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Abstract

Reinforcement learning has demonstrated impressive performance in various chal-
lenging problems such as robotics, board games, and classical arcade games. How-
ever, its real-world applications can be hindered by the absence of robustness and
safety in the learned policies. More specifically, an RL agent that trains in a certain
Markov decision process (MDP) often struggles to perform well in nearly identical
MDPs. To address this issue, we employ the framework of Robust MDPs (RMDPs)
in a model-based setting and introduce a novel learned transition model. Our
method specifically incorporates an auxiliary pessimistic model, updated adversar-
ially, to estimate the worst-case MDP within a Kullback-Leibler uncertainty set.
In comparison to several existing works, our work does not impose any additional
conditions on the training environment, such as the need for a parametric simula-
tor. To test the effectiveness of the proposed pessimistic model in enhancing policy
robustness, we integrate it into a practical RL algorithm, called Robust Model-
Based Policy Optimization (RMBPO). Our experimental results indicate a notable
improvement in policy robustness on high-dimensional MuJoCo control tasks, with
the auxiliary model enhancing the performance of the learned policy in distorted
MDPs. We further explore the learned deviation between the proposed auxiliary
world model and the nominal model, to examine how pessimism is achieved. By
learning a pessimistic world model and demonstrating its role in improving pol-
icy robustness, our research contributes towards making (model-based) RL more
robust.

1 Introduction

Reinforcement learning (RL) has been shown to perform well in many environments. However, the
performance of a trained RL agent can rapidly decrease when the agent is evaluated in a slightly
altered environment (Christiano et al., 2016; Rusu et al., 2017). This is one of the issues that has
limited the adoption of RL in real-world scenarios, more specifically due to the simulation-to-reality
(sim2real) gap and inherent variability in real control systems. Therefore, there is a need for policies
that are robust enough to perform well in environments that slightly differ from the training envi-
ronment. Due to this necessity, various approaches tackle the sim2real issue, often using different
problem formulations (Zhao et al., 2020). Some of these approaches include domain randomization
or transfer learning. In our work, the goal is to maximize the worst-case performance of the RL
agent, commonly formalized as a Robust Markov decision processes (RMDP). This formalism defines
an uncertainty set of multiple MDPs, where the agent is oblivious to which MDP it is acting in. The
objective in an RMDP then becomes to maximize the return in the worst (lowest cumulative reward)
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MDP of the uncertainty set. In previous research, methods that work within the RMDP formals have
demonstrated enhanced robustness against perturbations between the train and test environment
(Gadot et al., 2024; Pinto et al., 2017). However, these works often impose extra requirements on the
training environment, such as the ability to re-sample a transition multiple times or to have access to
a parametric environment during training. This paper follows the RMDP formulation and proposes
a novel algorithm that improves the robustness of a learned policy, without placing any additional
requirements on the training environment. Inspired by the ideas of Rigter et al. (2022) and Pinto
et al. (2017), our approach introduces an auxiliary model that acts as an adversary to minimize the
cumulative reward under the current policy. This auxiliary model’s objective then acts in a two-
player Markov game with the policy optimization objective. By sequentially optimizing these two
competing objectives, our algorithm can optimize towards a more robust policy. Our main contri-
butions are firstly (i), proposing a novel robust model-based RL algorithm to improve robustness
in an online setting. This is achieved by adding an auxiliary model to MBPO which learns a pes-
simistic world model via adversarial updates. Secondly (ii), we evaluate the empirical performance
of our algorithm on high-dimensional Gym MuJoCo control benchmarks 1. Thirdly (iii), we analyze
how the predictions of the learned robust model differ from the nominal model. The remainder of
this work will first describe the relevant background to our approach. Then, the methodology is
described in detail. Subsequently, the results demonstrate the improvement in robustness that our
method provides to MBPO (Janner et al., 2019) in multiple MuJoCo (Todorov et al., 2012) control
environments. Finally, we draw conclusions and outline future research directions.

2 Background

In this section, we first introduce model-based RL (MBRL) within the broader context of Markov
decision processes (MDP). Secondly, RMDPs are described and an adversarial framework to tackle
them is highlighted. Finally, the Kullback-Leibler (KL) uncertainty set is defined.

2.1 Model-Based Reinforcement Learning

Model-Based Reinforcement Learning (MBRL) (Moerland et al., 2023) operates within the frame-
work of a Markov decision process (MDP), defined by the tuple (S,A, P, r, γ, ρ0), where S and A
denote the state and action spaces, P (s′|s, a) is the distribution that defines the probability of ending
up in next state s′ when taking action a in state s. Next, r(s, a, s′) defines the reward function, γ
is the discount factor, and ρ0(s) is the initial state distribution. The objective in RL is to identify
an optimal policy π∗ that maximizes the expected sum of discounted rewards:

π∗ = arg max
π

Eπ,P,ρ0

[
H∑
t=0

γtr(st, at, st+1) | s0 ∼ ρ0

]
(1)

In addition, we denote the state visitation distribution of the MDP as dπP , which defines the likelihood
of being in a state certain state when following policy π. In MBRL, the agent learns a model of the
environment’s dynamics, represented by pθ(s′|s, a), from the data collected through its interactions
with the MDP. This model is then used to simulate future states and rewards, reducing the number
of interactions with the real environment. The expected reward function, r(s, a), is also learned from
data. In most MBRL algorithms, the agent’s policy is updated based on both real experiences and
simulated experiences from the learned model, balancing between exploration for model learning
and exploitation of the learned model for policy improvement. For notational simplicity, we will use
s, a and s′ to denote st, at, st+1 respectively, when it is clear from context.

1Evaluation code and weights available at https://github.com/rmbpo-eval/rmbpo-eval
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2.2 Robust Markov Decision Processes

In a traditional MDP, the agent optimizes its policy in a static transition model P . However, in
some real-world problems, the transition model can change over time. Hence, we can define a Robust
MDP (Wiesemann et al., 2013) where the agent acts in an unknown MDP P ∈ P that is a sample
from an uncertainty set P. The robust objective JP,π can now be defined to maximize an objective
function in the worst-case MDP of a given uncertainty set. This objective is formally stated in Eq. 2.

JP,π = max
π∈Π

min
P∈P

EP,π

[
H∑
t=0

γtr(st, at, st+1) | s0 ∼ ρ0

]
(2)

The optimal policy (π∗
P) now becomes the policy that maximizes JP,π (over the set of achievable

policies Π), this is called the outer-loop problem. Additionally, the algorithm is dependent on
knowing the worst-case MDP at every time step, we call this the inner-loop problem. For a small
uncertainty set, the inner-loop problem can be solved by just evaluating a certain transition in each
MDP P ∈ P. However, when the uncertainty set becomes very large or continuous, the inner-loop
problem can be challenging. We will follow related works by considering this combined optimization
objective as a two-player zero-sum Markov game (Rigter et al., 2022; Pinto et al., 2017). In this
game, one player optimizes the policy, to maximize the return, whilst the other player tries to find
P ∗ ∈ P, which minimizes the return. Both these players are updated in an alternating manner.

2.3 KL Uncertainty set

Since the "true" uncertainty set is often not known or ill-defined, a common choice is the Kullback-
Leibler (KL) uncertainty set, denoted as PKL. The KL uncertainty set is defined as:

PKL =
{
P ∈ Pfeasible | DKL(P ||P̄ ) ≤ ϵ

}
, (3)

where P̄ is the nominal kernel, i.e. the environment with which the agent interacts during training.
Pfeasible denotes the set containing all MDPs under consideration, in the case of a parametric
model, Pfeasible contains every MDP that can be represented by that model. DKL(P ||P̄ ) is the KL
divergence between the model P and the nominal model P̄ , and ϵ is a predefined threshold. In this
definition, the KL uncertainty set PKL consists of all models that are within a KL divergence of ϵ
from the nominal model P̄ . This set is the uncertainty set that will be approximated in our work.

3 Auxiliary Adversarial Model

The goal of this section is to tackle the inner-loop problem of the robust objective, as defined by
the minimization problem in Eq. 2, i.e. approximating the worst-case MDP, denoted as P ∗ ∈ P,
where we choose P to be the KL uncertainty set centered around the nominal model P̄ . This choice
of uncertainty set follows a common choice in literature (Gadot et al., 2024; Hu & Hong, 2013).
To describe our methodology, this section first (Section 3.1) introduces the auxiliary adversarial
model as an addition to traditional world model learning (e.g. via maximum likelihood estimation
(Janner et al., 2019)). The auxiliary model has a well-defined KL divergence with the approximated
nominal model. Secondly (Section 3.2), we introduce the loss function to train the auxiliary model
to maintain a low KL divergence with the nominal transition model, whilst also learning to be
pessimistic (i.e., minimizing the return of the transition). Finally, we propose Robust MBPO
(RMBPO), an algorithm that incorporates the auxiliary model to improve the robustness of the
learned policy.
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3.1 Auxiliary Model

Since we work within the context of Model-Based RL, we have direct access to a parameterized
approximation, pθ(s′, r|s, a), of the nominal transition model P̄ (.). However, this does not directly
provide us with a method to approximate DKL(pθ||P̄ ), since we do not have access to the simulated
transition probabilities, P̄ (s′, r|s, a), needed to construct the KL uncertainty set. Hence, we propose
to not directly try to approximate the pessimistic transition model, thus leaving pθ untouched. As
an alternative, we propose an auxiliary parameterized model, gψ, which takes as input the outputs
of the learned transition model pθ, in addition to s and a. Next states and rewards can now be
sampled according to Eq. 4.

s′, r ∼ gψ(· | s, a, pθ(s′, r|s, a)) (4)

Since both pθ and gψ define probability distributions, it is possible to compute DKL(gψ||pθ), which
we will consider as an approximation for DKL(gψ||P̄ ). In our work, both pθ and gψ define the mean
and covariance matrix of a diagonal multivariate Gaussian distribution, so the KL divergence can
be computed closed-form. In practice, we provide the predicted mean µθ and covariance matrix
Σθ as inputs to the auxiliary model gψ, since a Gaussian is fully defined by these two components.
Strictly speaking, the addition of pθ as an input to the auxiliary model is not necessary, however,
this greatly eases the optimization of gψ, which will be explained in Section 3.2.

3.2 Training the Auxiliary Model

The goal of the auxiliary model is to minimize the value under the current policy while remaining
within the desired uncertainty set PKL. To incentivize both these objectives, the auxiliary model
is trained by minimizing a sum of two loss functions, displayed in Eq. 5. The first term is the
Kullback-Leibler (KL) divergence between the normal model pθ and the auxiliary model gψ, which
ensures that the auxiliary model does not deviate too far from the (approximated) dynamics of the
nominal environment. Therefore, this part of the loss function incentivizes the model to remain
within the KL uncertainty set PKL. The second term of the loss function minimizes the return of
the current state transition, as proposed by Rigter et al. (2022). By lowering the (log) likelihood of
transitions with a high return and heightening the likelihood of transitions with a low return, the
auxiliary model will become a pessimistic approximation of pθ and P̄ .

Jg(ψ) = E(s′,r)∼gψ,s∼dπ
ψ,θ

,a∼π

[
DKL(gψ||pθ) + η · ln(gψ(s′, r|s, a, pθ(·|·)) · sg(r + γV θ,ϕψ (s′))

]
(5)

In Eq. 5, sg() defines the stop_grad operator, no gradient is computed for the value, only for gψ
(Rigter et al., 2022). V (.) denotes the approximate value function, used to estimate the expected
return after the transition. The hyperparameter η controls the influence of the value function: for a
small η, pθ ≈ gψ and therefore PKL is small, for larger values of η, gψ will grow more pessimistic and
therefore PKL can be large. Values of η that were used in this work can be found in Appendix A.
Formal guarantees that the auxiliary model remains in the uncertainty set are left for future work.

3.3 Proposed Algorithm

To improve policy robustness, we combine the auxiliary model with MBPO (Janner et al., 2019) to
become RMBPO. MBPO approximates the training environment by maximizing the likelihood of
experienced transitions under its learned model pθ. This model is a neural network that predicts
a mean and covariance matrix over the next states and rewards, conditioned on the current state
and action. On-policy rollouts are then performed on the learned model. Finally, the unrolled data
is used to update a policy via Soft-Actor Critic (SAC) (Haarnoja et al., 2018). We modify MBPO
by training an auxiliary model in addition to the existing model, via Eq. 5. Since these two models
are trained separately, the auxiliary model learning does not hinder the accuracy or precision of pθ.
During the model unroll, we pass the current state through the learned model pθ, after which we
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use the output of that model (µθ,Σθ) as input to the auxiliary model. The auxiliary model will
then predict a modified (µψ,Σψ) as an approximation to the worst-case transition model in PKL.
Relating to Section 2.2, the auxiliary model tries to solve the inner-loop problem, while SAC tries to
maximize the outer-loop problem. These two components act as two players in a zero-sum Markov
game. This algorithm is fully described in Algorithm 1, where our additions are highlighted in blue.
Following other works (Gadot et al., 2024; Zhou et al., 2024), we add a small amount of action noise
to the environment, otherwise, the uncertainty set would not be well-defined. More details on the
action noise are provided in Appendix B.

Algorithm 1 RMBPO (Additions in blue)
1: Initialize policy πϕ, predictive model pθ , auxiliary model gψ,
2: environment dataset Denv, model dataset Dmodel
3: for N epochs do
4: while improving do
5: Update model parameters θ on environment data: θ ← θ − λp∇̂θJp(θ,Denv)
6: end while
7: while improving do
8: Update model parameters ψ according to Eq. 5: ψ ← ψ − λa∇̂ψJg(ψ,Denv, pθ, πϕ)
9: end while

10: for E steps do
11: Take action in environment according to πϕ; add to Denv
12: for M model rollouts do
13: Sample st uniformly from Denv
14: On-policy rollout according to Eq. 4 starting from st using policy πϕ; add to Dmodel
15: end for
16: Perform (soft) actor-critic updates on ϕ using samples from Dmodel.
17: end for
18: end for

4 Results

The following section aims to answer two main research questions: "Does the auxiliary model learn
pessimistic state transitions?" and "Can the auxiliary model make a learned policy more robust?".
The first question is investigated in Section 4.2, where we perform a case study on the Hopper-v3
environment to examine which changes are made by the auxiliary model. The second question is
investigated in Section 4.1, where we plot the performance of RMBPO compared to MBPO under
distorted evaluation environments.

4.1 Main Results

The main goal of this section is to evaluate the hypothesis that our proposed auxiliary model aids
MBRL algorithms in being more robust. To achieve our results, we train both MBPO and RMBPO
in the nominal environment using 3 seeds. In accordance with Agarwal et al. (2021), we employ
bootstrapped 95% confidence intervals as our metric of confidence. However, in contrast to reporting
the interquartile means (IQM), we report the average performance. The outlier rejection associated
with IQM can yield overly optimistic results, which makes it a flawed metric when evaluating robust-
ness. The results are presented in Fig. 1, which compares the trained agents in various environments
under distortion. I.e. one of the simulation parameters is modified to different values than in the
nominal (training) environment. Following Pinto et al. (2017), the pendulum mass is distorted in
InvertedPendulum-v2, while the torso mass and friction coefficient are distorted in Hopper-v3 and
Walker2d-v3. The results show that RMBPO performs better than MBPO in most of our experi-
ments. This is the case for both the mean performance and the lower limit of the confidence interval.
These results support our claim that the auxiliary model makes the policy more robust. Our results
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often lie between that of non-robust RL algorithms and RARL (Pinto et al., 2017). This is an
expected result since RMBPO cannot distort the simulator during training, in contrast to RARL.
Additionally, in Fig. 2, we examine the robustness of RMBPO, compared to MBPO when the stan-
dard deviation of the action noise is modified. A noise scale of 1 indicates an MDP that is identical
to the training environment (the nominal model), other noise scales denote multiplication factors of
the standard deviation. In our results, RMBPO succeeds in being more robust to modifications of
the action noise scale during evaluation.

4.2 What is the model learning?

A natural question that arises is how gψ modifies the state transitions compared to the approximated
nominal model pθ ≈ P̄ . Also, the reader might wonder about the relationship between η and the
magnitude of these modifications. Therefore, we perform a case study on the MuJoCo Hopper-v3
environment. The observation space of this MDP consists of 11 values describing the angles and
angular velocities of the joints in the robot and the position and (angular) velocity of the top of
the robot. For an exhaustive list, the reader is deferred to Todorov et al. (2012). The goal of the
environment is to use three rotors (in the foot, leg, and thigh) to make the robot move forward
without falling. Therefore, we would expect the auxiliary model to modify the transitions in such
a way that the robot moves forward more slowly and becomes more prone to falling. To examine
the learned model, we display the three largest modifications (on state dimensions) that are made
by the auxiliary model in Fig. 3. The modifications for all other state dimensions can be found in
Appendix D. It can be seen in Fig. 3 that increasing η consistently increases the distance of the
robust predictions from the predictions of the nominal model. The three state variables that are the
most influenced by the adversarial updates are the angular velocity of the torso, the thigh hinge, and
the leg hinge. More importantly, it is shown that the robust model increases the angular velocity of
the torso, whilst it decreases the other two. This is expected since higher mobility of the torso makes
the Hopper harder to control and therefore increases the probability of it falling. The results also
show that the angular velocity of the actuated parts (such as the leg and thigh) is lowered. Since
these limbs are used to control the robot, this makes the system harder to control. Furthermore,
Fig. 4a shows that the adversarial model lowers the x-velocity of Hopper-v3, which is associated
with a lower value since the robot gets rewarded for moving forward rapidly. These results suggest
that the auxiliary model makes the state transitions more pessimistic, however, further research is
needed to confirm this claim.

5 Related Works

Many works focus on robust reinforcement learning in a tabular setting. These works include a
robust policy gradient (Wang & Zou, 2022; Kumar et al., 2024) and a tractable approach to tackle
non-rectangular RMDPs (Goyal & Grand-Clement, 2023). In a step towards generality, Wang & Zou
(2021) and Morimoto & Doya (2005) consider robust reinforcement learning with function approxi-
mation on the inverted pendulum problem. As many works exist in this field, the reader is referred
to Moos et al. (2022) for more information on this topic. In the context of high-dimensional state
and action spaces, Pinto et al. (2017) propose adversarial RL for robustness. They show that an
adversarial approach can make RL robust towards differences between the training and evaluation
environment. (Schulman et al., 2015). In contrast to our work, the adversary in their methodology
modifies the simulator during training. Gadot et al. (2024) propose a methodology where multiple
next states are sampled at each time step from a stochastic transition model. Subsequently, a single
next state is resampled with an importance weight, based on the value of that state. Similar to this
work, the KL uncertainty set is considered, however, their methodology requires a simulator where
multiple next states can be sampled at any time step. Rigter et al. (2022) propose an approach
similar to ours, but to be robust to out-of-distribution data in offline RL. More recently, Zhou et al.
(2024) provide a model-free alternative to our work. Improved robustness against transition dynam-
ics is demonstrated in the MuJoCo environment, in addition to exhaustive theoretical motivation.
Furthermore, Queeney & Benosman (2024) consider model-free robust RL to improve safety.
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Figure 1: Comparison of robustness between MBPO and RMBPO (ours). Mean return (y-axis)
is plotted over the distortion of a simulation parameter during evaluation (x-axis). Results display
mean over 3 seeds with the shaded region denoting the bootstrapped 95% confidence interval between
seeds.
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Figure 2: Comparison of robustness between MBPO and RMBPO (ours). Mean return (y-axis) is
plotted over the distortion of the action noise standard deviation (x-axis). Results display mean over
3 seeds with the shaded region denoting the bootstrapped 95% confidence interval between seeds.
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6 Conclusions and Future work

We have proposed a novel approach for robust adversarial reinforcement learning in an online, high-
dimensional setting. We have motivated the use of an auxiliary model to tackle the inner-loop
optimization problem of the robust MDP formulation. This auxiliary model was then used in a
practical algorithm as a modification to the model-based RL algorithm MBPO. Our experiments
demonstrate the potential of the auxiliary model to improve the robustness of MBPO. Although the
authors believe that this approach will work for a larger set of algorithms and environments, we leave
further experimentation for future work. Other interesting areas for future work could include the
addition of a secondary policy that is updated in a non-robust manner. That could ensure that the
robust policy does not hinder exploration toward the optimal policy. The authors plan the extension
of this work towards latent space models such as PlaNet (Hafner et al., 2019) and its more recent
extensions such as DreamerV3 (Hafner et al., 2023).
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A Hyperparamters

Hyperparameter InvertedPendulum-v2 Hopper-v3 Walker2d-v3

η 0.3 0.004 0.001
λa 1e-4 1e-4 1e-4
Total environment steps 15e3 125e3 230e3

Table 1: Hyperparameters

We hypothesize that the optimal value of η is related to the cardinality of the state space of the
MDP, however, we leave further investigation for future work. The pessimistic model learning rate
(λa) is set to 1/10 of the normal MBPO model learning rate, this significantly reduces variance on
the return during training. Note that we use the same amount of environment steps as MBPO in
InvertedPendulum and Hopper, but we use a lower amount in Walker2d (230k compared to 300k),
this helped to significantly reduce experiment duration and computational cost. In future work, we
aim to evaluate our methodology on more environments for a longer amount of steps.

All other hyperparameters remain identical to MBPO (Janner et al., 2019), the auxiliary model gψ
also has the same architecture as the MBPO world model.

B Implementation details

Following related work (Zhou et al., 2024), we slightly modify the mentioned MuJoCo environments
by adding Gaussian noise to the action: at ← at + N (0, 5e − 3). Only in Pendulum-v2, we use a
significantly higher noise variance of 0.2. Since this action noise is invisible to the agent, it introduces
stochasticity in the MDP. Inspired by the existing MBPO world model, we standardize the outputs
of pθ before providing them as inputs to gψ, this showed incremental stability improvements in some
environments. As proposed in appendix A.1 by Rigter et al. (2022), we subtract V θ,ψϕ (s) as a baseline
from the return in Eq. 5, this does not influence the expectation of the gradient but significantly
reduces its variance. Note that MBPO does not employ a value network directly, but this does not
pose an issue since on-policy samples from the Q-network will provide the same expected gradient,
given a large enough minibatch size.

Our implementation is based upon the Unstable Baselines Python library (Feng, 2021). We pre-
ferred this implementation because of its clarity, however, we experimentally verified that Unstable
Baselines reached the same performance as the original open-source MBPO code. All hyperparame-
ters of MBPO remain identical to Janner et al. (2019). For calculating the bootstrapped confidence
intervals, we used the implementation provided by SciPy (Virtanen et al., 2020). Experiments were
run on a Ubuntu20.04 (Docker) machine with a single NVIDIA v100 GPU, two CPU cores, and
10GB of memory.

C Reproducibility

To improve reproducibility, we provide all implementation details that are not mentioned in the
main body of the paper in Appendix B. Furthermore, we provide the trained weights of the learned
policies as supplementary materials, together with the modified environments and an evaluation
script 2. This allows for a clear comparison with our research. We chose to evaluate by distorting

2https://github.com/rmbpo-eval/rmbpo-eval
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the same model parameters as Pinto et al. (2017) for two reasons: a) to add perspective to the
results and ease future benchmarking in the community, and b) to avoid cherry-picking the best
conditions for RMBPO. To improve the trustworthiness of our results, we share the same 3 seeds
throughout all of our experiments, to avoid picking the best seeds per environment. The authors
are not able to release source code at the time of submission of this paper, however, the reader is
encouraged to contact the first author of this work with any related questions.
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D Additional state difference graphs Hopper-v3
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Figure 4: Additional Hopper-v3 state differences.
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