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Abstract
Autonomous driving at intersections with traffic
lights and stop signs can be handled by simple
rules, however unsignalized intersections remain
a challenging problem. We explore the effective-
ness of using Deep Q Networks to handle such
problems. Combining several recent advances in
Deep RL, were we able to learn policies that sur-
pass the performance of a commonly-used rule
based approach in several metrics including task
completion time and goal success rate. Although
the results were promising, the fact that learned
policies resulted in collisions, although rarely,
suggest a need for further research.

1. Introduction
A majority of intersections in urban environments are sig-
naled: traffic lights, stop signs and roundabouts are suc-
cessful mechanisms at regulating the traffic. For an au-
tonomous vehicle, passing through signaled intersections
is a trivial problem that can be solved by rule-based meth-
ods. For instance, the vehicle should stop when the red
light is on and continue its path when the green is on. The
problem is not that trivial for unsignalized intersections:
The autonomous agent has to analyze the oncoming traffic
and decide when it is safe to pass and execute the move
in a timely manner. Automation of unsignalized intersec-
tion handling can increase the safety of passengers, through
driver assistance or as part of a fully automated system.

A number of rule-based strategies have been used at
unsignalized intersection handling, including cooperative
and heuristic approaches. Cooperative approaches require
vehicle-to-vehicle or vehicle-to infrastructure communica-
tion, which is currently not widely supported. Several rule-
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Figure 1. We investigate intersection handling with an au-
tonomous vehicle (red car) in intelligent traffic (yellow cars) in
various scenarios. No traffic lights or stop signs are present and
the path is known beforehand. The autonomous agent, through
randomized experiences in simulation, attempts to learn when it
is safe to go. 4 of the scenarios are depicted: Left (top left), Right
(top right), Left2 (bottom left) and Forward (bottom right).

based methods use a Time-to-Collision (TTC) metric (Min-
derhoud & Bovy, 2001), which is a widely used heuris-
tic as a safety indicator in the automotive industry (Vogel,
2003). Variants of the TTC approach have been used for au-
tonomous driving (Ferguson et al., 2008) and the DARPA
urban challenge, where hand engineered hierarchical state
machines were a popular approach to handle intersections
(Urmson et al., 2008).

While rule-based methods such as TTC are sufficient in
simple cases, they have their limitations. Most models as-
sume constant velocity or acceleration, which is an over-
simplification of driver intent. Moreover, actions of agent
affect the behaviors of other agents and this interaction is
ignored. These reasons motivate our investigation of a ma-
chine learning based approach. Only very recently, ma-
chine learning methods have been explored for decision
making at intersections (Song et al., 2016; Brechtel et al.,
2014). (Bojarski et al., 2016) learns a policy that maps
images to actions from human demonstrations. (Bouton
et al., 2017) uses Partially Observable Monte Carlo Plan-
ning (POMCP), but rely on the existence of a generative
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model for traffic participant behavior. In this work, we ex-
plore using model-free reinforcement learning for the prob-
lem that does not require expert demonstrations.

Modern autonomous driving systems often employ several
levels of abstraction (Cosgun et al., 2017; Paden et al.,
2016). This allows for a wide variety of state and action
representations for handling unsignalized intersections. An
exploratory search of representations showed the selection
of the representation had a significant impact on the agent’s
ability to learn.

In this paper, we are interested in evaluating the effective-
ness of Deep Reinforcement Learning in the domain of in-
tersection handling. As seen in Figure 3, the autonomous
vehicle is stopped at an unsignalized intersection where the
traffic is flowing in both directions. The path is assumed
to be given by a higher level process. We consider two
action space representations: In Sequential representation,
the agent learns what acceleration profile to apply along the
path. In Time-To-Go representation, the agent learns when
to depart. We investigate how DQN for both representa-
tions compare to a rule-based algorithm in five different
intersection simulation scenarios. We consider three met-
rics for comparison: success rate, collision rate and time to
complete the intersection.

2. Approach
We view intersection handling as a reinforcement learning
problem, and use a Deep Q Network (DQN) to learn the
state action value Q-function.

2.1. Reinforcement Learning

In the reinforcement learning framework, at time t an agent
in state st takes an action at according to the policy π .
The agent transitions to the state st+1, and receives a re-
ward rt . The problem is typically formulated as a Markov
Decision Process (MDP) 〈S,A,P,R,γ〉, where S is the
set of states, and A is the set of available actions to the
agent, P : S×S→ [0,1] describes the systems dynamics,
R : S×A× S→ R maps state-action pairs to a real val-
ued reward and γ ∈ (0,1] is a discount factor in case of
infinite time horizons. The goal of reinforcement learn-
ing is to maximize the expected return R = ∑

T
t=0 γ trt over

a sequence of actions. We use Q-learning to perform this
optimization.

2.2. Q-learning

In Q-learning (Watkins & Dayan, 1992), the action value
function Qπ(s,a) is the expected return E[Rt |st = s,a] for
a state-action pair following a policy π . Given an optimal
value function Q∗(s,a) the optimal policy can be inferred
by selecting the action with maximum value maxa Q∗(s,a)

at every time step.

In Deep Q-learning (Mnih et al., 2013), the optimal value
function is approximated with a neural network Q∗(s,a)≈
Q(s,a;θ) with parameters θ . The action value function
is learned by iteratively minimizing the error between the
expected return and the state-action value predicted by the
network. We use n-step return(Peng & Williams, 1996) ,
dynamic frame skipping and experience replay to improve
the learning process.

An agent that selects actions over extended time periods
can improve the learning time of an agent (Srinivas et al.,
2017). Dynamic frame skipping can viewed as a simplified
version of options, which is recently starting to be explored
by the Deep RL community. (Jaderberg et al., 2016; Tessler
et al., 2016; Kulkarni et al., 2016).

We use the experience replay mechanism to break the cor-
relations of sequential trajectories. An experience replay
buffer stores previous trajectories which can be sampled
during learning. A benefit of using experience replay is
that important sequences which happen less frequently can
be preferentially sampled (Schaul et al., 2016). We use the
simplified approach proposed by (Jaderberg et al., 2016)
which avoids the computation of a rank list.

2.3. Action Representations

We present two action representations that we found
promising:

• Sequential: The agent determines to accelerate, de-
celerate, or maintain constant velocity at every point in
time along the desired path. 12 actions are available: the
3 types of actions, at 4 time scales (1, 2, 4 and 8 steps).

• Time-to-Go: The agent determines the timing of depar-
ture through a sequences of actions to wait or go, mean-
ing every trajectory is a series of wait actions terminating
in a go action. 5 actions are available: The go action and
wait action at 4 time scales (1,2, 4 and 8 steps).

For TTC and the Time-to-Go DQN, after the algorithm has
decided the path is clear it follows the Intelligent Driver
Model.

2.4. State Representations

A top view of space is discretized into a grid in Cartesian
coordinates relative to the ego car’s reference frame. Every
vehicle in the space is represented by it’s heading angle, ve-
locity, and calculated time to collision. The heading angle,
velocity, and calculated time to collision are all represented
as real values.

For the sequential action DQN, space is represented as a
5× 11 grid discretizing 0 to 20 meters in front of the car
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and ±90 meters to the left and right of the car. Each spa-
tial pixel, if occupied, contains the normalized real valued
heading angles, velocity, and calculated time to collision.
The 5×11×3 representation results in a 165 dimensional
space.

For the Time-to-Go DQN, space is represented as a 18×
26 grid in global coordinates. Unlike the sequential action
DQN, this representation does not use the calculated time
to collision for any vehicles.

2.5. Neural Network Setup

The Sequential action DQN network is a fully connected
networks with leaky ReLU (Maas et al., 2013) activation
functions. The network consists of 3 hidden layers each of
100 nodes each and a final linear layer with 12 outputs, cor-
responding to the available actions. The Time-to-Go DQN
network uses a convolutional neural network with two con-
volution layers, and one fully connected layer. The first
convolutional layer has 32 6×6 filters with stride two, the
second convolution layer has 64 3× 3 filters with stride 2.
The fully connected layer has 100 nodes. All layers use
leaky ReLU activation functions. The final linear output
layer has five outputs for each action. Our experience re-
play buffers store 100,000 time steps. We have two buffers,
one for collisions and one for both successes and timeouts.
At each learning iteration we samples 25 steps from each
buffer for a total batch size of 50.

Each sequential action scenario was trained on 1M simula-
tions. Each Time-to-go scenario was trained on 250k sim-
ulations. This difference was in order to roughly balance
the runtime of the experiments. The epsilon governing ran-
dom exploration was decayed from 1.0 to 0.05 linearly over
half the number of iterations. For the reward we used +1
for successfully navigating the intersection, −10 for a col-
lision, and −0.01 step cost. Both networks are optimized
using the RMSProp algorithm (Tieleman & Hinton, 2012).

3. Experiments
We train two separate DQNs (Sequential Actions and
Time-to-Go) and compare the performance against a rule-
based baseline algorithm.

Experiments were run using the Sumo simulator (Kra-
jzewicz et al., 2012), which is an open source traffic sim-
ulation package. This package allows users to model road
networks, road signs, traffic lights, a variety of vehicles,
and pedestrians. Traffic cars follow IDM to control their
motion, therefore they react to each other and to the au-
tonomous vehicle. In Sumo, randomness is simulated by
varying the speed distribution of the vehicles and by using
parameters that control driver imperfection.

Table 1. Comparison of Different Algorithms
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Right % Success 66.06 99.61 99.5 99.96
% Collisions 9.96 0.0 0.47 0.04
Avg. Time 13.2 6.46s 5.47s 4.63s

Left % Success 45.9 99.7 99.99 99.99
% Collisions 35.9 0.0 0.00 0.01
Avg. Time 13.82s 6.97s 5.26s 5.24s

Left2 % Success 45.45 99.42 99.79 99.99
% Collisions 26.15 0.0 0.11 0.01
Avg. Time 14.48s 7.59s 7.13s 5.40s

Forward % Success 66.20 99.91 99.76 99.78
% Collisions 17.9 0.0 0.14 0.01
Avg. Time 12.88s 6.19s 4.40s 4.63s

Challenge % Success 29.99 39.2 82.97 98.46
% Collisions 41.45 0.0 1.37 0.84
Avg. Time 15.7s 12.55s 9.94s 7.94s

We ran experiments using five different intersection scenar-
ios: Right, Left, Left2, Forward and a Challenge. Each of
these scenarios is depicted in Figure 1. The Right scenario
involves making a right turn, the Forward scenario involves
crossing the intersection, the Left scenario involves mak-
ing a left turn, the Left2 scenario involves making a left
turn across two lanes, and the Challenge scenario involves
crossing a six lane intersection with increased traffic den-
sity. Each scenario is run for 10k simulations.

Each lane has a 45 miles per hour (20 m/s) max speed. The
car begins from a stopped position. Each time step is equal
to 0.2 seconds. The max number of step per trial is capped
at 100 steps which is equivalent to 20 seconds. The traf-
fic density is set by the probability that a vehicle will be
emitted randomly per second. We use 0.2 for all scenarios
except the challenge scenario where it is set to 0.7.

We evaluate each method according to 3 metrics:

• Percentage of successes: the percentage of the runs the
car successfully reached the goal. This metric takes into
account both collisions and time-outs.

• Percentage of collisions: a measure of the safety of the
method.

• Average time: how long it takes a successful trial to run
to completion.

The Time-to-Collision (TTC) policy serves as a baseline
in our analysis. It uses a single threshold to decide when
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Figure 2. Trade-off between the time to cross and collision rate as
the TTC threshold is varied. Note that performance of the DQN
dominates in every case. The challenge scenario is excluded for
scale reasons, but the results are similar.

to cross. Consider an imaginary line emanating from the
front of the ego vehicle, aligned with the longitudinal axis.
We calculate the TTC with another vehicle as the time it
takes for the vehicle to reach this imaginary line, assuming
it will travel with constant speed. Among all the vehicles
in the scene, we consider the one with the minimum TTC
value. If this value exceeds the TTC threshold, then the ego
vehicle starts the crossing phase and follows the Intelligent
Driver Model (IDM) (Treiber et al., 2000) until the goal
is reached. If it doesn’t exceed the threshold, the ego car
continues to wait. The TTC threshold is chosen for each of
the scenarios to yield the best results for the baseline.

4. Results
Table 1 shows the results from our experiments. The TTC
method did not have a collision in any of the scenarios,
given that a large enough threshold was chosen. All other
methods had non-zero collision rates for all scenarios, ex-
cept DQN-Sequential for the Left scenario. Among DQN
methods, DQN Time-to-Go had substantially lower colli-
sion rate than DQN-sequential. For all scenarios except
Challenge, DQN Time-to-Go had only 7 collisions in a to-
tal of 40k simulations.

We see that both DQN methods are substantially more effi-
cient at reaching the goal than TTC. DQN Time-to-Go has
the best task completion time in all scenarios, except For-
ward, where DQN-Sequential is faster. On average, DQN
Time-to-Go was %28 faster in reaching to goal than TTC,
whereas DQN Sequential was %19 faster than TTC. There-
fore, the DQN methods have potential to reduce traffic jams
due to their efficiency navigating intersection.

While the DQNs are more efficient, they are seldom able to

Figure 3. Challenge Scenario. The DQN policy begins accelerat-
ing in anticipation of the clear path. TTC would have waited until
all cars were clear, missing the opportunity.

minimize the number of collisions as successfully as TTC.
This is due to the fact that TTC has a tunable parameter that
adjusts the safety margin and we tune TTC to the lowest
threshold that gives zero collisions. The few collisions that
do occur for DQNs seem to relate to discretization effects,
where the car nearly misses the oncoming traffic.

Comparing the DQN’s performance against the TTC curve
as we trade off speed vs. safety (Figure 2), we see that in
every instance the DQN’s performance dominates the per-
formance of TTC. This suggests that it is possible to design
an algorithm that has zero collision rate, but with better per-
formance metrics than TTC.

4.1. Challenge Scenario

An interesting result was that TTC did not reach the goal
the majority of the time in the Challenge scenario, reaching
the goal only %39.2 of the time, and posting a success rate
only slightly more than Random (%29.9). For the same
scenario, DQN Time-to-Go reached the goal %98.46 of the
time, significantly outperforming other methods.

Comparing the DQN and TTC, the DQN strategies take
into account predictive behavior of the traffic. The DQNs
can accurately predict that traffic in distant lanes will have
passed by the time the ego car arrives. In contrast, TTC
does not leave until all cars have cleared its path . In ad-
dition, TTC leaves a sufficient safety margin for oncoming
cars in distant lanes. As a result TTC often waits until the
road is completely clear, missing opportunities to cross.

4.2. Sequential vs Time-To-Go

Comparing the two DQN methods, the Sequential repre-
sentation allows for more complex behaviors: the agent
could potential slow down half way through the intersec-
tion and wait for on coming traffic to pass. The Time-to-
Go representation focuses on the departure time, allowing
us to specifically probe how changes in departure time can
affect performance. We think Time-To-Go representation
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is preferable since it performed slightly better, and allows
easier abstraction with high level behavior planners.

5. Conclusion
Unsignalized intersection handling remains a hard task
for autonomous vehicles, mainly because of unpredictable
agent behavior. Rule-based intersection handling methods
offer reliable and easy-to-interpret solutions, however re-
sult in sub-optimal behavior and task performance.

We showed a first system that uses Deep Q-Networks for
the specific problem of intersection handling. By making
use of the latest Deep RL techniques, we were able to build
networks that, in some metrics, outperform a commonly
used rule-based algorithm based on the Time-to-Collision
(TTC) heuristic. While TTC achieved zero collision rate
for all cases, DQN performed better on task efficiency and
success rate.

We saw that determining the time to go is the most impor-
tant part of the task, even in more complex environments
when the ability to change speeds through the intersection
might be beneficial. This can greatly reduce the complexity
of the high level behavior planners.
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