
CORL: Research-oriented Deep Offline Reinforcement
Learning Library

Denis Tarasov
Tinkoff

den.tarasov@tinkoff.ai

Alexander Nikulin
Tinkoff

a.p.nikulin@tinkoff.ai

Dmitry Akimov
Tinkoff

d.akimov@tinkoff.ai

Vladislav Kurenkov
Tinkoff

v.kurenkov@tinkoff.ai

Sergey Kolesnikov
Tinkoff

s.s.kolesnikov@tinkoff.ai

Abstract

CORL1 is an open-source library that provides single-file implementations of Deep
Offline Reinforcement Learning algorithms. It emphasizes a simple developing
experience with a straightforward codebase and a modern analysis tracking tool.
In CORL, we isolate methods implementation into distinct single files, making
performance-relevant details easier to recognise. Additionally, an experiment track-
ing feature is available to help log metrics, hyperparameters, dependencies, and
more to the cloud. Finally, we have ensured the reliability of the implementations
by benchmarking a commonly employed D4RL benchmark.

1 Introduction

Deep Offline Reinforcement Learning (Deep ORL) [24] has been showing significant advancements
in numerous domains such as robotics [30, 21], autonomous driving [6] and recommender systems [4].
Due to such rapid development, many open-source ORL solutions2 emerged to help RL practitioners
understand and improve well-known ORL techniques in different fields. On the one hand, they
introduce ORL algorithms standard interfaces and user-friendly APIs, simplifying ORL methods
incorporation into existing projects. On the other hand, introduced abstractions may hinder the
learning curve for newcomers and the ease of adoption for researchers interested in developing new
algorithms. One needs to understand the modularity design (several files on average), which (1) can
be comprised of thousands of lines of code or (2) can hardly fit for a novel method3.

In this technical report, we take a different perspective on an ORL library. We propose CORL
(Clean Offline Reinforcement Learning) – minimalistic and isolated single-file implementations
of deep ORL algorithms, that are backed up by open-sourced D4RL benchmark results. The
unadorned design allows practitioners to read and understand the implementations of the algorithms
straightforwardly. Moreover, CORL supports optional integration with experiments tracking tool
such as Weighs&Biases4. This provides practitioners with a convenient way to analyze the results and
behavior of all algorithms, not merely relying on a final performance commonly reported in papers.

We hope that CORL library will help ORL newcomers to study implemented algorithms and aid the
researchers in quickly modifying existing methods without a need to fight through different levels of

1CORL Repository: https://github.com/tinkoff-ai/CORL
2https://github.com/hanjuku-kaso/awesome-offline-rl#oss
3https://github.com/takuseno/d3rlpy/issues/141
4wandb.ai/

3rd Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022.

https://github.com/tinkoff-ai/CORL
https://github.com/hanjuku-kaso/awesome-offline-rl##oss
https://github.com/takuseno/d3rlpy/issues/141


abstraction. Finally, the obtained results may serve as a point of reference for D4RL benchmarks
without a need to re-implement existing algorithms and tune hyperparameters.

YaPO CRQȴgXUaWiRQ FiOe SiQgOe- FiOe ΖPSOePeQWaWiRQ E[SeUiPeQW TUackiQg LRg

eQYiURQPeQW SaUaPV
aOgRUiWhP SaUaPV

AWAC / BC / CQL / DT
EDAC / ΖQL / SAC- N / TD3+BC

S\WhRQ dW.S\ -- cRQȴg=cfg/dW- hRSSeU.\aPO -- ORgdiU=ORgV/dW- hRSSeU -- QXP- eSRchV=50

WaQdb ORgV
WaQdb UeSRUWV

Figure 1: The illustration of the CORL library design. Single-file implementation takes a yaml
configuration file with both environment and algorithm parameters to run the experiment, which logs

all required statistics to wandb.

2 Related Work

Since the Atari breakthrough [28], numerous open-source RL frameworks and libraries have been
developed over the last years: [5, 15, 2, 13, 17, 12, 7, 19, 11, 25, 11, 26, 16, 33, 31], focusing
on different perspectives of the RL. For example, stable-baselines ([15]) provides many deep RL
implementations that carefully reproduce results to back up RL practitioners with reliable baselines
during methods comparison. On the other hand, Ray ([25]) is focusing on implementations scalability
and production-friendly usage. Finally, more nuanced solutions exist, such as Dopamine ([2]), which
emphasizes different DQN variants, or ReAgent ([13]), which applies RL for the RecSys domain.

At the same time, the ORL branch, which we are interested in this paper, is not yet covered as much:
the only library that precisely focus on offline RL setting is d3rlpy [32]. While CORL do also focus
on ORL methods, similar to d3rlpy, it takes a different perspective on library design and provides
non-modular independent algorithms implementations. More precisely, CORL does not introduce
additional abstractions to make ORL more general but instead gives an "easy-to-hack" starter kit for
research needs.

Although CORL does not represent a first non-modular RL library, which is more likely the CleanRL
[16] case, it has two significant differences with its predecessor. First, CORL is focused on offline RL,
while CleanRL implements online RL algorithms. Second, CORL intent to minimize the complexity
of the requirements and external dependencies. To be more concrete, CORL does not have additional
requirements with useful abstractions such as stable-baselines or envpool but instead implements
everything from scratch in the codebase.

2



Table 1: Normalized performance of the last trained policy on D4RL averaged over 4 random seeds.
Task Name BC BC-10% TD3+BC CQL IQL AWAC SAC-N EDAC DT

halfcheetah-medium-v2 42.40±0.21 42.46±0.81 48.10±0.21 47.08±0.19 48.31±0.11 50.01±0.30 68.20±1.48 67.70±1.20 42.20±0.30
halfcheetah-medium-expert-v2 55.95±8.49 90.10±2.83 90.78±6.98 95.98±0.83 94.55±0.21 95.29±0.91 98.96±10.74 104.76±0.74 91.55±1.10
halfcheetah-medium-replay-v2 35.66±2.68 23.59±8.02 44.84±0.68 45.19±0.58 43.53±0.43 44.91±1.30 60.70±1.17 62.06±1.27 38.91±0.57

hopper-medium-v2 53.51±2.03 55.48±8.43 60.37±4.03 64.98±6.12 62.75±6.02 63.69±4.29 40.82±11.44 101.70±0.32 65.10±1.86
hopper-medium-expert-v2 52.30±4.63 111.16±1.19 101.17±10.48 93.89±14.34 106.24±6.09 105.29±7.19 101.31±13.43 105.19±11.64 110.44±0.39
hopper-medium-replay-v2 29.81±2.39 70.42±9.99 64.42±24.84 87.67±14.42 84.57±13.49 98.15±2.85 100.33±0.90 99.66±0.94 81.77±7.93

walker2d-medium-v2 63.23±18.76 67.34±5.97 82.71±5.51 80.38±3.45 84.03±5.42 69.39±31.97 87.47±0.76 93.36±1.60 67.63±2.93
walker2d-medium-expert-v2 98.96±18.45 108.70±0.29 110.03±0.41 109.68±0.52 111.68±0.56 111.16±2.41 114.93±0.48 114.75±0.86 107.11±1.11
walker2d-medium-replay-v2 21.80±11.72 54.35±7.32 85.62±4.63 79.24±4.97 82.55±8.00 71.73±13.98 78.99±0.58 87.10±3.21 59.86±3.15

locomotion avg 50.40 69.29 76.45 78.23 79.80 78.85 83.52 92.92 73.84

maze2d-umaze-v1 0.36±10.03 12.18±4.95 29.41±14.22 -14.83±0.47 37.69±1.99 68.30±25.72 130.59±19.08 95.26±7.37 18.08±29.35
maze2d-medium-v1 0.79±3.76 14.25±2.69 59.45±41.86 86.62±11.11 35.45±0.98 82.66±46.71 88.61±21.62 57.04±3.98 31.71±30.40
maze2d-large-v1 2.26±5.07 11.32±5.88 97.10±29.34 33.22±43.66 49.64±22.02 218.87±3.96 204.76±1.37 95.60±26.46 35.66±32.56

maze2d avg 1.13 12.58 61.99 35.00 40.92 123.28 141.32 82.64 28.48

antmaze-umaze-v0 51.50±8.81 67.75±6.40 93.25±1.50 72.75±5.32 74.50±11.03 63.50±9.33 0.00±0.00 29.25±33.35 51.75±11.76
antmaze-medium-play-v0 0.00±0.00 2.50±1.91 0.00±0.00 0.00±0.00 71.50±12.56 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
antmaze-large-play-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 40.75±12.69 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

antmaze avg 17.17 23.42 31.08 24.25 62.25 21.17 0.00 9.75 17.25

total avg 33.90 48.77 64.48 58.79 68.52 76.20 78.38 74.23 53.45

3 CORL Design

Single-File Implementations

It is known that implementation subtleties significantly impact agent performance in deep RL
[14, 8, 10]. Unfortunately, user-friendly abstractions and general interfaces, the core idea behind
modular libraries, encapsulate and often hide these important nuances from the practitioners. For
such a reason, CORL unwraps these details by adopting single-file implementations. To be more
concrete, we put environment details, algorithms hyperparameters, and evaluation parameters into a
single file 5. For example, we have a

• any_percent_bc.py (399 LOC6) as a baseline algorithm for ORL methods comparison,

• td3_bc.py (507 LOC) as a competitive minimalistic ORL algorithm [10],

• dt.py (542 LOC) as an example of the recently proposed trajectory optimization approach
[3]

Figure 1 depicts an overall library design. While such design produces code duplications among
implementations, it has several essential benefits from the both educational and research perspective:

• Smooth learning curve. Having the entire code in one place makes understanding all its
aspects more straightforward. In other words, one may find it easier to dive into 512 LOC
of single-file Decision Transformer implementation rather than 10+ files of the original
implementation.

• Simple prototyping. As we are not interested in code general applicability, we could make
it implementation-specific. Such a design also removes the need for inheritance from general
primitives or their refactoring, reducing abstraction overhead to zero. At the same time, this
idea gives us complete freedom during code modification.

• Faster debugging. Without additional abstractions, implementation simplifies to a single
for-loop with a global python name scope. Furthermore, such flat architecture makes it
easier to access and inspect any created variable during the training process, which is crucial
during modification and debugging.

Configuration files

Although it is a typical pattern to use a command line interface (CLI) for single-file experiments in the
research community, CORL slightly improves it with predefined configuration files. Utilizing YAML
parsing through CLI, for each experiment, we gather all environment and algorithm hyperparameters

5We follow the PEP8 style guide with a maximum line length of 89, which increases LOC a bit.
6Lines Of Code

3



Table 2: Normalized performance of the best trained policy on D4RL averaged over 4 random seeds.
Task Name BC BC-10% TD3+BC CQL IQL AWAC SAC-N EDAC DT

halfcheetah-medium-v2 43.60±0.16 43.90±0.15 48.93±0.13 47.45±0.10 48.77±0.06 50.87±0.21 72.21±0.35 69.72±1.06 42.73±0.11
halfcheetah-medium-expert-v2 79.69±3.58 94.11±0.25 96.59±1.01 96.74±0.14 95.83±0.38 96.87±0.31 111.73±0.55 110.62±1.20 93.40±0.25
halfcheetah-medium-replay-v2 40.52±0.22 42.27±0.53 45.84±0.30 46.38±0.14 45.06±0.16 46.57±0.27 67.29±0.39 66.55±1.21 40.31±0.32

hopper-medium-v2 69.04±3.35 73.84±0.43 70.44±1.37 77.47±6.00 80.74±1.27 99.40±1.12 101.79±0.23 103.26±0.16 69.42±4.21
hopper-medium-expert-v2 90.63±12.68 113.13±0.19 113.22±0.50 112.74±0.07 111.79±0.47 113.37±0.63 111.24±0.17 111.80±0.13 111.18±0.24
hopper-medium-replay-v2 68.88±11.93 90.57±2.38 98.12±1.34 102.20±0.38 102.33±0.44 101.76±0.43 103.83±0.61 103.28±0.57 88.74±3.49

walker2d-medium-v2 80.64±1.06 82.05±1.08 86.91±0.32 84.57±0.15 87.99±0.83 86.22±4.58 90.17±0.63 95.78±1.23 74.70±0.64
walker2d-medium-expert-v2 109.95±0.72 109.90±0.10 112.21±0.07 111.63±0.20 113.19±0.33 113.40±2.57 116.93±0.49 116.52±0.86 108.71±0.39
walker2d-medium-replay-v2 48.41±8.78 76.09±0.47 91.17±0.83 89.34±0.59 91.85±2.26 87.06±0.93 85.18±1.89 89.69±1.60 68.22±1.39

locomotion avg 70.15 80.65 84.83 85.39 86.40 88.39 95.60 96.36 77.49

maze2d-umaze-v1 16.09±1.00 22.49±1.75 99.33±18.66 84.92±34.40 44.04±3.02 141.92±12.88 153.12±7.50 149.88±2.27 63.83±20.04
maze2d-medium-v1 19.16±1.44 27.64±2.16 150.93±4.50 137.52±9.83 92.25±40.74 160.95±11.64 93.80±16.93 154.41±1.82 68.14±14.15
maze2d-large-v1 20.75±7.69 41.83±4.20 197.64±6.07 153.29±12.86 138.70±44.70 228.00±2.06 207.51±1.11 182.52±3.10 50.25±22.33

maze2d avg 18.67 30.65 149.30 125.25 91.66 176.96 151.48 162.27 60.74

antmaze-umaze-v0 71.25±9.07 79.50±2.38 97.75±1.50 85.00±3.56 87.00±2.94 74.75±8.77 0.00±0.00 75.00±27.51 60.50±3.11
antmaze-medium-play-v0 4.75±2.22 8.50±3.51 6.00±2.00 3.00±0.82 86.00±2.16 14.00±11.80 0.00±0.00 0.00±0.00 0.25±0.50
antmaze-large-play-v0 0.75±0.50 11.75±2.22 0.50±0.58 0.50±0.58 53.00±6.83 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

antmaze avg 25.58 33.25 34.75 29.50 75.33 29.58 0.00 25.00 20.25

total avg 50.94 61.17 87.71 82.18 85.24 94.34 87.65 95.27 62.69

into such files so that you could use them as an initial setup. We found that such setup (1) simplifies
experiments, eliminating the need to keep all algorithm-environment-specific parameters in mind,
and (2) keeps it convenient with the familiar CLI approach.

Experiment Tracking

ORL evaluation is another challenging aspect of the current ORL state [23]. To face this uncertainty,
CORL supports integration with Wandb, a modern experiment tracking tool. With each experiment,
CORL automatically saves: (1) source code, (2) dependencies (requirements.txt), (3) hardware setup,
(4) OS environment variables, (5) hyperparameters, (6) training and system metrics, (7) logs (stdout,
stderr). See Appendix B for an example.

Although, Wandb is a proprietary solution, other alternatives such as Tensorboard or Aim could be
used within a few lines of code change. It is also important to note that with Wandb tracking, one
could straightforwardly use CORL with Wandb hyperparameter tuning or public reports.

We found full metrics tracking during the training process necessary for two reasons. First, it removes
the possible bias of final or best performance commonly reported in papers. For example, one could
evaluate ORL performance as max archived score, while another uses the average performance over
N (last) evaluations [32]. Second, it opens an opportunity for advanced performance analysis such as
EOP [23]. In short, provided with all metrics logs, one can utilize any performance statistics, not
merely relying on commonly used alternatives.

4 Benchmarks

In our library we implemented the following algorithms: N%7 Behavioral Cloning (BC), TD3 +
BC [10], CQL [22], IQL [20], AWAC [29], SAC-N, EDAC [1], and Decision Transformer (DT) [3].
We evaluated every algorithm on the D4RL benchmark [9], focusing on Locomotion, Maze2D, and
AntMaze tasks. Each algorithm was run for 1 million gradient steps8 and evaluated every 5000 8

steps using 10 and 100 episodes for locomotion and maze tasks, respectively. For our experiments,
we used hyperparameters proposed in the original works (see Appendix C for details).

The final performance results are reported in Tables 1 and 2. The scores are normalized to the range
between 0 and 100 [9]. Following recent works [32] we report both last (Table 1) and best (Table 2)
obtained scores to illustrate potential performance and overfitting properties of each algorithm. See
Appendix A for full training performance graphs.

According to the observed results, AWAC, SAC-N, and EDAC show the most competitive performance
in both the last and best evaluation settings. At the same time, TD3 + BC performs well across all

7N is a percentage of best trajectories with the highest return used for training. We omit percentage when it
is equal to 100.

8Except SAC-N , EDAC and DT due to their original hyperparameters. See Appendix C for details.

4



tasks without any hyperparameters tuning while other methods rely on it. Finally, simple yet effective
BC-10% performs well on locomotion tasks when high-quality data is available and converges there
almost instantly (see Appendix A).

5 Conclusion

In this paper, we introduced CORL – a single-file implementation library for Offline Reinforcement
Learning with configuration files and advanced metrics tracking support. All implemented algorithms
were benchmarked on D4RL datasets, closely matching (sometimes overperforming) the original
results. Focusing on implementation clarity and reproducibility, we hope that CORL will help RL
practitioners in their research and applications.

5



References
[1] Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline

reinforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

[2] Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Belle-
mare. Dopamine: A Research Framework for Deep Reinforcement Learning. 2018.

[3] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems, 34:15084–15097,
2021.

[4] Minmin Chen, Can Xu, Vince Gatto, Devanshu Jain, Aviral Kumar, and Ed H. Chi. Off-
policy actor-critic for recommender systems. Proceedings of the 16th ACM Conference on
Recommender Systems, 2022.

[5] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines.
https://github.com/openai/baselines, 2017.

[6] Christopher P. Diehl, Timo Sievernich, Martin Krüger, Frank Hoffmann, and Torsten Bertram.
Umbrella: Uncertainty-aware model-based offline reinforcement learning leveraging planning.
ArXiv, abs/2111.11097, 2021.

[7] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking
deep reinforcement learning for continuous control. In Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48, ICML’16, page
1329–1338. JMLR.org, 2016.

[8] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos,
L. Rudolph, and Aleksander Madry. Implementation matters in deep rl: A case study on
ppo and trpo. In ICLR, 2020.

[9] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[10] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

[11] Yasuhiro Fujita, Prabhat Nagarajan, Toshiki Kataoka, and Takahiro Ishikawa. Chainerrl: A deep
reinforcement learning library. Journal of Machine Learning Research, 22(77):1–14, 2021.

[12] The garage contributors. Garage: A toolkit for reproducible reinforcement learning research.
https://github.com/rlworkgroup/garage, 2019.

[13] Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Zhengxing Chen, Yuchen He,
Zachary Kaden, Vivek Narayanan, and Xiaohui Ye. Horizon: Facebook’s open source applied
reinforcement learning platform. arXiv preprint arXiv:1811.00260, 2018.

[14] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence
Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence,
AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018.

[15] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene
Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https:
//github.com/hill-a/stable-baselines, 2018.

[16] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, and Jeff Braga. Cleanrl: High-
quality single-file implementations of deep reinforcement learning algorithms. 2021.

6

https://github.com/openai/baselines
https://github.com/rlworkgroup/garage
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines


[17] Wah Loon Keng and Laura Graesser. Slm lab. https://github.com/kengz/SLM-Lab, 2017.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[19] Sergey Kolesnikov and Oleksii Hrinchuk. Catalyst.rl: A distributed framework for reproducible
rl research, 2019.

[20] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

[21] Aviral Kumar, Anikait Singh, Stephen Tian, Chelsea Finn, and Sergey Levine. A workflow for
offline model-free robotic reinforcement learning. In 5th Annual Conference on Robot Learning,
2021.

[22] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–
1191, 2020.

[23] Vladislav Kurenkov and Sergey Kolesnikov. Showing your offline reinforcement learning
work: Online evaluation budget matters. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pages 11729–11752. PMLR, 17–23 Jul 2022.

[24] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[25] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph E.
Gonzalez, Michael I. Jordan, and Ion Stoica. RLlib: Abstractions for distributed reinforcement
learning. In International Conference on Machine Learning (ICML), 2018.

[26] Xiao-Yang Liu, Zechu Li, Zhaoran Wang, and Jiahao Zheng. ElegantRL: Massively par-
allel framework for cloud-native deep reinforcement learning. https://github.com/
AI4Finance-Foundation/ElegantRL, 2021.

[27] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[28] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, February 2015.

[29] Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[30] Laura Smith, Ilya Kostrikov, and Sergey Levine. A Walk in the Park: Learning to Walk in 20
Minutes With Model-Free Reinforcement Learning, August 2022.

[31] Adam Stooke and Pieter Abbeel. rlpyt: A research code base for deep reinforcement learning in
pytorch, 2019.

[32] Michita Imai Takuma Seno. d3rlpy: An offline deep reinforcement library. In NeurIPS 2021
Offline Reinforcement Learning Workshop, December 2021.

[33] Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su,
Hang Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library.
arXiv preprint arXiv:2107.14171, 2021.

7

https://github.com/kengz/SLM-Lab
https://github.com/AI4Finance-Foundation/ElegantRL
https://github.com/AI4Finance-Foundation/ElegantRL


A Additional Benchmark Information

ha
lfch

ee
tah

-m

ha
lfch

ee
tah

-m
-e

ha
lfch

ee
tah

-m
-re

ho
pp

er-
m

ho
pp

er-
m-e

ho
pp

er-
m-re

walk
er2

d-m

walk
er2

d-m
-e

walk
er2

d-m
-re

Dataset

0

20

40

60

80

100

120
No

rm
al

ize
d 

Sc
or

e
BC
BC 10%
TD3 + BC
CQL
IQL
AWAC
SAC-N
EDAC
DT

(a)

maze
2d

-u

maze
2d

-m

maze
2d

-l

Dataset

0

50

100

150

200

No
rm

al
ize

d 
Sc

or
e

BC
BC 10%
TD3 + BC
CQL
IQL
AWAC
SAC-N
EDAC
DT

(b)

an
tm

aze
-u

an
tm

aze
-m

-p

an
tm

aze
-l-p

Dataset

0

20

40

60

80

No
rm

al
ize

d 
Sc

or
e

BC
BC 10%
TD3 + BC
CQL
IQL
AWAC
SAC-N
EDAC
DT

(c)

Figure 2: Graphical representation of the normalized performance of the last trained policy on D4RL
averaged over 4 random seeds. (a) Locomotion datasets. (b) Maze2d datasets (c) AntMaze datasets

8



ha
lfch

ee
tah

-m

ha
lfch

ee
tah

-m
-e

ha
lfch

ee
tah

-m
-re

ho
pp

er-
m

ho
pp

er-
m-e

ho
pp

er-
m-re

walk
er2

d-m

walk
er2

d-m
-e

walk
er2

d-m
-re

Dataset

0

20

40

60

80

100

120

No
rm

al
ize

d 
Sc

or
e

BC
BC 10%
TD3 + BC
CQL
IQL
AWAC
SAC-N
EDAC
DT

(a)

maze
2d

-u

maze
2d

-m

maze
2d

-l

Dataset

0

50

100

150

200

No
rm

al
ize

d 
Sc

or
e

BC
BC 10%
TD3 + BC
CQL
IQL
AWAC
SAC-N
EDAC
DT

(b)

an
tm

aze
-u

an
tm

aze
-m

-p

an
tm

aze
-l-p

Dataset

0

20

40

60

80

100
No

rm
al

ize
d 

Sc
or

e
BC
BC 10%
TD3 + BC
CQL
IQL
AWAC
SAC-N
EDAC
DT

(c)

Figure 3: Graphical representation of the normalized performance of the best trained policy on D4RL
averaged over 4 random seeds. (a) Locomotion datasets. (b) Maze2d datasets (c) AntMaze datasets

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total steps

0

10

20

30

40

50

60

70

No
rm

al
ize

d 
sc

or
e

halfcheetah-medium-v2

AWAC
BC 10%
BC
CQL
DT
EDAC
IQL
SAC-N
TD3 + BC

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total steps

0

20

40

60

80

100

No
rm

al
ize

d 
sc

or
e

halfcheetah-medium-expert-v2

AWAC
BC 10%
BC
CQL
DT
EDAC
IQL
SAC-N
TD3 + BC

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total steps

0

10

20

30

40

50

60

No
rm

al
ize

d 
sc

or
e

halfcheetah-medium-replay-v2

AWAC
BC 10%
BC
CQL
DT
EDAC
IQL
SAC-N
TD3 + BC

(c)

Figure 4: Training curves for HalfCheetah task.
(a) Medium dataset, (b) Medium-expert dataset, (c) Medium-replay dataset

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total steps

0

20

40

60

80

100

No
rm

al
ize

d 
sc

or
e

hopper-medium-v2

AWAC
BC 10%
BC
CQL
DT
EDAC
IQL
SAC-N
TD3 + BC

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total steps

0

20

40

60

80

100

No
rm

al
ize

d 
sc

or
e

hopper-medium-expert-v2

AWAC
BC 10%
BC
CQL
DT
EDAC
IQL
SAC-N
TD3 + BC

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total steps

0

20

40

60

80

100

No
rm

al
ize

d 
sc

or
e

hopper-medium-replay-v2

AWAC
BC 10%
BC
CQL
DT
EDAC
IQL
SAC-N
TD3 + BC

(c)

Figure 5: Training curves for Hopper task.
(a) Medium dataset, (b) Medium-expert dataset, (c) Medium-replay dataset

9



0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total steps

0

20

40

60

80

No
rm

al
ize

d 
sc

or
e

walker2d-medium-v2

AWAC
BC 10%
BC
CQL
DT
EDAC
IQL
SAC-N
TD3 + BC

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total steps

0

20

40

60

80

100

No
rm

al
ize

d 
sc

or
e

walker2d-medium-expert-v2

AWAC
BC 10%
BC
CQL
DT
EDAC
IQL
SAC-N
TD3 + BC

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total steps

0

20

40

60

80

No
rm

al
ize

d 
sc

or
e

walker2d-medium-replay-v2

AWAC
BC 10%
BC
CQL
DT
EDAC
IQL
SAC-N
TD3 + BC

(c)

Figure 6: Training curves for Walker2d task.
(a) Medium dataset, (b) Medium-expert dataset, (c) Medium-replay dataset

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total steps

0

20

40

60

80

100

120

140

No
rm

al
ize

d 
sc

or
e

maze2d-umaze-v1

AWAC
BC 10%
BC
CQL
DT
EDAC
IQL
SAC-N
TD3 + BC

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total steps

0

20

40

60

80

100

120

140

No
rm

al
ize

d 
sc

or
e

maze2d-medium-v1
AWAC
BC 10%
BC
CQL
DT
EDAC
IQL
SAC-N
TD3 + BC

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total steps

0

50

100

150

200

No
rm

al
ize

d 
sc

or
e

maze2d-large-v1
AWAC
BC 10%
BC
CQL
DT
EDAC
IQL
SAC-N
TD3 + BC

(c)

Figure 7: Training curves for Maze2d task.
(a) Medium dataset, (b) Medium-expert dataset, (c) Medium-replay dataset

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total steps

0

20

40

60

80

No
rm

al
ize

d 
sc

or
e

antmaze-umaze-v0
AWAC
BC 10%
BC
CQL
DT
EDAC
IQL
SAC-N
TD3_BC

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total steps

0

10

20

30

40

50

60

70

80

No
rm

al
ize

d 
sc

or
e

antmaze-medium-play-v0

AWAC
BC 10%
BC
CQL
DT
EDAC
IQL
SAC-N
TD3_BC

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total steps

0

10

20

30

40

No
rm

al
ize

d 
sc

or
e

antmaze-large-play-v0
AWAC
BC 10%
BC
CQL
DT
EDAC
IQL
SAC-N
TD3_BC

(c)

Figure 8: Training curves for AntMaze task.
(a) Umaze dataset, (b) Medium-play dataset, (c) Large-play dataset

10



B Wandb Tracking

Search by 
experiment name

Filter experiments 
by attributes

Group experiments 
by attributes

Sort experiments 
by attributes

Visualise selected 
experiments Experiment 

runtime tracking

Search by chart 
name

Charts groupping

Applying different settings to 
all charts (e.g. smoothing, x 

axis change)

Chart editing (e.g. 
smoothing, x axis) 

and exportingExperiment 
overview

Experiment charts

System charts

Experiment logs

Experiment files, 
e.g. config, 

requirements.txt, 
source code

Figure 9: Screenshots of Wandb experiment tracking interface.

11



C Experimental Details

We modify reward on AntMaze task by substructing 1 from reward as it is done in previous works.

We used original implementation of TD3 + BC9, SAC-N 10 and EDAC10 and custom implementations
of IQL11 and CQL12 as the basis for ours. For most of the algorithms and datasets we use default
hyperparameters if available. Configuration files for every algorithm and environment are presented
in our GitHub repository. Hyperparameters are also provided in subsection C.2.

C.1 Number of update steps and evaluation rate

Following original work SAC-N and EDAC are trained for 3 million steps (except AntMaze which is
trained for 1 million steps) in order to obtain state-of-the-art performance and tested every 10000
steps. Decision Transformer (DT) training is splitted into datasets pass epochs, we train DT for 50
epochs on each dataset and evaluate every 5 epochs. All other algorithms are trained for 1 million
steps and evaluated every 5000 steps. We evaluate every policy for 10 episodes on locomotion tasks
and for 100 for Maze2d and AntMaze tasks.

C.2 Hyperparameters

Table 3: BC and BC-N% hyperparameters. † used for the best trajectories choice.
Hyperparameter Value

BC hyperparameters
Optimizer Adam [18]
Learning Rate 3e-4
Mini-batch size 256

Architecture
Policy hidden dim 256
Policy hidden layers 2
Policy activation function ReLU

BC-N% hyperparameters
Ratio of best trajectories used 0.1
Discount factor† 1.0
Max trajectory length† 1000

9https://github.com/sfujim/TD3_BC
10https://github.com/snu-mllab/EDAC
11https://github.com/gwthomas/IQL-PyTorch
12https://github.com/young-geng/CQL

12

https://github.com/sfujim/TD3_BC
https://github.com/snu-mllab/EDAC
https://github.com/gwthomas/IQL-PyTorch
https://github.com/young-geng/CQL


Table 4: TD3+BC hyperparameters.
Hyperparameter Value

TD3 hyperparameters

Optimizer Adam [18]
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2

Architecture

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

TD3+BC hyperparameters α 2.5

Table 5: CQL hyperparameters. Note: used hyperparameters are suboptimal on AntMaze for the
implementation we provide.

Hyperparameter Value

SAC hyperparameters

Optimizer Adam [18]
Critic learning rate 3e-4
Actor learning rate 3e-5
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Target entropy -1 · Action Dim
Entropy in Q target False

Architecture

Critic hidden dim 256
Critic hidden layers 3
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 3
Actor activation function ReLU

CQL hyperparameters

Lagrange True, Maze2d
False, otherwise

α 10
Lagrange gap 5, Maze2d
Pre-training steps 0
Num sampled actions (during eval) 10
Num sampled actions (logsumexp) 10

13



Table 6: IQL hyperparameters.
Hyperparameter Value

IQL hyperparameters

Optimizer Adam [18]
Critic learning rate 3e-4
Actor learning rate 3e-4
Value learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Learning rate decay Cosine
Deterministic policy True, Hopper Medium and Medium-replay

False, otherwise
β 6.0, Hopper Medium-expert

10.0, AntMaze
3.0, otherwise

τ 0.9, AntMaze
0.5, Hopper Medium-expert
0.7, otherwise

Architecture

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU
Value hidden dim 256
Value hidden layers 2
Value activation function ReLU

Table 7: AWAC hyperparameters.
Hyperparameter Value

AWAC hyperparameters

Optimizer Adam [18]
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
λ 0.1, Maze2d, AntMaze

0.3333, otherwise

Architecture

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

14



Table 8: SAC-N and EDAC hyperparameters.
Hyperparameter Value

SAC hyperparameters

Optimizer Adam [18]
Critic learning rate 3e-4
Actor learning rate 3e-4
α learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Target entropy -1 · Action Dim

Architecture

Critic hidden dim 256
Critic hidden layers 3
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 3
Actor activation function ReLU

SAC-N hyperparameters

Number of critics 10, HalfCheetah
20, Walker2d
25, AntMaze
200, Hopper Medium-expert, Medium-replay
500, Hopper Medium

EDAC hyperparameters

Number of critics 10, HalfCheetah
10, Walker2d, AntMaze
50, Hopper

µ 5.0, HalfCheetah Medium-expert, Walker2d Medium-expert
1.0, otherwise

Table 9: DT hyperparameters.
Hyperparameter Value

DT hyperparameters

Optimizer AdamW [27]
Batch size 256, AntMaze

4096, otherwise
Return-to-go conditioning (12000, 6000), HalfCheetah

(3600, 1800), Hopper
(5000, 2500), Walker2d
(160, 80), Maze2d umaze
(280, 140), Maze2d medium and large
(1, 0.5), AntMaze

Reward scale 1.0, AntMaze
0.001, otherwise

Dropout 0.1
Learning rate 0.0008
Adam betas (0.9, 0.999)
Clip grad norm 0.25
Weight decay 0.0003
Total gradient steps 100000
Linear warmup steps 10000

Architecture

Number of layers 3
Number of attention heads 1
Embedding dimension 128
Activation function GELU

15


	Introduction
	Related Work
	CORL Design
	Benchmarks
	Conclusion
	Additional Benchmark Information
	Wandb Tracking
	Experimental Details
	Number of update steps and evaluation rate
	Hyperparameters


