iterations to the graph diameter, this is the worst case scenario. Therefore, we expect the
performance ratio compared to RecGNN (which scales the number of iterations to the graph size) to be
upper bounded by our measurements. While the current implementation is a bit slower compared to the
standard MPNNS, due to the GPU support, the performance is still reasonable and practical for further
research. Further, recall that the achieved performance of the models drastically differ. Moreover, while this
is not yet the case for the current implementation, future implementations could leverage that the set of
simultaneously active nodes is much smaller than the graph itself. This could drastically improve the overall
usage of the GPU memory and open up further applications.

H.3 Standard Deviation of random Variation

By using the random variant, we introduce a certain randomness in the computation, which could result in
different outcomes depending on the chosen origin node.

We measure the deviation of the random variant in the PrefixSum task. Each model performs 50 runs over
1000 graphs, we report the node and graph accuracy in percent as well as the minimum and maximum
achieved accuracy for each model instance. From the results in Table 8, we can see that there are differences
between the models, however, the variance due to the chosen origins within each model is quite small.

I Extrapolation

In Table 10 we report the full results for the Path-Finding task and in Table 9 for the Distance task.

22

Under review as submission to TMLR

Table B: Graph Accuracy on the SALSA-CLRS benchmark for the FE Net and PGN on ER graphs. FE-X
denotes that the model executes X phases. The FE Net can achieve significant improvements in graph
accuracies on tasks such as BFS or Eccentricity. Furthermore, the performance is greatly increased on other
tasks when the number of phases is increased.

Task Model 16 80 160 800 1600
BFS FE - 1 100.0 ± 0.0 98.7 ± 1.0 87.0 ± 9.3 8.2 ± 7.6 1.3 ± 2.1

FE - 4 100.0 ± 0.0 99.8 ± 0.3 94.3 ± 4.3 17.2 ± 11.1 2.3 ± 3.1

FE - 16 100.0 ± 0.0 99.5 ± 0.8 97.5 ± 2.2 33.9 ± 16.6 7.7 ± 6.7

PGN 100.0 ± 0.0 88.7 ± 5.9 54.9 ± 21.5 0.2 ± 0.1 0.0 ± 0.0

DFS FE - 1 0.9 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

FE - 4 82.1 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

FE - 16 51.4 ± 27.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 18.4 ± 37.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Dijkstra FE - 1 74.4 ± 3.7 0.7 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

FE - 4 91.2 ± 1.0 11.7 ± 2.6 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0

FE - 16 91.2 ± 1.6 11.9 ± 3.7 0.3 ± 0.3 0.0 ± 0.0 0.0 ± 0.0

PGN 94.6 ± 1.1 37.8 ± 6.9 5.2 ± 1.9 0.0 ± 0.0 0.0 ± 0.0

Eccentricity FE - 1 99.8 ± 0.1 99.9 ± 0.1 98.9 ± 0.3 99.4 ± 0.2 81.7 ± 9.4

FE - 4 99.9 ± 0.2 99.7 ± 0.5 98.5 ± 1.5 98.6 ± 2.4 73.4 ± 13.5

FE - 16 99.8 ± 0.2 99.5 ± 1.2 98.0 ± 2.1 95.8 ± 7.8 66.9 ± 16.1

PGN 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 64.6 ± 14.9

MIS FE - 1 39.5 ± 1.4 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

FE - 4 90.7 ± 2.7 36.4 ± 8.8 18.3 ± 7.8 0.0 ± 0.0 0.0 ± 0.0

FE - 16 97.9 ± 0.8 89.7 ± 4.9 79.9 ± 9.2 23.1 ± 15.3 12.7 ± 10.2

PGN 98.8 ± 0.2 89.2 ± 4.6 74.1 ± 10.1 10.7 ± 10.5 2.0 ± 2.5

MST FE - 1 18.3 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

FE - 4 53.3 ± 6.0 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

FE - 16 58.5 ± 4.6 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 79.2 ± 4.3 2.0 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Table 7: Runtime measurements performed on the PrefixSum task on 1000 graphs per graph size. We report
the mean time per graph in ms and the corresponding standard deviation. All measurements were performed
on a NVIDIA GeForce RTX 3090.

Model Time Measurement [ms]
n(10) n(20) n(50) n(100)

GIN 0.003 ± 0.023 0.003 ± 0.022 0.003 ± 0.027 0.003 ± 0.023
RecGNN 0.008 ± 0.023 0.015 ± 0.022 0.034 ± 0.028 0.066 ± 0.023
Flood and Echo all 0.304 ± 0.025 1.284 ± 0.031 7.995 ± 0.050 31.169 ± 0.168
Flood and Echo random 0.031 ± 0.025 0.066 ± 0.033 0.160 ± 0.042 0.315 ± 0.066
Flood and Echo fixed 0.040 ± 0.025 0.084 ± 0.030 0.212 ± 0.029 0.422 ± 0.029

J SALSA

We follow the training setup from Minder et al. (2023). If not specified otherwise, we run a single phase of
the FE Net using batchsize 8, max aggregation, the AdamW optimizer with an initial learning rate around
0.0004 while also reducing the learning rate by a factor of 0.1 if the validation loss does not decrease for 10
epochs. We employ an early stop if the validation loss does not decrease for 25 epochs and run the training
for at most 100 epochs. All reported mean accuracies are taken across 5 model run on a NVIDIA GeForce
RTX 3090.

23

Under review as submission to TMLR

Table 8: Measurement of the standard deviation of the Flood and Echo random variant. Each model performs
50 runs over 1000 graphs, we report the node and graph accuracy in percent as well as the minimum and
maximum achieved accuracy for each model instance.

Model PrefixSum
n(100) min,max g(100) min,max

Model A 98.78 ± 0.19 (98.28, 99.11) 96.43 ± 0.34 (95.70, 97.20)
Model B 100.00 ± 0.00 (100.00, 100.00) 100.00 ± 0.00 (100.00, 100.00)
Model C 100.00 ± 0.00 (100.00, 100.00) 100.00 ± 0.00 (100.00, 100.00)
Model D 91.37 ± 0.44 (90.40, 92.48) 74.97 ± 0.82 (73.50, 77.40)
Model E 100.00 ± 0.00 (100.00, 100.00) 100.00 ± 0.00 (100.00, 100.00)

Table 9: Extrapolation on the Distance task. All models are trained with graphs of size 10 and then tested
on larger graphs. The Flood and Echo models are able to generalize well to graphs 100 times the sizes
encountered during training. We report both the node accuracy with n() and the graph accuracy with g().

Model Messages Distance
n(10) g(10) n(100) g(100) n(1000) g(1000)

GIN O(Lm) 0.99 ± 0.01 0.92 ± 0.06 0.70 ± 0.05 0.00 ± 0.00 0.53 ± 0.01 0.00 ± 0.00
PGN O(nm) 1.00 ± 0.00 1.00 ± 0.00 0.77 ± 0.03 0.00 ± 0.00 0.50 ± 0.00 0.00 ± 0.00
RecGNN O(nm) 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.04 0.45 ± 0.33 0.78 ± 0.13 0.00 ± 0.00
Flood and Echo random O(m) 1.00 ± 0.00 1.00 ± 0.00 0.82 ± 0.01 0.01 ± 0.00 0.58 ± 0.01 0.00 ± 0.00
Flood and Echo fixed O(m) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 10: Extrapolation on the Path-Finding task. All models are trained with graphs of size 10 and then
tested on larger graphs. The Flood and Echo models are able to generalize well to graphs 100 times the sizes
encountered during training. We report both the node accuracy with n() and the graph accuracy with g().

Model Messages Path-Finding
n(10) g(10) n(100) g(100) n(1000) g(1000)

GIN O(Lm) 0.97 ± 0.01 0.77 ± 0.08 0.91 ± 0.01 0.04 ± 0.06 0.95 ± 0.01 0.00 ± 0.01
PGN O(nm) 0.99 ± 0.01 0.91 ± 0.05 0.89 ± 0.01 0.01 ± 0.02 0.96 ± 0.00 0.00 ± 0.00
RecGNN O(nm) 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.02 0.93 ± 0.15 0.99 ± 0.01 0.79 ± 0.37
Flood and Echo random O(m) 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.04 0.77 ± 0.30 0.98 ± 0.02 0.48 ± 0.38
Flood and Echo fixed O(m) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.02 1.00 ± 0.00 0.89 ± 0.13

The full results for all tasks on all graph distributions is depicted in Table 13 for node accuracy and in Table
12 for graph accuracy. Further in Tables 14,15,16 and 17 we report the exact figures for the performance on
MIS and Dijkstra if the number of rounds is increased. We test 1, 2, 4, 8 and 16 phases for the selection of
the best FE Net model as reported in Table 11.

Table 11: Best performing number of phases for the FE Net on the different tasks of SALSA-CLRS.

Algorithms
BFS DFS Dijkstra Eccentricity MIS MST

Number of Phases 2 8 8 8 8 16

24

Under review as submission to TMLR

Table 12: We test the FE Net across multiple rounds on the SALSA-CLRS benchmark across six graph
based algorithmic tasks. Flood and Echo - X, denotes that All models are trained on graphs of size 16 and
then tested on larger graphs. We report the graph accuracy on Erdős–Rényi graphs of different sizes. All
numbers are taken across 5 runs.

Task Model ER WS Delaunay
16 80 160 800 1600 16 80 160 800 1600 16 80 160 800 1600

BFS Flood and Echo - 1 100.0 ± 0.0 98.7 ± 1.0 87.0 ± 9.3 8.2 ± 7.6 1.3 ± 2.1 100.0 ± 0.0 33.2 ± 11.5 4.6 ± 3.9 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 59.5 ± 15.0 9.6 ± 9.7 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 2 100.0 ± 0.0 99.7 ± 0.3 96.6 ± 1.7 22.9 ± 12.5 4.4 ± 5.7 100.0 ± 0.0 57.7 ± 13.5 13.7 ± 9.7 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 83.6 ± 10.1 21.3 ± 19.2 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 4 100.0 ± 0.0 99.8 ± 0.3 94.3 ± 4.3 17.2 ± 11.1 2.3 ± 3.1 100.0 ± 0.0 54.6 ± 11.3 15.4 ± 10.6 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 79.9 ± 6.1 17.5 ± 14.5 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 8 100.0 ± 0.0 99.0 ± 0.4 90.3 ± 7.0 11.4 ± 9.9 1.4 ± 2.0 100.0 ± 0.0 45.0 ± 10.8 7.5 ± 6.6 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 73.2 ± 11.6 13.1 ± 13.8 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 16 100.0 ± 0.0 99.5 ± 0.8 97.5 ± 2.2 33.9 ± 16.6 7.7 ± 6.7 100.0 ± 0.0 46.3 ± 11.9 13.9 ± 8.3 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 78.2 ± 6.6 21.1 ± 19.3 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 0 100.0 ± 0.0 99.0 ± 1.0 95.0 ± 3.5 17.5 ± 12.3 2.6 ± 2.4 100.0 ± 0.0 42.5 ± 12.6 9.2 ± 8.3 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 69.9 ± 5.9 5.3 ± 2.4 0.0 ± 0.0 0.0 ± 0.0

GIN(E) 99.4 ± 0.8 84.3 ± 13.9 57.5 ± 15.3 2.2 ± 4.1 0.1 ± 0.2 98.0 ± 4.2 5.7 ± 8.7 0.2 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 99.3 ± 1.0 25.1 ± 28.6 0.7 ± 1.4 0.0 ± 0.0 0.0 ± 0.0

PGN 100.0 ± 0.0 88.7 ± 5.9 54.9 ± 21.5 0.2 ± 0.1 0.0 ± 0.0 100.0 ± 0.0 13.1 ± 3.3 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 35.1 ± 8.3 0.3 ± 0.4 0.0 ± 0.0 0.0 ± 0.0

RecGNN 99.9 ± 0.2 87.9 ± 8.8 55.8 ± 24.8 4.6 ± 6.5 0.4 ± 0.6 100.0 ± 0.0 32.5 ± 18.3 1.0 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 53.4 ± 11.5 1.7 ± 1.2 0.0 ± 0.0 0.0 ± 0.0

BFS (H) GIN(E) 92.5 ± 13.9 59.4 ± 38.3 37.8 ± 37.9 0.9 ± 1.4 0.0 ± 0.1 92.8 ± 12.0 10.2 ± 13.8 0.4 ± 0.7 0.0 ± 0.0 0.0 ± 0.0 85.2 ± 28.9 17.5 ± 17.7 0.2 ± 0.3 0.0 ± 0.0 0.0 ± 0.0

PGN 100.0 ± 0.0 88.1 ± 3.8 66.3 ± 8.7 0.2 ± 0.3 0.0 ± 0.0 100.0 ± 0.0 14.2 ± 3.6 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 26.2 ± 11.5 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0

RecGNN 99.9 ± 0.1 81.7 ± 13.0 49.6 ± 25.2 1.8 ± 2.3 0.0 ± 0.1 99.4 ± 1.3 20.7 ± 13.5 1.3 ± 2.3 0.0 ± 0.0 0.0 ± 0.0 99.9 ± 0.2 18.7 ± 8.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

DFS Flood and Echo - 1 0.9 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 2 14.3 ± 4.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 6.5 ± 5.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 8.6 ± 3.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 4 82.1 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 92.0 ± 2.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 63.7 ± 1.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 8 88.9 ± 3.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 81.2 ± 12.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 68.3 ± 3.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 16 51.4 ± 27.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 35.2 ± 31.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 32.1 ± 18.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 0 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

GIN(E) 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 18.4 ± 37.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 9.5 ± 21.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 13.9 ± 29.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RecGNN 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

DFS (H) GIN(E) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 19.9 ± 30.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 3.2 ± 7.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 13.8 ± 23.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RecGNN 4.5 ± 7.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 5.8 ± 11.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Dijkstra Flood and Echo - 1 74.4 ± 3.7 0.7 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 53.4 ± 5.4 1.2 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 67.1 ± 5.1 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 2 84.8 ± 1.1 4.2 ± 1.0 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 71.2 ± 3.2 4.4 ± 0.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 79.7 ± 2.5 1.7 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 4 91.2 ± 1.0 11.7 ± 2.6 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 78.7 ± 2.3 12.3 ± 2.2 0.3 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 87.8 ± 1.2 6.6 ± 1.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 8 91.8 ± 0.7 13.2 ± 1.7 0.5 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 79.0 ± 2.5 13.1 ± 3.5 0.3 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 89.2 ± 1.0 7.3 ± 3.1 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 16 91.2 ± 1.6 11.9 ± 3.7 0.3 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 76.0 ± 5.1 10.5 ± 4.6 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 87.9 ± 1.6 6.3 ± 3.4 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 0 91.0 ± 1.1 10.9 ± 3.6 0.3 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 76.3 ± 4.8 10.9 ± 4.1 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 87.1 ± 2.4 6.0 ± 3.8 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0

GIN(E) 73.4 ± 2.6 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 51.6 ± 3.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 66.6 ± 4.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 94.6 ± 1.1 37.8 ± 6.9 5.2 ± 1.9 0.0 ± 0.0 0.0 ± 0.0 76.4 ± 4.0 17.2 ± 2.8 0.9 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 93.0 ± 1.4 19.2 ± 4.2 0.1 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RecGNN 81.7 ± 16.1 6.8 ± 6.1 0.3 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 60.4 ± 22.7 8.4 ± 7.4 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 74.4 ± 19.9 4.4 ± 4.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Dijkstra (H) GIN(E) 49.8 ± 10.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 28.7 ± 9.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 40.3 ± 10.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 89.5 ± 1.0 3.3 ± 3.7 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 70.8 ± 2.4 0.4 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 87.6 ± 0.7 0.4 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RecGNN 73.8 ± 1.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 50.9 ± 5.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 66.4 ± 3.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Eccentricity Flood and Echo - 1 99.8 ± 0.1 99.9 ± 0.1 98.9 ± 0.3 99.4 ± 0.2 81.7 ± 9.4 100.0 ± 0.0 88.6 ± 0.8 93.2 ± 6.0 36.2 ± 6.6 29.2 ± 6.0 100.0 ± 0.0 80.8 ± 11.3 73.7 ± 6.6 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 2 99.9 ± 0.1 100.0 ± 0.0 99.1 ± 0.1 99.2 ± 1.4 70.1 ± 15.3 100.0 ± 0.0 87.5 ± 0.4 97.7 ± 1.8 38.7 ± 2.7 25.1 ± 10.7 100.0 ± 0.0 95.3 ± 2.1 72.9 ± 12.6 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 4 99.9 ± 0.2 99.7 ± 0.5 98.5 ± 1.5 98.6 ± 2.4 73.4 ± 13.5 100.0 ± 0.0 88.5 ± 1.8 96.0 ± 4.6 40.4 ± 3.8 22.8 ± 9.3 100.0 ± 0.0 93.5 ± 6.7 73.4 ± 16.3 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 8 99.9 ± 0.0 99.9 ± 0.1 98.8 ± 0.4 99.5 ± 0.3 81.1 ± 5.4 100.0 ± 0.0 87.4 ± 3.1 92.3 ± 7.9 29.7 ± 11.1 20.8 ± 7.2 100.0 ± 0.0 82.7 ± 15.5 54.9 ± 28.5 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 16 99.8 ± 0.2 99.5 ± 1.2 98.0 ± 2.1 95.8 ± 7.8 66.9 ± 16.1 100.0 ± 0.0 88.4 ± 2.2 95.7 ± 2.6 36.5 ± 6.2 29.4 ± 6.2 100.0 ± 0.0 89.1 ± 9.4 69.6 ± 11.6 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 0 99.9 ± 0.1 100.0 ± 0.0 99.4 ± 0.6 99.4 ± 0.6 75.6 ± 11.0 100.0 ± 0.0 88.7 ± 1.3 97.7 ± 1.3 36.9 ± 2.2 30.4 ± 7.2 100.0 ± 0.0 90.8 ± 7.3 66.2 ± 4.8 0.0 ± 0.0 0.0 ± 0.0

GIN(E) 57.3 ± 21.2 77.1 ± 17.5 72.3 ± 18.0 51.3 ± 34.2 36.7 ± 17.6 78.0 ± 18.7 27.6 ± 19.5 3.6 ± 8.0 0.0 ± 0.0 0.0 ± 0.0 84.8 ± 12.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 64.6 ± 14.9 100.0 ± 0.0 93.8 ± 2.1 100.0 ± 0.1 25.6 ± 7.5 5.2 ± 3.3 100.0 ± 0.0 100.0 ± 0.0 76.9 ± 19.8 0.0 ± 0.0 0.0 ± 0.0

RecGNN 75.8 ± 26.2 80.5 ± 35.0 75.0 ± 39.1 72.7 ± 27.9 63.0 ± 24.8 86.7 ± 25.7 60.8 ± 29.1 57.4 ± 38.7 27.6 ± 29.4 15.2 ± 13.7 89.9 ± 19.4 25.2 ± 37.6 8.3 ± 11.9 0.0 ± 0.0 0.0 ± 0.0

Eccentricity (H) GIN(E) 25.3 ± 41.0 23.8 ± 39.0 26.1 ± 36.8 17.1 ± 32.9 16.0 ± 21.7 25.3 ± 42.2 19.0 ± 18.8 18.6 ± 18.9 4.6 ± 8.9 9.8 ± 10.2 24.8 ± 42.5 17.0 ± 12.5 3.0 ± 5.8 0.0 ± 0.0 0.0 ± 0.0

PGN 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 83.0 ± 6.5 100.0 ± 0.0 88.3 ± 1.8 100.0 ± 0.1 34.8 ± 7.2 9.2 ± 4.8 100.0 ± 0.0 99.7 ± 0.3 64.4 ± 14.2 0.0 ± 0.0 0.0 ± 0.0

RecGNN 95.0 ± 6.3 96.6 ± 3.6 95.8 ± 4.6 93.4 ± 10.3 72.1 ± 20.9 99.0 ± 1.2 66.4 ± 22.4 46.2 ± 40.9 14.1 ± 6.3 8.3 ± 4.9 99.6 ± 0.8 51.0 ± 36.0 19.4 ± 11.7 0.0 ± 0.0 0.0 ± 0.0

MIS Flood and Echo - 1 39.5 ± 1.4 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 40.9 ± 0.5 1.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 43.7 ± 0.6 1.0 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 2 47.6 ± 2.1 0.5 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 46.4 ± 1.9 2.8 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 48.7 ± 1.9 2.3 ± 0.4 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 4 90.7 ± 2.7 36.4 ± 8.8 18.3 ± 7.8 0.0 ± 0.0 0.0 ± 0.0 92.3 ± 1.8 72.6 ± 5.9 47.3 ± 8.6 3.0 ± 2.5 0.1 ± 0.1 94.5 ± 2.0 69.2 ± 5.4 45.6 ± 6.8 2.0 ± 1.4 0.1 ± 0.1

Flood and Echo - 8 98.3 ± 0.5 91.5 ± 2.4 83.8 ± 4.5 27.9 ± 12.5 13.9 ± 9.6 98.3 ± 0.5 96.4 ± 0.9 88.0 ± 3.3 54.7 ± 10.9 30.5 ± 11.8 98.7 ± 0.5 94.7 ± 1.2 88.5 ± 3.2 52.9 ± 11.7 28.5 ± 14.0

Flood and Echo - 16 97.9 ± 0.8 89.7 ± 4.9 79.9 ± 9.2 23.1 ± 15.3 12.7 ± 10.2 98.3 ± 0.6 95.4 ± 2.5 85.7 ± 6.1 50.5 ± 16.7 28.8 ± 15.9 98.2 ± 0.8 93.6 ± 3.5 87.7 ± 5.5 50.0 ± 15.4 27.8 ± 15.8

Flood and Echo - 0 98.2 ± 0.4 90.9 ± 2.5 83.6 ± 5.2 30.0 ± 12.9 15.9 ± 8.2 98.3 ± 0.5 96.1 ± 1.7 89.0 ± 5.0 59.7 ± 12.9 38.7 ± 15.0 98.9 ± 0.3 95.0 ± 2.1 89.8 ± 3.6 57.3 ± 10.7 34.5 ± 11.9

GIN(E) 6.2 ± 3.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 6.5 ± 2.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 6.1 ± 3.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 98.8 ± 0.2 89.2 ± 4.6 74.1 ± 10.1 10.7 ± 10.5 2.0 ± 2.5 98.1 ± 0.6 84.4 ± 8.4 58.3 ± 14.1 4.6 ± 4.3 0.5 ± 0.6 98.9 ± 0.6 93.9 ± 2.2 87.2 ± 4.9 41.2 ± 8.9 17.4 ± 7.4

RecGNN 56.1 ± 13.1 5.5 ± 7.1 0.8 ± 1.6 0.0 ± 0.0 0.0 ± 0.0 52.6 ± 14.6 9.0 ± 9.8 2.0 ± 2.9 0.0 ± 0.0 0.0 ± 0.0 56.0 ± 13.3 9.6 ± 7.8 1.7 ± 2.2 0.0 ± 0.0 0.0 ± 0.0

MIS (H) GIN(E) 3.3 ± 2.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.4 ± 2.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 3.3 ± 2.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 98.6 ± 0.4 88.9 ± 3.1 76.2 ± 7.3 18.0 ± 8.6 5.2 ± 4.3 98.2 ± 0.3 82.2 ± 7.4 54.1 ± 6.6 2.3 ± 1.7 0.1 ± 0.0 98.6 ± 0.4 92.2 ± 2.2 85.1 ± 3.4 40.1 ± 9.1 15.1 ± 6.5

RecGNN 44.1 ± 5.8 2.6 ± 1.5 0.1 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 46.5 ± 5.7 4.2 ± 1.1 0.4 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 46.9 ± 6.2 4.8 ± 1.4 0.3 ± 0.3 0.0 ± 0.0 0.0 ± 0.0

MST Flood and Echo - 1 18.3 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 10.8 ± 2.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 17.5 ± 1.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 2 33.4 ± 6.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 22.6 ± 5.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 35.2 ± 5.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 4 53.3 ± 6.0 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 40.2 ± 6.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 54.8 ± 5.3 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 8 57.5 ± 5.9 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 46.7 ± 6.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 59.3 ± 6.2 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 16 58.5 ± 4.6 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 46.5 ± 6.1 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 59.7 ± 4.3 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 0 57.5 ± 3.4 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 43.8 ± 2.9 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 58.4 ± 1.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

GIN(E) 43.2 ± 4.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 30.0 ± 4.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 43.0 ± 5.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 79.2 ± 4.3 2.0 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 73.2 ± 9.1 0.3 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 78.8 ± 4.1 0.6 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RecGNN 56.8 ± 15.9 0.6 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 44.4 ± 18.0 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 58.7 ± 15.8 0.1 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

MST (H) GIN(E) 29.7 ± 5.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 20.4 ± 5.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 34.6 ± 6.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 69.9 ± 6.1 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 65.7 ± 8.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 72.6 ± 5.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RecGNN 24.5 ± 7.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 14.8 ± 5.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 26.0 ± 7.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

K Datasets

K.1 Algorithmic Datasets

For all the below tasks, we use train set, validation set, and test set sizes of 1024, 100, and 1000, respectively.
The sizes of the respective graphs in the train, validation, and test sets are 10, 20, and 100. Performance
on this test set demonstrates the model’s ability to extrapolate to larger graph sizes. Note that many of the
tasks only require the output modulo 2. We reduce the problem to this specific setting so that all numbers
involved in the computation stay within the same range, as otherwise, the values have to be interpreted
almost in a symbolic way, which is very challenging for learning-based models.

25

Under review as submission to TMLR

Table 13: We test the FE Net across multiple rounds on the SALSA-CLRS benchmark across six graph
based algorithmic tasks. Flood and Echo - X, denotes that All models are trained on graphs of size 16 and
then tested on larger graphs. We report the node accuracy on Erdős–Rényi graphs of different sizes. All
numbers are taken across 5 runs.

Task Model ER WS Delaunay
16 80 160 800 1600 16 80 160 800 1600 16 80 160 800 1600

BFS Flood and Echo - 1 100.0 ± 0.0 100.0 ± 0.0 99.9 ± 0.1 99.5 ± 0.2 99.4 ± 0.3 100.0 ± 0.0 97.8 ± 0.6 95.2 ± 1.2 84.5 ± 1.7 83.1 ± 2.4 100.0 ± 0.0 99.2 ± 0.4 96.8 ± 2.0 69.3 ± 6.6 59.5 ± 12.6

Flood and Echo - 2 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.8 ± 0.1 99.7 ± 0.1 100.0 ± 0.0 99.0 ± 0.4 97.4 ± 0.7 88.6 ± 0.6 84.6 ± 0.7 100.0 ± 0.0 99.7 ± 0.2 97.8 ± 1.1 77.0 ± 10.1 65.9 ± 13.2

Flood and Echo - 4 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.7 ± 0.1 99.6 ± 0.1 100.0 ± 0.0 98.8 ± 0.3 97.3 ± 0.7 88.1 ± 1.5 83.9 ± 0.9 100.0 ± 0.0 99.7 ± 0.1 98.1 ± 1.3 76.4 ± 10.2 61.2 ± 8.1

Flood and Echo - 8 100.0 ± 0.0 100.0 ± 0.0 99.9 ± 0.1 99.6 ± 0.1 99.5 ± 0.1 100.0 ± 0.0 98.5 ± 0.4 96.2 ± 1.0 86.6 ± 1.5 83.1 ± 0.7 100.0 ± 0.0 99.5 ± 0.3 97.4 ± 1.6 77.3 ± 10.8 63.6 ± 10.7

Flood and Echo - 16 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.8 ± 0.1 99.7 ± 0.2 100.0 ± 0.0 98.6 ± 0.3 96.6 ± 1.6 86.2 ± 8.0 85.0 ± 1.0 100.0 ± 0.0 99.6 ± 0.1 97.5 ± 2.1 79.2 ± 15.5 68.6 ± 14.5

Flood and Echo - 0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.7 ± 0.2 99.6 ± 0.2 100.0 ± 0.0 98.4 ± 0.4 96.5 ± 1.1 87.8 ± 0.6 83.4 ± 1.0 100.0 ± 0.0 99.4 ± 0.2 96.7 ± 1.1 81.5 ± 16.1 70.3 ± 17.0

GIN(E) 100.0 ± 0.1 99.6 ± 0.4 99.3 ± 0.6 98.0 ± 1.6 98.0 ± 1.5 99.9 ± 0.3 92.9 ± 4.2 86.7 ± 5.5 70.4 ± 10.8 75.3 ± 6.1 100.0 ± 0.1 94.3 ± 5.6 84.6 ± 10.6 52.7 ± 17.2 45.9 ± 15.8

PGN 100.0 ± 0.0 99.8 ± 0.1 99.5 ± 0.3 99.0 ± 0.2 98.9 ± 0.2 100.0 ± 0.0 95.5 ± 0.7 88.7 ± 1.5 75.9 ± 3.3 80.6 ± 0.7 100.0 ± 0.0 98.2 ± 0.7 90.4 ± 4.5 53.6 ± 7.0 40.3 ± 6.5

RecGNN 100.0 ± 0.0 99.8 ± 0.1 99.5 ± 0.3 99.3 ± 0.4 99.2 ± 0.4 100.0 ± 0.0 97.8 ± 1.1 94.2 ± 2.0 82.2 ± 4.7 82.1 ± 2.3 100.0 ± 0.0 98.5 ± 0.8 92.0 ± 5.5 67.1 ± 11.8 55.6 ± 10.0

BFS (H) GIN(E) 98.8 ± 2.4 95.3 ± 9.2 95.1 ± 8.9 86.9 ± 26.1 86.5 ± 27.2 99.2 ± 1.4 83.0 ± 25.0 77.5 ± 24.9 60.6 ± 28.8 64.4 ± 32.4 98.1 ± 4.0 79.5 ± 32.3 68.9 ± 32.6 42.8 ± 16.4 34.2 ± 10.0

PGN 100.0 ± 0.0 99.8 ± 0.1 99.6 ± 0.1 98.7 ± 0.3 98.5 ± 0.3 100.0 ± 0.0 96.1 ± 0.5 90.8 ± 0.8 76.4 ± 1.6 80.6 ± 1.0 100.0 ± 0.0 97.5 ± 0.8 89.4 ± 1.6 53.2 ± 2.4 40.8 ± 3.2

RecGNN 100.0 ± 0.0 99.6 ± 0.2 99.3 ± 0.5 99.0 ± 0.5 98.6 ± 0.6 100.0 ± 0.1 96.7 ± 0.8 92.5 ± 2.0 77.6 ± 3.8 79.3 ± 1.7 100.0 ± 0.0 95.3 ± 2.3 83.6 ± 6.0 51.5 ± 4.1 42.9 ± 5.0

DFS Flood and Echo - 1 68.8 ± 0.9 42.7 ± 0.3 31.1 ± 0.4 28.3 ± 0.4 25.9 ± 0.5 64.7 ± 1.6 19.2 ± 0.3 18.6 ± 0.1 24.4 ± 0.3 22.0 ± 0.2 65.9 ± 0.7 43.6 ± 0.5 40.7 ± 0.5 38.0 ± 0.6 37.7 ± 0.6

Flood and Echo - 2 83.1 ± 2.3 47.4 ± 0.6 35.0 ± 0.8 31.9 ± 0.7 29.5 ± 0.9 83.2 ± 5.4 21.0 ± 0.2 19.8 ± 0.1 24.6 ± 0.3 22.2 ± 0.2 81.0 ± 2.2 48.9 ± 1.0 44.7 ± 0.8 41.3 ± 0.6 40.8 ± 0.6

Flood and Echo - 4 97.9 ± 0.2 53.0 ± 0.3 38.9 ± 0.4 35.0 ± 0.3 32.7 ± 0.3 99.4 ± 0.2 23.9 ± 0.6 20.7 ± 0.2 24.9 ± 0.1 22.3 ± 0.1 95.5 ± 0.2 54.9 ± 0.3 48.6 ± 0.3 43.3 ± 0.5 42.5 ± 0.6

Flood and Echo - 8 98.9 ± 0.3 52.8 ± 0.6 38.2 ± 0.5 33.5 ± 0.5 31.1 ± 0.6 98.4 ± 1.3 24.1 ± 1.0 21.0 ± 0.6 24.1 ± 0.4 21.6 ± 0.4 96.2 ± 0.3 54.3 ± 0.9 46.4 ± 0.7 39.8 ± 0.7 38.9 ± 0.7

Flood and Echo - 16 92.4 ± 4.9 48.8 ± 1.3 35.5 ± 1.1 31.6 ± 1.1 29.1 ± 1.2 89.0 ± 10.1 23.0 ± 0.4 20.7 ± 0.3 23.7 ± 0.6 21.5 ± 0.5 88.8 ± 4.5 49.9 ± 1.4 44.6 ± 1.2 40.6 ± 1.0 40.1 ± 1.0

Flood and Echo - 0 58.6 ± 3.5 38.5 ± 1.9 26.4 ± 1.3 24.2 ± 1.2 21.9 ± 1.1 42.1 ± 3.8 20.6 ± 0.8 19.9 ± 0.5 23.3 ± 0.5 21.2 ± 0.4 56.9 ± 3.8 39.1 ± 1.8 36.4 ± 1.6 34.3 ± 1.4 34.1 ± 1.4

GIN(E) 49.3 ± 8.1 30.6 ± 4.0 19.7 ± 3.9 18.1 ± 3.8 16.5 ± 3.5 29.7 ± 4.9 15.9 ± 0.9 16.8 ± 0.8 22.3 ± 0.6 20.1 ± 0.5 46.7 ± 7.3 28.0 ± 3.1 25.1 ± 3.1 23.4 ± 2.9 23.2 ± 2.9

PGN 74.2 ± 14.0 41.2 ± 3.8 29.9 ± 2.6 27.8 ± 2.1 25.8 ± 2.1 58.8 ± 20.8 17.9 ± 1.7 17.7 ± 0.8 23.6 ± 0.6 21.3 ± 0.6 72.7 ± 13.1 41.7 ± 3.9 38.2 ± 2.8 35.8 ± 2.1 35.4 ± 2.1

RecGNN 33.4 ± 14.5 28.0 ± 6.5 18.7 ± 4.1 18.2 ± 4.4 16.8 ± 4.3 22.7 ± 8.2 15.9 ± 1.5 16.8 ± 1.4 21.5 ± 1.6 19.5 ± 1.4 32.3 ± 14.9 26.8 ± 5.8 25.2 ± 5.3 24.1 ± 5.2 24.0 ± 5.2

DFS (H) GIN(E) 41.5 ± 7.5 30.4 ± 2.3 20.0 ± 3.1 19.5 ± 2.6 17.8 ± 2.5 25.0 ± 3.7 15.8 ± 0.6 16.8 ± 0.4 22.7 ± 0.7 20.6 ± 0.6 39.6 ± 9.1 28.3 ± 3.1 26.1 ± 3.7 25.3 ± 2.9 25.2 ± 2.9

PGN 82.0 ± 9.2 38.4 ± 2.7 26.9 ± 2.5 24.9 ± 2.3 23.1 ± 2.3 57.6 ± 17.6 17.0 ± 1.6 17.2 ± 0.5 22.9 ± 1.3 20.7 ± 1.1 79.9 ± 8.8 38.3 ± 3.9 34.7 ± 3.7 31.9 ± 3.7 31.5 ± 3.7

RecGNN 48.3 ± 19.1 22.8 ± 4.7 13.5 ± 4.6 13.1 ± 4.1 12.0 ± 3.6 35.3 ± 17.7 13.5 ± 2.6 14.7 ± 1.9 19.4 ± 2.1 17.9 ± 1.7 50.2 ± 21.7 21.8 ± 3.2 19.4 ± 3.8 18.7 ± 3.6 18.5 ± 3.5

Dijkstra Flood and Echo - 1 98.1 ± 0.3 89.0 ± 0.8 80.9 ± 0.9 66.2 ± 1.0 61.1 ± 0.9 96.0 ± 0.6 91.1 ± 0.8 88.5 ± 0.9 81.2 ± 1.1 78.4 ± 1.3 97.5 ± 0.5 89.9 ± 1.1 83.8 ± 1.1 70.3 ± 1.9 66.5 ± 2.4

Flood and Echo - 2 98.9 ± 0.1 94.0 ± 0.6 88.9 ± 1.1 78.2 ± 2.0 73.9 ± 2.3 97.9 ± 0.3 94.6 ± 0.4 92.4 ± 0.7 82.5 ± 0.9 78.1 ± 1.4 98.6 ± 0.2 94.1 ± 0.7 89.8 ± 0.9 73.7 ± 1.9 66.4 ± 3.9

Flood and Echo - 4 99.4 ± 0.1 96.4 ± 0.4 93.0 ± 0.7 86.2 ± 1.1 82.6 ± 1.5 98.5 ± 0.2 96.7 ± 0.3 95.1 ± 0.3 87.7 ± 0.8 84.1 ± 1.0 99.2 ± 0.1 96.2 ± 0.4 92.7 ± 0.6 78.7 ± 1.1 71.2 ± 1.8

Flood and Echo - 8 99.4 ± 0.0 96.6 ± 0.3 93.1 ± 0.7 85.4 ± 2.2 81.1 ± 3.0 98.5 ± 0.3 96.8 ± 0.4 95.1 ± 0.7 87.5 ± 1.5 84.3 ± 2.1 99.3 ± 0.1 96.4 ± 0.5 92.9 ± 1.3 78.3 ± 2.6 70.1 ± 2.3

Flood and Echo - 16 99.4 ± 0.1 96.1 ± 0.8 92.1 ± 1.6 84.7 ± 2.4 80.7 ± 2.7 98.3 ± 0.4 96.4 ± 0.6 94.7 ± 0.8 86.3 ± 1.7 82.7 ± 2.0 99.2 ± 0.1 96.0 ± 0.6 92.1 ± 1.0 76.5 ± 2.7 68.8 ± 3.3

Flood and Echo - 0 99.4 ± 0.1 96.1 ± 0.7 92.2 ± 1.2 84.1 ± 2.5 79.8 ± 3.2 98.4 ± 0.4 96.4 ± 0.7 94.2 ± 1.4 85.3 ± 3.6 81.7 ± 4.0 99.2 ± 0.2 95.9 ± 1.0 91.7 ± 2.1 76.4 ± 5.0 69.1 ± 5.8

GIN(E) 98.0 ± 0.2 89.8 ± 1.1 84.3 ± 1.6 75.8 ± 2.2 72.8 ± 2.3 95.4 ± 0.7 85.0 ± 1.4 79.9 ± 1.9 61.4 ± 4.0 52.6 ± 4.1 97.4 ± 0.4 81.6 ± 1.3 70.4 ± 2.6 46.5 ± 3.7 39.9 ± 3.6

PGN 99.6 ± 0.1 98.6 ± 0.3 97.2 ± 0.5 94.1 ± 0.6 92.2 ± 0.7 98.3 ± 0.4 97.1 ± 0.2 95.4 ± 0.3 81.8 ± 1.2 72.5 ± 6.0 99.5 ± 0.1 97.6 ± 0.3 92.4 ± 0.7 62.7 ± 1.2 51.0 ± 3.9

RecGNN 98.5 ± 1.6 86.8 ± 15.4 76.0 ± 22.1 63.7 ± 27.7 60.6 ± 27.7 95.8 ± 4.2 89.2 ± 14.1 83.9 ± 18.9 71.4 ± 20.4 67.3 ± 17.7 98.0 ± 1.9 90.4 ± 9.7 85.0 ± 10.0 60.2 ± 4.4 50.0 ± 3.6

Dijkstra (H) GIN(E) 95.2 ± 1.8 62.4 ± 7.0 53.3 ± 6.2 40.4 ± 8.1 36.9 ± 7.6 91.2 ± 3.5 55.3 ± 9.3 48.1 ± 8.3 38.6 ± 5.2 35.6 ± 4.4 94.2 ± 1.8 54.4 ± 7.8 45.2 ± 5.4 37.2 ± 4.1 36.0 ± 4.1

PGN 99.3 ± 0.1 94.2 ± 2.5 92.0 ± 2.3 87.1 ± 2.7 84.5 ± 3.4 97.8 ± 0.2 85.8 ± 6.0 80.9 ± 7.0 60.5 ± 8.3 52.4 ± 8.3 99.2 ± 0.1 84.9 ± 6.8 72.8 ± 8.9 50.8 ± 4.6 46.4 ± 3.1

RecGNN 98.0 ± 0.1 32.9 ± 21.6 25.0 ± 17.4 17.7 ± 12.2 16.4 ± 10.7 95.5 ± 1.0 36.3 ± 16.4 29.4 ± 16.1 27.3 ± 12.3 26.6 ± 11.7 97.4 ± 0.4 35.6 ± 17.8 29.5 ± 17.0 26.7 ± 14.4 26.3 ± 14.1

Eccentricity Flood and Echo - 1 99.8 ± 0.1 99.9 ± 0.1 98.9 ± 0.3 99.4 ± 0.2 81.7 ± 9.4 100.0 ± 0.0 88.6 ± 0.8 93.2 ± 6.0 36.2 ± 6.6 29.2 ± 6.0 100.0 ± 0.0 80.8 ± 11.3 73.7 ± 6.6 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 2 99.9 ± 0.1 100.0 ± 0.0 99.1 ± 0.1 99.2 ± 1.4 70.1 ± 15.3 100.0 ± 0.0 87.5 ± 0.4 97.7 ± 1.8 38.7 ± 2.7 25.1 ± 10.7 100.0 ± 0.0 95.3 ± 2.1 72.9 ± 12.6 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 4 99.9 ± 0.2 99.7 ± 0.5 98.5 ± 1.5 98.6 ± 2.4 73.4 ± 13.5 100.0 ± 0.0 88.5 ± 1.8 96.0 ± 4.6 40.4 ± 3.8 22.8 ± 9.3 100.0 ± 0.0 93.5 ± 6.7 73.4 ± 16.3 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 8 99.9 ± 0.0 99.9 ± 0.1 98.8 ± 0.4 99.5 ± 0.3 81.1 ± 5.4 100.0 ± 0.0 87.4 ± 3.1 92.3 ± 7.9 29.7 ± 11.1 20.8 ± 7.2 100.0 ± 0.0 82.7 ± 15.5 54.9 ± 28.5 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 16 99.8 ± 0.2 99.5 ± 1.2 98.0 ± 2.1 95.8 ± 7.8 66.9 ± 16.1 100.0 ± 0.0 88.4 ± 2.2 95.7 ± 2.6 36.5 ± 6.2 29.4 ± 6.2 100.0 ± 0.0 89.1 ± 9.4 69.6 ± 11.6 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 0 99.9 ± 0.1 100.0 ± 0.0 99.4 ± 0.6 99.4 ± 0.6 75.6 ± 11.0 100.0 ± 0.0 88.7 ± 1.3 97.7 ± 1.3 36.9 ± 2.2 30.4 ± 7.2 100.0 ± 0.0 90.8 ± 7.3 66.2 ± 4.8 0.0 ± 0.0 0.0 ± 0.0

GIN(E) 57.3 ± 21.2 77.1 ± 17.5 72.3 ± 18.0 51.3 ± 34.2 36.7 ± 17.6 78.0 ± 18.7 27.6 ± 19.5 3.6 ± 8.0 0.0 ± 0.0 0.0 ± 0.0 84.8 ± 12.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 64.6 ± 14.9 100.0 ± 0.0 93.8 ± 2.1 100.0 ± 0.1 25.6 ± 7.5 5.2 ± 3.3 100.0 ± 0.0 100.0 ± 0.0 76.9 ± 19.8 0.0 ± 0.0 0.0 ± 0.0

RecGNN 75.8 ± 26.2 80.5 ± 35.0 75.0 ± 39.1 72.7 ± 27.9 63.0 ± 24.8 86.7 ± 25.7 60.8 ± 29.1 57.4 ± 38.7 27.6 ± 29.4 15.2 ± 13.7 89.9 ± 19.4 25.2 ± 37.6 8.3 ± 11.9 0.0 ± 0.0 0.0 ± 0.0

Eccentricity (H) GIN(E) 25.3 ± 41.0 23.8 ± 39.0 26.1 ± 36.8 17.1 ± 32.9 16.0 ± 21.7 25.3 ± 42.2 19.0 ± 18.8 18.6 ± 18.9 4.6 ± 8.9 9.8 ± 10.2 24.8 ± 42.5 17.0 ± 12.5 3.0 ± 5.8 0.0 ± 0.0 0.0 ± 0.0

PGN 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 83.0 ± 6.5 100.0 ± 0.0 88.3 ± 1.8 100.0 ± 0.1 34.8 ± 7.2 9.2 ± 4.8 100.0 ± 0.0 99.7 ± 0.3 64.4 ± 14.2 0.0 ± 0.0 0.0 ± 0.0

RecGNN 95.0 ± 6.3 96.6 ± 3.6 95.8 ± 4.6 93.4 ± 10.3 72.1 ± 20.9 99.0 ± 1.2 66.4 ± 22.4 46.2 ± 40.9 14.1 ± 6.3 8.3 ± 4.9 99.6 ± 0.8 51.0 ± 36.0 19.4 ± 11.7 0.0 ± 0.0 0.0 ± 0.0

MIS Flood and Echo - 1 91.3 ± 0.3 87.4 ± 0.2 87.7 ± 0.1 88.1 ± 0.4 87.3 ± 0.2 92.6 ± 0.3 91.9 ± 0.2 91.6 ± 0.2 92.3 ± 0.3 92.0 ± 0.2 92.7 ± 0.1 91.7 ± 0.2 91.4 ± 0.2 91.4 ± 0.2 91.3 ± 0.2

Flood and Echo - 2 93.0 ± 0.2 89.3 ± 0.2 90.0 ± 0.3 89.4 ± 0.2 89.2 ± 0.2 93.9 ± 0.2 93.7 ± 0.1 93.3 ± 0.2 94.0 ± 0.2 93.8 ± 0.2 94.0 ± 0.2 93.4 ± 0.1 93.1 ± 0.2 93.1 ± 0.2 93.0 ± 0.2

Flood and Echo - 4 98.9 ± 0.2 97.3 ± 0.3 97.6 ± 0.3 95.7 ± 0.4 96.8 ± 0.4 99.2 ± 0.1 99.3 ± 0.1 99.2 ± 0.1 99.1 ± 0.1 99.1 ± 0.1 99.4 ± 0.2 99.2 ± 0.1 99.1 ± 0.1 99.1 ± 0.1 99.1 ± 0.1

Flood and Echo - 8 99.7 ± 0.1 99.6 ± 0.1 99.5 ± 0.1 99.1 ± 0.3 99.4 ± 0.2 99.7 ± 0.1 99.9 ± 0.0 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.0 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1

Flood and Echo - 16 99.6 ± 0.1 99.5 ± 0.2 99.4 ± 0.2 98.7 ± 0.4 99.1 ± 0.3 99.7 ± 0.1 99.9 ± 0.1 99.7 ± 0.1 99.8 ± 0.1 99.7 ± 0.1 99.7 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.7 ± 0.1

Flood and Echo - 0 99.7 ± 0.1 99.5 ± 0.1 99.5 ± 0.2 98.9 ± 0.3 99.3 ± 0.2 99.7 ± 0.1 99.9 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.0 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1

GIN(E) 82.2 ± 2.5 81.6 ± 1.9 80.8 ± 2.4 83.6 ± 1.5 80.8 ± 2.5 84.2 ± 2.1 82.0 ± 2.6 82.3 ± 2.4 84.3 ± 1.9 83.4 ± 2.6 82.5 ± 3.2 82.4 ± 3.0 81.5 ± 3.2 80.9 ± 3.7 80.3 ± 4.0

PGN 99.8 ± 0.1 99.6 ± 0.2 99.5 ± 0.2 98.8 ± 0.6 98.9 ± 0.5 99.8 ± 0.1 99.4 ± 0.3 98.8 ± 0.6 95.8 ± 2.6 93.3 ± 4.4 99.9 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.5 ± 0.2 99.3 ± 0.3

RecGNN 93.6 ± 2.2 90.0 ± 2.3 90.1 ± 2.5 87.9 ± 1.9 88.2 ± 2.6 93.3 ± 2.2 92.6 ± 2.6 92.2 ± 2.9 91.8 ± 3.3 91.4 ± 3.5 94.3 ± 2.0 93.4 ± 2.0 93.0 ± 2.5 92.5 ± 3.0 92.1 ± 3.4

MIS (H) GIN(E) 79.9 ± 2.9 79.9 ± 2.2 78.2 ± 2.7 83.4 ± 0.8 79.2 ± 1.6 83.1 ± 1.9 79.5 ± 3.4 79.8 ± 3.3 83.2 ± 2.2 81.8 ± 2.6 80.6 ± 3.1 80.6 ± 3.5 79.8 ± 3.6 78.9 ± 3.7 78.2 ± 3.7

PGN 99.8 ± 0.1 99.4 ± 0.1 99.4 ± 0.2 98.8 ± 0.5 98.9 ± 0.7 99.7 ± 0.1 99.5 ± 0.2 99.1 ± 0.3 98.6 ± 0.8 98.2 ± 1.3 99.8 ± 0.1 99.7 ± 0.1 99.7 ± 0.2 99.4 ± 0.7 99.1 ± 1.2

RecGNN 92.2 ± 0.7 88.7 ± 1.7 88.3 ± 2.8 85.6 ± 3.5 84.7 ± 5.5 92.9 ± 0.5 92.2 ± 1.9 91.8 ± 2.6 90.5 ± 4.3 88.8 ± 6.0 93.5 ± 0.7 92.4 ± 1.4 91.7 ± 2.2 89.8 ± 4.6 88.0 ± 6.5

MST Flood and Echo - 1 86.4 ± 0.2 67.7 ± 0.7 63.4 ± 0.9 53.1 ± 1.0 49.1 ± 1.0 83.0 ± 0.7 69.0 ± 1.0 66.7 ± 1.2 60.7 ± 1.2 62.4 ± 1.2 87.1 ± 0.5 72.7 ± 1.2 68.4 ± 1.2 63.4 ± 1.5 62.5 ± 1.6

Flood and Echo - 2 90.4 ± 1.2 75.8 ± 1.9 72.0 ± 2.1 63.1 ± 2.2 59.4 ± 2.2 87.1 ± 1.8 75.5 ± 1.9 73.5 ± 2.0 68.1 ± 2.6 68.8 ± 2.5 91.1 ± 1.1 78.7 ± 1.2 75.1 ± 1.3 70.7 ± 1.5 69.9 ± 1.5

Flood and Echo - 4 94.0 ± 0.8 82.0 ± 1.3 78.2 ± 1.5 69.1 ± 2.1 65.3 ± 2.4 92.2 ± 1.3 80.6 ± 1.6 77.9 ± 1.8 71.9 ± 2.8 71.0 ± 3.4 94.4 ± 0.7 82.8 ± 1.4 78.6 ± 2.0 72.7 ± 3.4 71.3 ± 3.8

Flood and Echo - 8 94.5 ± 1.0 83.1 ± 1.9 79.1 ± 2.2 70.3 ± 3.1 66.5 ± 3.5 92.8 ± 1.5 81.4 ± 1.2 78.3 ± 1.2 70.9 ± 1.4 68.4 ± 1.6 95.1 ± 0.9 83.2 ± 1.0 78.1 ± 0.6 69.6 ± 1.8 67.1 ± 2.7

Flood and Echo - 16 94.6 ± 0.7 82.0 ± 1.9 77.7 ± 2.1 68.1 ± 2.3 64.1 ± 2.6 93.0 ± 1.0 81.0 ± 1.1 77.6 ± 1.3 70.2 ± 1.6 68.3 ± 1.4 95.2 ± 0.6 82.8 ± 1.2 77.8 ± 1.4 70.2 ± 1.3 68.1 ± 1.2

Flood and Echo - 0 94.5 ± 0.5 83.1 ± 0.9 79.1 ± 1.0 69.8 ± 1.8 65.7 ± 2.0 92.7 ± 0.4 81.5 ± 1.0 78.4 ± 1.2 71.1 ± 2.0 68.9 ± 2.7 95.1 ± 0.2 83.1 ± 0.8 78.2 ± 1.1 70.0 ± 2.8 67.3 ± 4.0

GIN(E) 92.6 ± 0.8 79.1 ± 1.3 77.6 ± 1.7 74.5 ± 2.0 72.9 ± 2.2 89.6 ± 1.4 75.3 ± 1.0 74.4 ± 1.4 73.0 ± 2.4 72.8 ± 2.3 92.8 ± 0.8 77.4 ± 0.6 75.8 ± 1.1 74.8 ± 1.7 74.7 ± 1.7

PGN 97.3 ± 0.4 89.1 ± 1.6 84.6 ± 1.7 75.7 ± 2.0 71.9 ± 2.1 96.8 ± 1.0 82.5 ± 2.4 77.6 ± 2.6 67.4 ± 3.1 65.1 ± 3.3 97.4 ± 0.5 85.2 ± 1.5 78.5 ± 1.4 68.7 ± 1.0 66.8 ± 0.9

RecGNN 94.2 ± 2.3 70.7 ± 27.8 66.6 ± 28.2 58.9 ± 29.0 56.0 ± 28.5 92.8 ± 2.8 67.4 ± 22.9 62.8 ± 23.2 53.5 ± 20.9 52.5 ± 17.1 94.7 ± 2.1 69.9 ± 22.1 62.6 ± 20.9 52.5 ± 13.4 50.6 ± 11.3

MST (H) GIN(E) 89.6 ± 1.7 51.6 ± 4.5 49.5 ± 4.3 45.0 ± 4.2 43.2 ± 4.0 86.0 ± 2.1 54.9 ± 6.2 52.7 ± 6.5 50.9 ± 6.4 54.1 ± 6.9 91.1 ± 1.5 58.4 ± 5.9 56.4 ± 5.6 55.0 ± 5.6 54.9 ± 5.5

PGN 96.4 ± 0.6 79.7 ± 3.8 75.6 ± 4.5 69.5 ± 5.5 66.8 ± 5.1 96.1 ± 1.0 74.5 ± 3.9 72.5 ± 4.5 69.2 ± 4.4 68.8 ± 5.9 96.7 ± 0.5 77.7 ± 4.1 74.3 ± 5.0 71.4 ± 6.5 71.0 ± 6.7

RecGNN 87.5 ± 2.4 29.0 ± 6.7 25.7 ± 6.6 21.3 ± 6.4 20.1 ± 6.3 82.0 ± 4.0 32.0 ± 7.3 29.6 ± 6.0 24.9 ± 7.3 28.8 ± 8.7 88.2 ± 2.1 34.2 ± 8.4 31.9 ± 7.1 28.0 ± 7.2 27.8 ± 7.3

Table 14: Results for the FE Net on the MIS task when the number of rounds is increased. We report node
accuracy, SALSA-CLRS indicates that the number of phases matches the length of the algorithm trajectory.
Model Task ER WS Delaunay

16 80 160 800 1600 16 80 160 800 1600 16 80 160 800 1600
Flood and Echo Net - SALSA-CLRS MIS 99.7 ± 0.1 99.5 ± 0.1 99.4 ± 0.2 98.9 ± 0.3 99.2 ± 0.2 99.8 ± 0.1 99.8 ± 0.0 99.7 ± 0.1 99.7 ± 0.1 99.7 ± 0.1 99.8 ± 0.0 99.8 ± 0.1 99.7 ± 0.0 99.7 ± 0.1 99.7 ± 0.1

Flood and Echo Net - 1 MIS 91.5 ± 0.1 87.5 ± 0.2 87.8 ± 0.1 88.3 ± 0.3 87.4 ± 0.2 92.7 ± 0.2 91.9 ± 0.1 91.6 ± 0.2 92.5 ± 0.3 92.1 ± 0.2 92.9 ± 0.1 91.8 ± 0.1 91.5 ± 0.2 91.5 ± 0.2 91.4 ± 0.2

Flood and Echo Net - 2 MIS 93.1 ± 0.1 89.4 ± 0.1 90.1 ± 0.0 89.5 ± 0.1 89.3 ± 0.1 93.8 ± 0.1 93.8 ± 0.1 93.5 ± 0.0 94.2 ± 0.0 93.9 ± 0.0 94.1 ± 0.1 93.5 ± 0.0 93.2 ± 0.0 93.2 ± 0.0 93.2 ± 0.0

Flood and Echo Net - 4 MIS 93.1 ± 11.6 92.4 ± 8.6 92.3 ± 9.6 92.1 ± 5.4 92.1 ± 7.9 94.4 ± 9.2 93.2 ± 12.2 93.4 ± 11.2 94.8 ± 7.9 94.5 ± 8.5 93.5 ± 11.9 93.6 ± 10.7 93.6 ± 10.6 93.7 ± 10.5 93.7 ± 10.4

Flood and Echo Net - 8 MIS 99.7 ± 0.1 99.6 ± 0.1 99.5 ± 0.2 99.0 ± 0.3 99.3 ± 0.2 99.8 ± 0.1 99.9 ± 0.0 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.9 ± 0.1 99.8 ± 0.0 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1

Flood and Echo Net - 16 MIS 99.7 ± 0.2 99.6 ± 0.1 99.5 ± 0.1 99.2 ± 0.2 99.4 ± 0.1 99.7 ± 0.1 99.9 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1

PrefixSum Task (Grötschla et al., 2022) Each graph in this dataset is a path graph where each node has
a random binary label with one marked vertex at one end, which indicates the origin. The objective of this

26

Under review as submission to TMLR

Table 15: Results for the FE Net on the MIS task when the number of rounds is increased. We report graph
accuracy, SALSA-CLRS indicates that the number of phases matches the length of the algorithm trajectory.
Model Task ER WS Delaunay

16 80 160 800 1600 16 80 160 800 1600 16 80 160 800 1600
Flood and Echo Net - SALSA-CLRS MIS 98.3 ± 0.6 90.0 ± 2.0 81.0 ± 4.4 24.3 ± 10.4 10.9 ± 6.6 98.3 ± 0.7 95.1 ± 1.6 85.6 ± 1.7 48.0 ± 7.4 24.1 ± 7.3 98.8 ± 0.3 93.7 ± 1.2 87.4 ± 1.2 48.6 ± 7.0 24.3 ± 4.7

Flood and Echo Net - 1 MIS 40.4 ± 2.1 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 40.3 ± 2.4 1.0 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 44.1 ± 1.2 1.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo Net - 2 MIS 49.1 ± 2.0 0.3 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 46.3 ± 1.6 3.1 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 49.1 ± 1.7 2.2 ± 0.5 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo Net - 4 MIS 70.9 ± 40.0 25.0 ± 17.2 11.3 ± 9.0 0.0 ± 0.0 0.0 ± 0.0 70.9 ± 40.0 49.7 ± 33.3 29.6 ± 23.5 1.2 ± 1.2 0.0 ± 0.0 73.0 ± 41.2 46.7 ± 31.4 27.3 ± 21.5 0.9 ± 0.9 0.0 ± 0.0

Flood and Echo Net - 8 MIS 98.5 ± 0.5 90.3 ± 3.6 82.6 ± 5.4 25.1 ± 11.0 12.9 ± 10.6 98.7 ± 0.4 95.9 ± 1.8 86.8 ± 4.0 51.4 ± 12.8 27.5 ± 15.1 99.0 ± 0.4 94.5 ± 1.5 88.7 ± 3.5 52.5 ± 13.1 28.9 ± 17.2

Flood and Echo Net - 16 MIS 98.2 ± 0.6 91.8 ± 2.6 83.6 ± 4.4 33.1 ± 9.6 16.4 ± 8.8 98.2 ± 0.6 95.8 ± 1.6 87.9 ± 3.7 56.2 ± 9.3 33.6 ± 11.5 98.8 ± 0.6 94.8 ± 1.1 88.9 ± 3.2 54.0 ± 10.9 31.5 ± 14.1

Table 16: Results for the FE Net on the Dijkstra task when the number of rounds is increased. We report
node accuracy, SALSA-CLRS indicates that the number of phases matches the length of the algorithm
trajectory.
Model Task ER WS Delaunay

16 80 160 800 1600 16 80 160 800 1600 16 80 160 800 1600
Flood and Echo Net - SALSA-CLRS MIS 99.5 ± nan 97.0 ± nan 93.7 ± nan 86.8 ± nan 83.4 ± nan 98.6 ± nan 96.9 ± nan 95.0 ± nan 85.2 ± nan 79.3 ± nan 99.3 ± nan 96.5 ± nan 92.6 ± nan 72.4 ± nan 61.4 ± nan

Flood and Echo Net - 1 MIS 98.3 ± 0.3 89.0 ± 0.9 80.2 ± 1.1 64.8 ± 1.0 59.5 ± 0.9 96.2 ± 0.6 91.0 ± 0.7 88.1 ± 0.7 76.5 ± 1.4 71.7 ± 2.0 97.8 ± 0.3 90.4 ± 1.3 83.2 ± 1.3 62.6 ± 2.5 56.8 ± 3.6

Flood and Echo Net - 2 MIS 99.0 ± 0.1 93.4 ± 0.2 87.3 ± 0.5 74.4 ± 0.6 69.5 ± 0.5 97.6 ± 0.3 93.8 ± 0.4 91.4 ± 0.4 80.6 ± 1.4 76.4 ± 1.5 98.7 ± 0.2 93.4 ± 0.4 88.2 ± 0.8 72.2 ± 1.0 66.0 ± 1.1

Flood and Echo Net - 4 MIS 99.5 ± 0.0 96.5 ± 0.2 92.8 ± 0.3 85.0 ± 1.1 81.1 ± 1.2 98.6 ± 0.2 96.5 ± 0.3 94.7 ± 0.5 84.9 ± 1.9 80.5 ± 2.3 99.3 ± 0.0 96.1 ± 0.4 92.1 ± 0.6 74.3 ± 1.3 65.4 ± 2.5

Flood and Echo Net - 8 MIS 99.6 ± 0.1 96.7 ± 0.3 93.1 ± 0.4 85.6 ± 1.0 81.6 ± 1.4 98.7 ± 0.2 96.5 ± 0.4 94.5 ± 0.6 83.8 ± 1.9 78.7 ± 2.5 99.3 ± 0.1 95.8 ± 0.6 90.7 ± 1.2 68.7 ± 4.9 59.6 ± 5.5

Flood and Echo Net - 16 MIS 99.5 ± 0.1 96.6 ± 0.4 93.0 ± 0.7 85.2 ± 1.3 81.1 ± 1.7 98.7 ± 0.2 96.6 ± 0.5 94.7 ± 0.9 84.4 ± 2.9 79.7 ± 3.9 99.4 ± 0.1 96.2 ± 0.6 91.5 ± 1.6 72.2 ± 6.4 63.5 ± 7.4

Table 17: Results for the FE Net on the Dijkstra task when the number of rounds is increased. We report
graph accuracy, SALSA-CLRS indicates that the number of phases matches the length of the algorithm
trajectory.
Model Task ER WS Delaunay

16 80 160 800 1600 16 80 160 800 1600 16 80 160 800 1600
Flood and Echo Net - SALSA-CLRS MIS 93.1 ± nan 15.5 ± nan 0.7 ± nan 0.0 ± nan 0.0 ± nan 78.8 ± nan 13.9 ± nan 0.6 ± nan 0.0 ± nan 0.0 ± nan 89.9 ± nan 9.8 ± nan 0.0 ± nan 0.0 ± nan 0.0 ± nan

Flood and Echo Net - 1 MIS 76.7 ± 2.7 1.0 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 56.8 ± 4.0 1.4 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 71.7 ± 2.7 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo Net - 2 MIS 86.3 ± 1.1 3.7 ± 0.5 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 68.5 ± 2.4 3.5 ± 0.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 81.7 ± 2.3 1.1 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo Net - 4 MIS 92.2 ± 0.6 12.7 ± 1.1 0.4 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 79.4 ± 2.6 11.5 ± 1.9 0.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 89.5 ± 0.2 6.6 ± 1.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo Net - 8 MIS 93.4 ± 1.0 14.1 ± 1.7 0.5 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 80.8 ± 2.4 11.2 ± 2.1 0.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 90.1 ± 1.5 5.8 ± 1.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo Net - 16 MIS 92.8 ± 1.4 15.2 ± 3.3 0.6 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 80.5 ± 3.2 13.2 ± 3.6 0.3 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 90.1 ± 1.1 8.0 ± 2.3 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0

task is to predict whether the PrefixSum from the marked node to the node in consideration is divisible by
2.

Distance Task (Grötschla et al., 2022) In this task every graph is a random graph of n nodes with a source
node being distinctly marked. The objective of this task is to predict for each node whether its distance to
the source node is divisible by 2.

Path Finding Task (Grötschla et al., 2022) In this task the dataset consists of random trees of n nodes
with two distinct vertices being marked separately. The objective of this task is to predict for each node
whether it belongs to the shortest path between the 2 marked nodes.

K.2 Expressive Datasets

Skip Circles (Chen et al., 2023) This dataset consists of CSL(Circular Skip Link) graphs denoted by Gn,k,
which is a graph of size n, numbered 0 to n − 1, where there exists an edge between node i and node j iff
|i − j| ≡ 1 or k (mod n). Gn,k and Gn′,k′ are only isomorphic when n = n′ and k ≡ ±k′ (mod n). Here,
the number of graphs in train, validation, and test are all 10. We can see an example of this construction in
Figure 11.

We follow the setup of Chen et al. (2023) where we fix n = 41 and set k ∈ {2, 3, 4, 5, 6, 9, 11, 12, 13, 16}. Each
Gn,k forms a separate isomorphism class, and the aim of the classification task is to classify the graph into
its isomorphism class by the skip cycle length. Since 1-WL is unable to classify these graphs, we can see in
table 3 that the GIN model cannot get an accuracy better than random guessing (10%).

27

Under review as submission to TMLR

1 1 0 1 0 1, 1 2, 0 2, 0 3, 1 3, 1

Figure 8: Example graph from the PrefixSum task. The left graph represents the input graph with a binary
value associated with each node and the blue node being the starting node. The right graph represents the
ground truth solution, each node contains two values the cumulative sum and the desired result which is the
cumulative sum modulo 2.

Figure 9: Example graph from the distance task. The green node in the left graph (input graph) represents
the source node, and the remaining nodes are unmarked. On the right graph (ground truth) all orange nodes
are at an odd distance away from the source while the blue nodes are at an even distance away from the
source.

Figure 10: Example graph from the pathfinding task. The left graph represents the input graph, where
the blue nodes are the marked nodes. The right is the corresponding solution, where the path between the
marked nodes is highlighted in green.

Figure 11: Example graphs from the Skip Circles dataset, namely Gn,5 and Gn,2 on the left and the right
respectively.

28

Under review as submission to TMLR

Figure 12: Counter-examples which MPNNs cannot distinguish from Garg et al. (2020), they cannot distin-
guish among the graphs in each example.

1 2 p p+1 p+2 2p

p+1 p+2 2p1 2 p

Figure 13: Example construction of Loukas (2020), where k=4.

Limits1 and Limits2 (Garg et al., 2020) This dataset consists of two graphs from Garg et al. (2020) that,
despite having different girth, circumference, diameter, and total number of cycles, cannot be distinguished
by 1-WL. For each example, the aim is to distinguish among the disjoint graphs on the left versus the larger
component on the right. The specific constructions can be seen in Figure 12.

4-Cycles (Loukas, 2020) This dataset introduced by Loukas (2020) originates from a construction by
Korhonen & Rybicki (2017) in which two players Alice and Bob each start with a complete bipartite graph
of p = √q nodes which are numbered from 1 to 2p and a hidden binary key with size being |p2|. The nodes
from each graph with the same numbers are connected together. Each player then uses their respective
binary keys to remove edges, each bipartite edge corresponding to a zero bit is removed and remaining edges
are substituted by a path of length k/2 − 1, we use k = 4. The task is to determine if the resulting graph
has a cycle of length k. In our implementation the number of train, validation and test graphs we consider
are all 25. For a depiction of the construction refer to Figure 13.

LLC (Sato et al., 2021) This dataset is comprised of random 3-regular graphs and the task is to determine
for each node its local clustering coefficient (Watts & Strogatz, 1998) which informally is the number of
triangles the vertex is part of. The training and test set are both comprised of a 1000 graphs. The graphs
in the train set have 20 nodes, while the graphs in the test set have a 100 nodes testing extrapolation. An
example graph from this dataset can be seen in Figure 14.

Triangles (Sato et al., 2021) This dataset akin to the previous contains random 3-regular graphs with the
same train/test split and graph sizes. The task here is to classify each node as being part of a triangle or
not. An example graph from this dataset can be seen in Figure 14.

29

Under review as submission to TMLR

210

0

0

1

1

1

1

2

Figure 14: The graphs represent an instance from LLC and Triangles dataset respectively. For the LLC
graph(left), each label denotes the ground truth for the graph while for the Triangles(right) graph, the blue
nodes are ones which are a part of a triangle, while the orange nodes are not part of any triangle.

30

	Introduction
	Related Work
	Flood and Echo Net
	Theoretical Analysis
	Message Complexity
	Expressiveness

	Generalization in Algorithmic Tasks
	Algorithmic Tasks
	SALSA - CLRS

	Conclusion
	Appendix
	Flood and Echo Net Definition
	Extended Related Work
	1-WL Expressive Experiments
	Information Propagation
	Proofs and Derivations
	Model Architecture and Training
	Runtime
	Runtime Complexity
	Measurements
	Standard Deviation of random Variation

	Extrapolation
	SALSA
	Datasets
	Algorithmic Datasets
	Expressive Datasets

