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Abstract

In this paper, we propose an approach to classify action
sequences. We observe that in action sequences the criti-
cal features for discriminating between actions occur only
within sub-regions of the image. Hence deep network ap-
proaches will address the entire image are at a disadvantage.
This motivates our strategy which uses static and spatio-
temporal visual cues to isolate static and spatio-temporal
regions of interest (ROIs). We then use weakly supervised
learning to train deep network classifiers using the ROIs
as input. More specifically, we combine multiple instance
learning (MIL) with convolutional neural networks (CNNs)
to select discriminative action cues. This yields classifiers
for static images, using the static ROIs, as well as classi-
fiers for short image sequences (16 frames), using spatio-
temporal ROIs. Extensive experiments performed on the
UCF101 and HMDB51 benchmarks show that both these
types of classifiers perform well individually and achieve
state of the art performance when combined together.

1 Introduction

Recognition of human actions in realistic videos is a chal-
lenging, due to its complex content, cluttered background,
and large intra-class variations. Humans appear to tackle
this challenge using two abilities: (i) The ability to rapidly
detect static and spatio-temporal regions of interest (ROIs),
instead of processing the entire image (e.g., bottom-up at-
tention). (ii) The ability to determine which ROIs are useful
for detecting specific actions and to extract the relevant vi-
sual cues for action discrimination. These ROIs contain the
key information about the action.

These considerations motivate us to propose a video
action recognition method that attends to regions of the
videos, instead of the entire video. The proposed method
consists of two models: the Static Model and the Motion
Model. Both models mine ROIs in the video to obtain
discriminative action cues: The Static Model takes image
frames as input and uses generic object proposal methods
(e.g. [17]) to propose static ROIs. The Motion Model
works on video clips (i.e. a short sequence of frames), and
mines spatio-temporal ROIs, which we call video tubes.
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Figure 1: The network architectures of the proposed Static
Model (a) and the Motion Model (b)

Mining the ROIs is challenging because we do not know
which ROIs are helpful for discriminating the actions. It
would be helpful if the ROIs were annotated by action class,
but this has only been done for humans (e.g. UCF101 [8],
J-HMDB [2]). This means we cannot use fully supervised
methods for mining the ROIs and must instead use weak su-
pervision. More specially, we use multiple instance learning
(MIL), where a video frame or a video clip is a “bag” and
the ROIs are its “instances”. We combine ML with deep
convolutional neural networks (CNNs) to mine deep fea-
tures from the ROIs. This enables both the Static and the
Motion Models to classify image frames and video clips re-
spectively. Our final system combines these classifiers.

2 Approach

In this section, we describe in details the Static Model
and the Motion Model. Both models have three compo-
nents: ROI proposal generation, computation of deep fea-
tures within ROIs, and training the deep network using MIL
(after encoding and aggregation of the ROI deep features).

The ROI proposal algorithms are low-level and class-
agnostic, since learning proposals would require annotated
ROIs. We use an ROI ranking mechanism, so that our mod-
els only need to process a few, top scored, ROIs. This
saves computation time and simplifies learning discrimina-
tive classifiers. Deep convolutional features are computed
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Figure 2: An example of our region proposals for Static
Model. The left is the original frame image, the middle is
the edge map, the right shows top 10 bounding box ROIs.
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Figure 3: Left: Motion box generation on a single frame.
Right: Two video tubes proposals on the first two and last
two frames of a 16-frame video clips. The red tubes local-
izes the diver and the yellow one finds the diving board.

for ROIs, which are then encoded and aggregated using
MIL.

2.1 Static Model
Fig. 1a shows the pipeline of the Static Model. Given an
image frame I from a video, the first step is generating a
set of candidate regions, which will be used as instances in
the MIL framework. We use video labels as bag labels and
the labels of instances (i.e. of the ROIs) are unknown and
treated as latent variables. The deep convolutional features
of the candidate regions are instance-level features. Next,
the MIL component of the Static Model encodes the in-
stance features, and learns the action classification model
using the video class label.
Spatial ROI Proposals. To obtain a list of K regions of
interest (ROIs) R(I) = {r1, . . . , rK} from frame I , we
use the formulation of Edge Boxes [17], which estimates
bounding boxes for objects based on the amount of con-
tours wholly within the box, together with an “objective-
ness” score. After obtaining ROIs from Edge Boxes, we
remove small boxes (i.e. those whose shorter side are less
than 50 pixels), and keep K boxes with highest “objective-
ness” scores. We also include the whole frame region in
case the full background context is needed. Fig. 2 illustrates
the process.
Deep Instance Features. For each ROI rk in R(I), we
compute the deep instance features f(rk, I;wf ) within it
using CNN whose parameters are denoted by wf . To com-
pute the features efficiently, we perform convolutions at the

frame level, and feed the convolutional feature map and
R(I) into the ROI Pooling layer [1]. This converts the fea-
tures inside rk into a feature map with a fixed spatial extent
of H×W (e.g. 7× 7 in our experiments).
Multiple Instance Learning. The instance features of the
regions in R(I) are then passed to the MIL component
shown in Fig. 1a, which has three steps: First, the instance
features are encoded, sk = e(f(rk, I;wf );we), where e
represents the encoding which is a composition of three
fully connected layers (i.e. FC6, FC7 and FC8) with
parameters we. Second, the encoded features {sk}Kk=1 are
mapped to one bag-level feature by the aggregation func-
tion h = g(s1, . . . , sk;wg), where wg is the parameters of
the aggregation function g(·). Finaly, the bag feature h is
transformed into the action scores of C classes pc through
the softmax function. The loss is the cross-entropy classifi-
cation loss i.e. − log (pĉ) where ĉ is the ground truth class
label of I .

2.2 Motion Model.

Fig. 1b shows the pipeline of our Motion Model, which
is composed of low-level local motion proposals to obtain
spatio-temporal ROIs (video tubes for short) followed by
the multiple instance learning of action classification. The
objective of the local motion proposal step is to generate
a set of spatio-temporal ROIs of videos, which may con-
tain cues for actions. Besides human motions, we also con-
sider the movements of objects and even some backgrounds.
These types of background movement are often very useful
to help identify actions (e.g. the motion of a road as a biker
cycles down it).
Video Tubes. Given a video clip of L frames V =
(I1, . . . , IL), the goal of this step is to propose a set of K
spatio-temporal ROIs, or video tubes T = {t1, . . . , tK},
where each tube tk = (r1k, . . . , r

L
k ) is a temporal series of

2D bounding boxes that localize motions. We call these 2D
bounding boxes “motion boxes”. Our algorithm build up a
video tube from a single image frame, by generating mo-
tion boxes on individual image frames and then linking the
boxes across frames to form video tubes.

The left part of Fig. 3 illustrates motion box generation
on a single frame I . Unlike the object boxes in the Static
Model, motion boxes are intended to capture moving parts
in the video. We apply Edge Boxes again, but use the mo-
tion boundaries [14] detected based on two consecutive im-
age frames as edge map. In this case, the objectiveness
score estimated by Edge Boxes actually reflects the amount
of motion contours within in a motion box b, which we call
the “motionness” score m(b).

Once we have motion boxes on individual frames, we
produce a set of video tubes by linking boxes across frames.
A good video tube proposal tk should have high motionness
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score, i.e. m(tk) =
∑L

l=1m(rlk) is large, and should sat-
isfy, along the tube, spatio-temporal smoothness constraint,
i.e. IOU(rlk, r

l+1
k ) ≥ σo and appearance consistency con-

straint, i.e. ‖ A(rlk) − A(rl+1
k ) ‖2≤ σa. σo and σa are

thresholds and A(·) compute the color histogram within a
box. In this paper, we use σo = 0.5, σa = 0.2 and divide
R, G and B channels into 16 bins when computing color
histogram.

Now for each motion box bLi in the last frame IL of
V , we compute the best tube ending at bLi , using dynamic
programming, f(bli) = maxbl−1

j ∈Il−1 f(b
l−1
j ) + m(bli) +

d(bli, b
l−1
j ), where d(bli, b

l−1
j ) is −∞ if bli and bl−1i do not

satisfy the constraints aforementioned, and is equal to 0 oth-
erwise. Then we can back-trace from every bLi ∈ M(IL)
to recover a video tube. This yields a large amount of
tubes. Finally, we apply non-maximum suppress to prune
out highly overlapping video tubes, according to their mo-
tionness scores.

For each remaining video tube, say tk, we
first crop from l-th frame a square patch plk
with its center at the center of rlk and size a =
max

(
median(h(r1k), . . . , h(r

l
k)),median(w(r1k), . . . , w(r

l
k)
)
,

where h(·) and w(·) returns the height and the width of a
bounding box respectively. We then update tk by replacing
rlk with plk and obtain the final video tube tk. The right part
of Fig. 3 shows two example video tubes.
Deep Instance Features We choose the 3D convolutional
network (C3D) in [9] for computing the deep features of a
video clip, due to its good performance and the convenience
of joint end-to-end training. In C3D, traditional 2D convo-
lution and 2D pooling operations are replaced with the 3D
version, i.e. with an additional temporal dimension, to pre-
vent the temporal information from being collapsed. We
use the output of the last convolution layer as the instance
feature.

3 Experiments
In this section, we first introduce the details of our experi-
mental settings. Then we provide quantitative and qualita-
tive results.

3.1 Datasets
The evaluation is performed on UCF101 [8] and
HMDB51 [3] benchmarks. UCF101 contains 13, 320
videos of 101 action classes; HMDB51 includes 6, 766
videos of 51 actions. Both datasets provide three official
splits into training and test data. The performance is mea-
sure by the average classification accuracy across the splits.

For comparison with the state of the art, we follow
the standard evaluation protocol on both UCF101 and

HMDB51.

3.2 Diagnostic Experiments
We have conducted a series of diagnostic experiments on
the aggregation functions and the number of ROI, using the
first split of UCF101 dataset (UCF split1). For the Static
Model, max function and 20 ROIs per frame together yields
the best performance (81.0%), which we denote by S-max-
ROI(20). For the Motion model, max and 10 ROIs per video
clip, i.e. M-max-ROI(10), is the best combination (84.4%)
among those we tried. We will use these configurations for
the following experiments.

3.3 Comparison with The State of The Art
Table 1 shows comparison between our models and the
Two-Stream models on UCF101 and HMDB51. [11] used
VGG-16 network to boost the performance of the original
Two-Stream model [7]. Note that [11] did not report exper-
iments on HMDB51. We fine-tune the Two-Stream model
pre-trained on UCF101, and denote this model as “Two-
Stream by us”. Our Static Model outperforms the spatial net
(i.e. the network operating on individual frames) of [11] in
the static stream. In the motion stream, our Motion Model
performs worse than the temporal net on UCF101. We ar-
gue that the temporal net uses 5 more convolution layers
than us, we expect the Motion Model to get better results
when fine-tuning from a deeper CNN. While on HMDB51,
our Motion Model is better than the temporal net. The rea-
son maybe HMDB51 has less training data; By attending to
ROIs, our model suffers less from over fitting problem.

Table 2 presents action recognition accuracy of our
method compared with current best methods. On UCF101,
our method (Static Model + Motion Model) does not per-
form as well as [13, 11, 15]. However, when fused with
the Two-Stream model [11], our method got a 2.3% perfor-
mance gain and achieve the best performance. This shows
that our models and the Two-Stream model are complemen-
tary to each other. On HMDB51, our method got the state
of the art result on its own, and when combined with the
Two-Stream model, the accuracy further increases 2.2%.

In Fig. 4 and Fig. 5, we visualize the top two scored spa-
tial ROIs by S-ROI(20)-max and the top-two scored spatio-
temporal ROIs by M-ROI(10)-max, from which we can see
that our models are able to find action-related local regions.

4 Conclusion and Future Work
In this work, we introduce a novel deep action recognition
method with ROIs. By exploiting video benchmarks, we
find that critical representations occur with in sub-regions
of videos. Based on this observation, we extract static and
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Table 1: Comparison to the Two-Stream model [11]. on
UCF101 (left) and the Two-Stream model fine-tuned by us
(“Two-Stream by us”) on HMDB51 (right).

Two-Stream [11] Ours Two-Stream by us Ours
split 1 79.8% 81.0% 54.3% 57.0%
split 2 77.3% 78.4% 50.3% 52.6%
split 3 77.8% 78.8% 50.1% 52.6%

Static

average 78.4% 79.4% 51.6% 53.9%
split 1 85.7% 84.4% 65.6% 66.8%
split 2 88.2% 87.7% 62.4% 64.3%
split 3 87.4% 86.5% 62.0% 64.0%

Motion

average 87.0% 86.2% 63.3% 65.0%
split 1 90.9% 89.8% 70.1% 72.0%
split 2 91.6% 91.3% 67.2% 68.2%
split 3 91.6% 90.3% 66.8% 68.4%

Fusion

average 91.4% 90.5% 68.0% 69.5%

Table 2: Comparison with the state of the art results.

HMDB51 UCF101
IDT+FV [10] 57.2% IDT+FV [10] 85.9%
Two-Stream [7] 59.4% Hybrid [5] 87.9%
H-VLAD [4] 59.8% Two-Stream [7] 88.0%
Hybrid [5] 61.1% LSTM+Two-Stream [16] 88.6%
TDD+FV [12] 63.2% C3D+iDT+SVM [9] 90.4%
Two Stream Siamese [13] 63.4% Hybrid LSTM [15] 91.3%
SFV [6] 66.8% Two Stream [11] 91.4%
Two-Stream by us 68.4% Two-Stream Siamese [13] 92.4%
Ours 69.5% Ours 90.5%
Ours+Two-Stream by us 71.7% Ours+Two-Stream [11] 92.8%

spatio-temporal regions of interest (ROI) to enhance the
performance of deep network. Features from different in-
stances are naturally integrated into our MIL framework
to adaptively select the most discriminative ROIs to en-
able end-to-end learning. Extensive experiments on UCF
101 and HMDB51 benchmarks demonstrate that our algo-
rithm not only outperform existing methods quantitatively,
but also capture the most relevant part qualitatively.
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Figure 4: Visualization of the top two regions selected by
S-ROI(20)-max. Each row corresponds to a video from the
test partition of UCF101 split1. Red box corresponds to
the top score one, and the yellow is the second best one.
For each video we display five frames with equal temporal
intervals.
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Figure 5: Visualization of the top two scored regions se-
lected by M-ROI(10)-max. For each video clip we display
first three and last two frames and omit the between. The red
boxes correspond to the video tube with best action score,
and the yellow is the one with second best score.
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