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ABSTRACT

Latent representation learned from multi-layered neural networks via hierarchical
feature abstraction enables recent success of deep learning. Under the deep learn-
ing framework, generalization performance highly depends on the learned latent
representation. In this work, we propose a novel latent space modeling method to
learn better latent representation. We designed a neural network model based on
the assumption that good base representation for supervised tasks can be attained
by maximizing the sum of hierarchical mutual informations between the input,
latent, and output variables. From this base model, we introduce a semantic noise
modeling method which enables semantic perturbation on the latent space to en-
hance the representational power of learned latent feature. During training, latent
vector representation can be stochastically perturbed by a modeled additive noise
while preserving its original semantics. It implicitly brings the effect of semantic
augmentation on the latent space. The proposed model can be easily learned by
back-propagation with common gradient-based optimization algorithms. Experi-
mental results show that the proposed method helps to achieve performance ben-
efits against various previous approaches. We also provide the empirical analyses
for the proposed latent space modeling method including t-SNE visualization.

1 INTRODUCTION

Enhancing the generalization performance against unseen data given some sample data is the main
objective in machine learning. Under that point of view, deep learning has been achieved many
breakthroughs in several domains such as computer vision (Krizhevsky et al., 2012; Simonyan &
Zisserman, 2015; He et al., 2016), natural language processing (Collobert & Weston, 2008; Bah-
danau et al., 2015), and speech recognition (Hinton et al., 2012; Graves et al., 2013). Deep learning
is basically realized on deep layered neural network architecture, and it learns appropriate task-
specific latent representation based on given training data. Better latent representation learned from
training data results in better generalization over the future unseen data. Representation learning
or latent space modeling becomes one of the key research topics in deep learning. During the past
decade, researchers focused on unsupervised representation learning and achieved several remark-
able landmarks on deep learning history (Vincent et al., 2010; Hinton et al., 2006; Salakhutdinov &
Hinton, 2009). In terms of utilizing good base features for supervised learning, the base representa-
tion learned from unsupervised learning can be a good solution for supervised tasks (Bengio et al.,
2007; Masci et al., 2011).

The definition of ‘good’ representation is, however, different according to target tasks. In unsuper-
vised learning, a model is learned from unlabelled examples. Its main objective is to build a model
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to estimate true data distribution given examples available for training, so the learned latent rep-
resentation normally includes broadly-informative components of the raw input data (e.g., mutual
information between the input and the latent variable can be maximized for this objective). In su-
pervised learning, however, a model is learned from labelled examples. In the case of classification,
a supervised model learns to discriminate input data in terms of the target task using correspond-
ing labels. Latent representation is therefore obtained to maximize the performance on the target
supervised tasks.

Since the meaning of good representations vary according to target tasks (unsupervised or super-
vised), pre-trained features from the unsupervised model are not be guaranteed to be useful for
subsequent supervised tasks. Instead of the two stage learning strategy (unsupervised pre-training
followed by supervised fine-tuning), several works focused on a joint learning model which opti-
mizes unsupervised and supervised objectives concurrently, resulting in better generalization per-
formance (Goodfellow et al., 2013; Larochelle & Bengio, 2008a; Rasmus et al., 2015; Zhao et al.,
2015; Zhang et al., 2016; Cho & Chen, 2014).

In this work, we propose a novel latent space modeling method for supervised learning as an exten-
sion of the joint learning approach. We define a good latent representation of standard feed-forward
neural networks under the basis of information theory. Then, we introduce a semantic noise model-
ing method in order to enhance the generalization performance. The proposed method stochastically
perturbs the latent representation of a training example by injecting a modeled semantic additive
noise. Since the additive noise is randomly sampled from a pre-defined probability distribution ev-
ery training iteration, different latent vectors from a single training example can be fully utilized
during training. The multiple different latent vectors produced from a single training example are
semantically similar under the proposed latent space modeling method, so we can expect semantic
augmentation effect on the latent space.

Experiments are performed on two datasets; MNIST and CIFAR-10. The proposed model results in
better classification performance compared to previous approaches through notable generalization
effect (stochastically perturbed training examples well cover the distribution of unseen data).

2 METHODOLOGY

The proposed method starts from the existing joint learning viewpoint. This section first explains
the process of obtaining a good base representation for supervised learning which is the basis of the
proposed latent space modeling method. And then, we will describe how the proposed semantic
noise modeling method perturbs the latent space while maintaining the original semantics.

2.1 BASE JOINT LEARNING MODEL

In a traditional feed-forward neural network model (Figure 1(a)), output Y of input data X is com-
pared with its true label, and the error is propagated backward from top to bottom, which implicitly
learns a task-specific latent representation Z of the input X . As an extension of a joint learning
approach, an objective to be optimized can be described in general as below (Larochelle & Bengio,
2008b):

min
θ
λLunsup + Lsup (1)

where Lunsup and Lsup are respectively an unsupervised loss and a supervised loss, and θ and λ
are model parameters to be optimized during training and a loss weighting coefficient, respectively.
In terms of modeling Lunsup in Eq. (1), we assume that good latent representation Z is attained
by maximizing the sum of hierarchical mutual informations between the input, latent, and output
variables; i.e. the sum of the mutual information between the input X and the Z and the mutual
information between the Z and the output Y . Each mutual information is decomposed into an
entropy and a conditional entropy terms, so the sum of hierarchical mutual informations is expressed
as follows:

I(X;Z) + I(Z;Y ) = H(X)−H(X|Z) + H(Z)−H(Z|Y ) (2)
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Figure 1: (a) Standard feed-forward neural network model, (b) feed-forward neural network model
with reconstruction paths, and (c) feed-forward neural network model with reconstruction and
stochastic perturbation paths.

where I(·; ·) is the mutual information between random variables, and H(·) and H(·|·) are the entropy
and the conditional entropy of random variables, respectively. Note that the sum of those mutual
informations becomes equivalent to the total correlation ofX , Z, and Y under the graphical structure
of the general feed-forward model described in Figure 1(a); P (X,Z, Y ) = P (Y |Z)P (Z|X)P (X).
The total correlation is equal to the sum of all pairwise mutual informations (Watanabe, 1960).

Our objective is to find the model parameters which maximize I(X;Z)+ I(Z;Y ). Since H(X) and
H(Z) are non-negative, and H(X) is constant in this case, the lower bound on I(X;Z) + I(Z;Y )
can be reduced to 1:

I(X;Z) + I(Z;Y ) ≥ −H(X|Z)−H(Z|Y ) . (3)

It is known that maximizing −H(X|Z) can be formulated as minimizing the reconstruction error
between the input x(i) (i-th example sampled from X) and its reconstruction x(i)R under the general
audo-encoder framework (Vincent et al., 2010). Since H(X|Z) + H(Z|Y ) is proportional to the
sum of reconstruction errors of x(i) (with its reconstruction x(i)R ) and z(i) (with its reconstruction
z
(i)
R ), the target objective can be expressed as follows (refer to Appendix (A1) for the details of

mathematical derivations):

min
θ

∑
i

Lrec(x
(i), x

(i)
R ) + Lrec(z

(i), z
(i)
R ) (4)

where Lrec is a reconstruction loss.

Figure 1(b) shows the target model obtained from the assumption that good latent representation Z
can be obtained by maximizing the sum of hierarchical mutual informations. Given an input sample
x, feed-forward vectors and their reconstructions are attained deterministically by:

z = fθ1(x)

y = fθ2(fθ1(x))

xR = gθ′1(z) = gθ′1(fθ1(x))

zR = gθ′2(y) = gθ′2(fθ2(fθ1(x)) .

(5)

1Although H(Z) is an upper bound of H(Z|Y ), H(Z) is anyway affected by the process of H(Z|Y ) being
minimized in Eq. (3). In Section 4, we experimentally show that we can obtain good base model even from the
relatively loose lower bound defined in Eq. (3).
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Given a set of training pairs (x(i), t(i)) where x(i) and t(i) are the i-th input example and its label,
target objective in Eq. (1) under the model described in Figure 1(b) can be organized as below (with
real-valued input samples, L2 loss LL2 is a proper choice for the reconstruction loss Lrec):

min
θ:{θ1,θ′1,θ2,θ′2}

∑
i

λ
(
LL2(x

(i), x
(i)
R ) + LL2(z

(i), z
(i)
R )
)
+ LNLL(y

(i), t(i)) (6)

where LNLL is a negative log-likelihood loss for the target supervised task. Note that Eq. (6)
represents the ‘proposed-base’ in our experiment (see Section 4.3).

2.2 SEMANTIC NOISE MODELING

Based on the architecture shown in Figure 1(b) with the target objective in Eq. (6), we conjecture
that stochastic perturbation on the latent space during training helps to achieve better generalization
performance for supervised tasks. Figure 1(c) shows this strategy which integrates the stochastic
perturbation process during training. Suppose that ZP is a perturbed version of Z, and YP is an
output which is feed-forwarded from ZP . Given a latent vector z = fθ1(x) from an input sample x,

z′ = z + ze and ŷ = fθ2(z
′) (7)

where z′ and ŷ are a perturbed latent vector and its output respectively, and ze is an additive noise
used in the perturbation process of z. Based on the architecture shown in Figure 1(c), target objective
can be modified as:

min
θ:{θ1,θ′1,θ2,θ′2}

∑
i

λ1

(
LL2(x

(i), x
(i)
R ) + LL2(z

(i), z
(i)
R )
)
+ λ2LNLL(y

(i), t(i)) + LNLL(ŷ
(i), t(i)) .

(8)

Using random additive noise directly on ze is the most intuitive approach (‘proposed-perturb (ran-
dom)’ in Section 4.3). However, preserving the semantics of the original latent representation z
cannot be guaranteed under the direct random perturbation on the latent space. While the latent
space is not directly interpretable in general, the output logit y of the latent representation z is inter-
pretable, because the output logit is tightly coupled to the prediction of the target label. In order to
preserve the semantics of the original latent representation after perturbation, we indirectly model a
semantic noise on the latent space by adding small random noise directly on the output space.

Based on the output (pre-softmax) logit y, the semantic-preserving variation of y (i.e. y′) can be
modeled by y′ = y + ye, where ye is a random noise vector stochastically sampled from a zero-
mean Gaussian with small standard deviation σ; N (0, σ2I). Now, the semantic perturbation z′ can
be reconstructed from the random perturbation y′ through the decoding path gθ′2 in Figure 1(c).
From the original output logit y and the randomly perturbed output logit y′, semantic additive noise
ze on the latent space can be approximately modeled as below:

zR = gθ′2(y)

z′R = gθ′2(y
′) = gθ′2(y + ye)

ze ' z′R − zR = gθ′2(y + ye)− gθ′2(y)
(9)

By using the modeled semantic additive noise ze and the original latent representation z, we can
obtain the semantic perturbation z′ as well as its output ŷ via Eq. (7) for our target objective Eq. (8).

From the described semantic noise modeling process (‘proposed-perturb (semantic)’ in Section 4.3),
we expect to achieve better representation on the latent space. The effect of the proposed model in
terms of learned latent representation will be explained in more detail in Section 4.4.
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(a) (b)

Figure 2: Previous works for supervised learning; (a) traditional feed-forward model, and (b) joint
learning model with both supervised and unsupervised losses.

3 RELATED WORKS

Previous works on deep neural networks for supervised learning can be categorized into two types as
shown in Figure 2; (a) a general feed-forward neural network model (LeCun et al., 1998; Krizhevsky
et al., 2012; Simonyan & Zisserman, 2015; He et al., 2016), and (b) a joint learning model which
optimizes unsupervised and supervised objectives at the same time (Zhao et al., 2015; Zhang et al.,
2016; Cho & Chen, 2014). Here are the corresponding objective functions:

min
θ:{θ1,θ2}

∑
i

LNLL(y
(i), t(i)) (10)

min
θ:{θ1,θ′1,θ2}

∑
i

λLL2(x
(i), x

(i)
R ) + LNLL(y

(i), t(i)) (11)

where λ is a loss weighting coefficient between unsupervised and supervised losses.

Since the feed-forward neural network model is normally implemented with multiple layers in a
deep learning framework, the joint learning model can be sub-classified into two types according to
the type of reconstruction; reconstruction only with the input data x (Eq. (11)) and reconstruction
with all the intermediate features including the input data x as follows:

min
θ

∑
i

λ0LL2(x(i), x(i)R ) +
∑
j

λjLL2(h
(i)
j , h

(i)
jR
) + LNLL(y

(i), t(i))

 . (12)

where h(i)j and h(i)jR are the j-th hidden representation of the i-th training example and its reconstruc-
tion.

Another type of the joint learning model, a ladder network (Figure 3), was introduced for semi-
supervised learning (Rasmus et al., 2015). The key concept of the ladder network is to obtain
robust features by learning de-noising functions (gθ′) of the representations at every layer of the
model via reconstruction losses, and the supervised loss is combined with the reconstruction losses
in order to build the semi-supervised model. The ladder network achieved the best performance in
semi-supervised tasks, but it is not appropriate for supervised tasks with small-scale training set (ex-
perimental analysis for supervised learning on permutation-invariant MNIST is briefly summarized

+ noise + noise

Figure 3: Ladder network; a representative model for semi-supervised learning (Rasmus et al.,
2015).
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in Appendix (A2)). The proposed model in this work can be extended to semi-supervised learning,
but our main focus is to enhance the representational power on latent space given labelled data for
supervised learning. We leave the study for semi-supervised learning scenario based on the proposed
methodology as our future research.

4 EXPERIMENTS

For quantitative analysis, we compare the proposed methodology with previous approaches de-
scribed in Section 3; a traditional feed-forward supervised learning model and a joint learning model
with two different types of reconstruction losses (reconstruction only with the first layer or with all
the intermediate layers including the first layer). The proposed methodology includes a baseline
model in Figure 1(b) as well as a stochastic perturbation model in Figure 1(c). Especially in the
stochastic perturbation model, we compare the random and semantic perturbations and present some
qualitative analysis on the meaning of the proposed perturbation methodology.

4.1 DATASETS

We experiment with two public datasets; MNIST (including a permutation-invariant MNIST case)
and CIFAR-10. MNIST (10 classes) consists of 50k, 10k, and 10k 28×28 gray-scale images for
training, validation, and test datasets, respectively. CIFAR-10 (10 classes) consists of 50k and 10k
32×32 3-channel images for training and test sets, respectively. We split the 50k CIFAR-10 training
images into 40k and 10k for training and validation. Experiments are performed with different
sizes of training set (from 10 examples per class to the entire training set) in order to verify the
effectiveness of the proposed model in terms of generalization performance under varying sizes of
training set.

4.2 IMPLEMENTATION

Figure 4 shows the architecture of the neural network model used in this experiment. W ’s are
convolution or fully-connected weights (biases are excluded for visual brevity). Three convolution
(3×3 (2) 32, 3×3 (2) 64, 3×3 (2) 96, where each item means the filter kernel size and (stride)
with the number of filters) and two fully-connected (the numbers of output nodes are 128 and 10,
respectively) layers are used for MNIST. For the permutation-invariant MNIST setting, 784-512-
256-256-128-10 nodes of fully-connected layers are used. Four convolution (5×5 (1) 64, 3×3 (2)
64, 3×3 (2) 64, and 3×3 (2) 96) and three fully-connected (128, 128, and 10 nodes) layers are used
for CIFAR-10. Weights on the decoding (reconstruction) path are tied with corresponding weights
on the encoding path as shown in Figure 4 (transposed convolution for the tied convolution layer
and transposed matrix multiplication for the tied fully-connected layer).

In Figure 4, z′ is perturbed directly from z by adding Gaussian random noise for random pertur-
bation. For semantic perturbation, z′ is indirectly generated from y′ which is perturbed by adding
Gaussian random noise on y based on Eq. (9). For perturbation, base activation vector (z is the base

Figure 4: Target network architecture; 3 convolution and 2 fully-connected layers were used for
MNIST, 5 fully-connected layers were used for permutation-invariant MNIST, and 4 convolution
and 3 fully-connected layers were used for CIFAR-10.
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Table 1: Error rate (%) on the test set using the model with the best performance on the validation
set. Numbers on the first row of each sub-table are the number of randomly chosen per-class train-
ing examples. The average performance and the standard deviation of three different random-split
datasets (except for the case using the entire training set in the last column) are described in this table
(error rate on each random set is summarized in Appendix (A3)). Performance of three previous ap-
proaches (with gray background; previous-1, 2, 3 are feed-forward model Figure 2(a), joint learning
model with recon-one Figure 2(b), joint learning model with recon-all Figure 2(b), respectively) and
the proposed methods (proposed-1, 2, 3 are baseline Figure 1(b), random perturbation Figure 1(c),
semantic perturbation Figure 1(c), respectively) is summarized.

dataset number of per-class examples chosen from 50k entire MNIST training examples entire set

MNIST 10 20 50 100 200 500 1k 2k 50k

previous-1 24.55 (3.04) 16.00 (1.33) 10.35 (0.66) 6.58 (0.42) 4.71 (0.28) 2.94 (0.23) 1.90 (0.27) 1.45 (0.08) 1.04

previous-2 21.67 (3.19) 13.60 (0.99) 7.85 (0.10) 5.44 (0.37) 4.14 (0.08) 2.50 (0.15) 1.84 (0.07) 1.45 (0.07) 1.12

previous-3 20.11 (2.81) 13.69 (0.62) 9.15 (0.15) 6.77 (0.25) 5.39 (0.11) 3.89 (0.27) 2.91 (0.17) 2.28 (0.10) 1.87

proposed-1 21.35 (1.16) 11.65 (1.15) 6.33 (0.10) 4.32 (0.31) 3.07 (0.11) 1.98 (0.11) 1.29 (0.09) 0.94 (0.02) 0.80

proposed-2 20.17 (1.52) 11.68 (0.81) 6.24 (0.29) 4.12 (0.24) 3.04 (0.13) 1.88 (0.05) 1.24 (0.03) 0.96 (0.08) 0.65

proposed-3 20.11 (0.81) 10.59 (0.74) 5.92 (0.12) 3.79 (0.23) 2.72 (0.09) 1.78 (0.05) 1.15 (0.01) 0.88 (0.03) 0.62

dataset number of per-class examples chosen from 40k entire CIFAR-10 training examples entire set

CIFAR-10 10 20 50 100 200 500 1k 2k 40k

previous-1 73.82 (1.43) 68.99 (0.54) 61.30 (0.83) 54.93 (0.56) 46.97 (0.59) 33.69 (0.43) 26.63 (0.39) 20.97 (0.09) 17.80

previous-2 75.68 (1.56) 69.05 (1.13) 61.44 (0.63) 55.02 (0.34) 46.18 (0.51) 33.62 (0.38) 26.78 (0.48) 21.25 (0.40) 17.68

previous-3 73.33 (1.06) 67.63 (0.56) 62.59 (0.76) 56.37 (0.20) 50.51 (0.61) 41.26 (0.73) 32.55 (1.20) 26.38 (0.08) 22.71

proposed-1 71.63 (0.69) 66.17 (0.40) 58.91 (0.86) 52.65 (0.28) 43.46 (0.30) 31.86 (0.54) 25.76 (0.31) 21.06 (0.18) 17.45

proposed-2 71.69 (0.25) 66.75 (0.54) 58.95 (0.63) 53.01 (0.26) 43.71 (0.19) 31.80 (0.18) 25.50 (0.33) 20.81 (0.27) 17.43

proposed-3 71.50 (1.14) 66.87 (0.17) 58.30 (0.62) 52.32 (0.08) 42.98 (0.34) 30.91 (0.23) 24.81 (0.26) 20.19 (0.25) 16.16

vector for the random perturbation and y is the base vector for the semantic perturbation) is scaled to
[0.0, 1.0], and the zero-mean Gaussian noise with 0.2 of standard deviation is added (via element-
wise addition) on the normalized base activation. This perturbed scaled activation is de-scaled with
the original min and max activations of the base vector.

Initial learning rates are 0.005 and 0.001 for MNIST and permutation-invariant MNIST, and 0.002
for CIFAR-10, respectively. The learning rates are decayed by a factor of 5 every 40 epochs until the
120-th epoch. For both datasets, the minibatch size is set to 100, and the target objective is optimized
using Adam optimizer (Kingma & Ba, 2015) with a momentum 0.9. All the λ’s for reconstruction
losses in Eq. (11) and Eq. (12) are 0.03 and 0.01 for MNIST and CIFAR-10, respectively. The same
weighting factors for reconstruction losses (0.03 for MNIST and 0.01 for CIFAR-10) are used for
λ1 in Eq (8), and 1.0 is used for λ2.

Input data is first scaled to [0.0, 1.0] and then whitened by the average across all the training exam-
ples. In CIFAR-10, random cropping (24×24 image is randomly cropped from the original 32×32
image) and random horizontal flipping (mirroring) are used for data augmentation. We selected
the network that performed best on the validation dataset for evaluation on the test dataset. All the
experiments are performed with TensorFlow (Abadi et al., 2015).

4.3 QUANTITATIVE ANALYSIS

Three previous approaches (a traditional feed-forward model, a joint learning model with the input
reconstruction loss, and a joint learning model with reconstruction losses of all the intermediate
layers including the input layer) are compared with the proposed methods (the baseline model in
Figure 1(b), and the stochastic perturbation model in Figure 1(c) with two different perturbation
methods; random and semantic). We measure the classification performance according to varying
sizes of training set (examples randomly chosen from the original training dataset). Performance is
averaged over three different random trials.
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(a) (b)

Figure 5: Examples reconstructed from the perturbed latent vectors via (a) random perturbation,
and (b) semantic perturbation (top row shows the original training examples). More examples are
summarized in Appendix (A4.1).

Table 1 summarizes the classification performance for MNIST and CIFAR-10. As we expected,
the base model obtained by maximizing the sum of mutual informations (proposed-base) mostly
performs better than previous approaches, and the model with the semantic perturbation (proposed-
perturb (semantic)) performs best among all the comparison targets. Especially in MNIST, the error
rate of ‘proposed-perturb (semantic)’ with 2k per-class training examples is less than the error rate
of all types of previous works with the entire training set (approximately 5k per-class examples).

We further verify the proposed method on the permutation-invariant MNIST task with a standard
feed-forward neural network. Classification performance is measured against three different sizes of
training set (1k, 2k, and 5k per-class training examples). ‘Proposed-perturb (semantic)’ achieves the
best performance among all the configurations; 2.57%, 1.82%, and 1.28% error rates for 1k, 2k, and
5k per-class training examples, respectively. The joint learning model with the input reconstruction
loss performs best among three previous approaches; 2.72%, 1.97%, and 1.38% error rates for 1k,
2k, and 5k per-class training examples, respectively.

4.4 QUALITATIVE ANALYSIS

As mentioned before, random perturbation by adding unstructured noise directly to the latent rep-
resentation cannot guarantee preserving the semantics of the original representation. We com-
pared two different perturbation methods (random and semantic) by visualizing the examples recon-
structed from the perturbed latent vectors (Figure 5). Top row is the original examples selected from
training set (among 2k per-class training examples), and the rest are the reconstructions of their per-
turbed latent representations. Based on the architecture described in Figure 1(b), we generated five
different perturbed latent representations according to the type of perturbation, and reconstructed
the perturbed latent vectors through decoding path for reconstruction.

Figure 5(a) and (b) show the examples reconstructed from the random and semantic perturbations,
respectively. For both cases, zero-mean Gaussian random noise (0.2 standard deviation) is used for
perturbation. As shown in Figure 5(a), random perturbation partially destroys the original semantics;
for example, semantics of ‘1’ is mostly destroyed under random perturbation, and some examples
of ‘3’ are reconstructed as being similar to ‘8’ rather than its original content ‘3’. Figure 5(b)
shows the examples reconstructed from the semantic perturbation. The reconstructed examples show
subtle semantic variations while preserving the original semantic contents; for example, thickness
difference in ‘3’ (example on the third row) or writing style difference in ‘8’ (openness of the top
left corner).

Figure 6 shows the overall effect of the perturbation. In this analysis, 100 per-class MNIST exam-
ples are used for training. From the trained model based on the architecture described in Figure 1(b),
latent representations z of all the 50k examples (among 50k examples, only 1k examples were used
for training) are visualized by using t-SNE (Maaten & Hinton, 2008). Only the training examples of
three classes (0, 1, and 9) among ten classes are depicted as black circles for visual discrimination in
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Figure 6: Training examples (circles or crosses with colors described below) over the examples
not used for training (depicted as background with different colors); (a) training examples (black
circles), (b) training examples (yellow circles) with 3× random-perturbed samples (blue crosses),
and (c) training examples (yellow circles) with 3× semantic-perturbed samples (blue crosses). Best
viewed in color.

Figure 6(a). The rest of the examples which were not used for training (approximately 4.9k exam-
ples per class) are depicted as a background with different colors. We treat the colored background
examples (not used for training) as a true distribution of unseen data in order to estimate the gener-
alization level of learned representation according to the type of perturbation. Figure 6(b) and (c)
show the training examples (100 examples per class with yellow circles) and their perturbed ones
(3× sampled from each example with blue crosses) through random and semantic perturbations,
respectively.

In Figure 6(b), perturbed samples are distributed near the original training examples, but some sam-
ples outside the true distribution cannot be identified easily with appropriate classes. This can be
explained with Figure 5(a), since some perturbed samples are ambiguous semantically. In Fig-
ure 6(c), however, most of the perturbed samples evenly cover the true distribution. As mentioned
before, stochastic perturbation with the semantic additive noise during training implicitly incurs the
effect of augmentation on the latent space while resulting in better generalization. Per-class t-SNE
results are summarized in Appendix (A4.2).

5 DISCUSSION

We introduced a novel latent space modeling method for supervised tasks based on the standard
feed-forward neural network architecture. The presented model simultaneously optimizes both su-
pervised and unsupervised losses based on the assumption that the better latent representation can
be obtained by maximizing the sum of hierarchical mutual informations. Especially the stochas-
tic perturbation process which is achieved by modeling the semantic additive noise during training
enhances the representational power of the latent space. From the proposed semantic noise model-
ing process, we can expect improvement of generalization performance in supervised learning with
implicit semantic augmentation effect on the latent space.

The presented model architecture can be intuitively extended to semi-supervised learning because
it is implemented as the joint optimization of supervised and unsupervised objectives. For semi-
supervised learning, however, logical link between features learned from labelled and unlabelled
data needs to be considered additionally. We leave the extension of the presented approach to semi-
supervised learning for the future.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
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APPENDIX

(A1) DERIVATION OF RECONSTRUCTION ERRORS FROM CONDITIONAL ENTROPY TERMS

Extended from Section 2. From the lower bound in Eq. (3), we consider the following optimization
problem (refer to ‘Section 2. From mutual information to autoencoders’ in (Vincent et al., 2010)):

max
{θ1,θ′1,θ2,θ′2}

Eq(X,Z,Y ) [log q(X|Z)] + Eq(X,Z,Y ) [log q(Z|Y )] . (13)

Here, we denote q(X,Z, Y ) an unknown joint distribution. Note that Z and Y are respectively
the variables transformed from parametric mappings Z = fθ1(X) and Y = fθ2(Z) (see Fig. 1).
q(X,Z, Y ) then can be reduced to q(X) from q(Z|X; θ1) = δ(Z − fθ1(X)) and q(Y |Z; θ2) =
δ(Y − fθ2(Z)) where δ denotes Dirac-delta function.

From the Kullback-Leibler divergence that DKL(q||p) ≥ 0 for any two distributions p and q, the
optimization in Eq. (13) corresponds to the following optimization problem where p(·) denotes a
parametric distribution:

max
{θ1,θ′1,θ2,θ′2}

Eq(X) [log p(X|Z; θ′1)] + Eq(X) [log p(Z|Y ; θ′2)] . (14)

By replacing q(X) with a sample distribution q0(X) and putting all parametric dependencies be-
tween X , Z and Y , we will have

max
{θ1,θ′1,θ2,θ′2}

Eq0(X) [log p(X|Z = fθ1(X); θ′1)] + Eq0(X) [log p(Z|Y = fθ2(fθ1(X)); θ′2)] . (15)

For a given input sample x ofX , it is general to interpret xR and zR as the parameters of distributions
p(X|XR = xR) and p(Z|ZR = zR) which reconstruct x and z with high probability (i.e. xR and
zR are not exact reconstructions of x and z). Since xR and zR are real-valued, we assume Gaussian
distribution for these conditional distributions, that is,

p(X|XR = xR) = N (xR, σ
2
0I)

p(Z|ZR = zR) = N (zR, σ
2
0I) .

(16)

The assumptions yield − log p(·|·) ∝ LL2(·, ·).
With the following relations for log terms in Eq. (15),

p(X|Z = fθ1(x); θ
′
1) = p(X|XR = gθ′1(fθ1(x)))

p(Z|Y = fθ2(fθ1(x)); θ
′
2) = p(Z|ZR = gθ′2(fθ2(fθ1(x))) ,

(17)

the optimization problem in Eq. (15) corresponds to the minimization problem of reconstruction
errors for input examples x(i) as below:

min
{θ1,θ′1,θ2,θ′2}

∑
i

LL2(x
(i), x

(i)
R ) + LL2(z

(i), z
(i)
R ) . (18)
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(A2) LADDER NETWORK, A REPRESENTATIVE SEMI-SUPERVISED LEARNING MODEL

Extended from Section 3. We performed experiments with a ladder network model (Rasmus et al.,
2015) in order to estimate the performance on pure supervised tasks according to different sizes of
training set. We used the code (https://github.com/rinuboney/ladder.git) for this experiment. The
network architecture implemented on the source code is used as is; (784-1000-500-250-250-250-
10). Based on the same network architecture, we implemented the proposed stochastic perturbation
model described in Figure 1(c) and compared the classification performance with the ladder network
as described in Table 2 (we did not focus on searching the optimal hyperparameters for the proposed
model in this experiment). As summarized in the bottom of the table (mean over 3 random trials),
the proposed semantic noise modeling method shows a fairly large performance gain compared to
the ladder network model with small-scale datasets (e.g., in a case of 10 per-class training examples,
the proposed method achieves 22.11% of error rate, while the ladder network shows 29.66%).

Table 2: Classification performance (error rate in %) of the ladder network and the proposed model
on three different sets of randomly chosen training examples (MNIST).

set No.1 (# training examples per class) 10 20 50 100 200 500 1k 2k (all) 5k

ladder network model; Figure 3 25.85 16.48 9.26 6.00 4.66 3.07 2.15 1.26 0.91

proposed-perturb (semantic); Figure 1(c) 19.76 12.33 8.77 6.06 4.59 2.93 1.87 1.31 0.93

set No.2 (# training examples per class) 10 20 50 100 200 500 1k 2k

ladder network model; Figure 3 33.14 17.46 10.44 6.67 4.43 2.82 1.94 1.37

proposed-perturb (semantic); Figure 1(c) 23.36 15.35 9.43 5.75 4.43 2.99 1.87 1.39

set No.3 (# training examples per class) 10 20 50 100 200 500 1k 2k

ladder network model; Figure 3 29.99 16.99 9.73 7.34 4.39 3.00 2.12 1.47

proposed-perturb (semantic); Figure 1(c) 23.21 13.98 8.83 6.51 4.32 2.94 2.22 1.49

mean over 3 random trials 10 20 50 100 200 500 1k 2k (all) 5k

ladder network model; Figure 3 29.66 16.98 9.81 6.67 4.49 2.96 2.07 1.37 0.91

proposed-perturb (semantic); Figure 1(c) 22.11 13.89 9.01 6.11 4.45 2.95 1.99 1.40 0.93
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(A3) QUANTITATIVE ANALYSIS

Extended from Section 4.3. Among the total 50k and 40k training examples in MNIST and CIFAR-
10, we randomly select the examples for training. Classification performance according to three
different randomly chosen training sets are summarized in Table 3 (MNIST) and Table 4 (CIFAR-
10). Further experiments with denoising constraints are also included. Zero-mean Gaussian random
noise with 0.1 standard deviation is used for noise injection. Denoising function helps to achieve
slightly better performance on MNIST, but it results in performance degradation on CIFAR-10 (we
did not focus on searching the optimal parameters for noise injection in this experiments).

Table 3: Classification performance (error rate in %) on three different sets of randomly chosen
training examples (MNIST).

Set No.1 (# train examples per class) 10 20 50 100 200 500 1k 2k (all) 5k

feed-forward model; Figure 2(a) 22.61 14.20 11.25 6.37 4.34 2.63 1.83 1.56 1.04

joint learning model with recon-one; Figure 2(b) 18.69 12.21 7.84 5.17 4.02 2.58 1.79 1.47 1.12

joint learning model with recon-one with denoising constraints 20.39 11.91 7.41 4.64 3.65 2.57 1.97 1.53 0.97

joint learning model with recon-all; Figure 2(b) 18.82 12.82 9.34 6.43 5.23 4.12 2.68 2.42 1.87

joint learning model with recon-all with denoising constraints 17.93 11.76 7.32 4.78 3.91 3.04 2.52 1.99 1.36

proposed-base; Figure 1(b) 20.23 10.18 6.47 3.89 3.04 1.89 1.33 0.91 0.80

proposed-base with denoising constraints 19.88 10.89 6.62 4.26 3.40 2.44 2.11 1.54 1.13

proposed-perturb (random); Figure 1(c) 18.38 10.58 6.64 3.78 3.14 1.90 1.21 0.89 0.65

proposed-perturb (semantic); Figure 1(c) 19.33 9.72 5.98 3.47 2.84 1.84 1.16 0.84 0.62

Set No.2 (# train examples per class) 10 20 50 100 200 500 1k 2k

feed-forward model; Figure 2(a) 28.84 17.36 10.14 6.20 4.78 3.02 1.61 1.41

joint learning model with recon-one; Figure 2(b) 26.09 14.40 7.98 5.18 4.17 2.29 1.94 1.52

joint learning model with recon-one with denoising constraints 27.69 13.11 6.95 5.07 3.54 2.37 1.83 1.28

joint learning model with recon-all; Figure 2(b) 24.01 14.13 8.98 6.84 5.44 3.51 2.98 2.18

joint learning model with recon-all with denoising constraints 23.05 13.29 7.79 5.12 3.92 3.01 2.27 1.84

proposed-base; Figure 1(b) 22.95 12.98 6.27 4.43 3.22 2.14 1.37 0.96

proposed-base with denoising constraints 26.96 12.21 6.45 4.62 3.13 2.53 1.88 1.49

proposed-perturb (random); Figure 1(c) 22.10 12.52 5.97 4.26 2.86 1.94 1.23 0.92

proposed-perturb (semantic); Figure 1(c) 21.22 11.52 5.75 3.91 2.61 1.73 1.14 0.89

Set No.3 (# train examples per class) 10 20 50 100 200 500 1k 2k

feed-forward model; Figure 2(a) 22.20 16.43 9.67 7.16 5.02 3.17 2.25 1.39

joint learning model with recon-one; Figure 2(b) 20.23 14.19 7.73 5.96 4.22 2.62 1.79 1.35

joint learning model with recon-one with denoising constraints 19.32 12.25 7.44 5.39 3.58 2.37 1.49 1.56

joint learning model with recon-all; Figure 2(b) 17.51 14.12 9.12 7.04 5.49 4.05 3.08 2.25

joint learning model with recon-all with denoising constraints 17.07 12.50 7.86 5.48 4.05 2.97 2.02 1.98

proposed-base; Figure 1(b) 20.86 11.79 6.25 4.63 2.96 1.91 1.16 0.96

proposed-base with denoising constraints 19.89 11.30 6.26 4.57 3.50 2.63 1.61 1.47

proposed-perturb (random); Figure 1(c) 20.02 11.94 6.12 4.32 3.13 1.81 1.28 1.08

proposed-perturb (semantic); Figure 1(c) 19.78 10.53 6.03 4.00 2.70 1.76 1.14 0.92
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Table 4: Classification performance (error rate in %) on three different sets of randomly chosen
training examples (CIFAR-10).

Set No.1 (# train examples per class) 10 20 50 100 200 500 1k 2k (all) 4k

feed-forward model; Figure 2(a) 73.30 69.25 62.42 55.65 47.71 34.30 27.04 21.06 17.80

joint learning model with recon-one; Figure 2(b) 75.19 70.38 62.25 55.30 46.89 34.12 26.63 21.05 17.68

joint learning model with recon-one with denoising constraints 73.72 68.20 61.99 55.23 46.64 36.37 29.78 25.53 21.73

joint learning model with recon-all; Figure 2(b) 74.79 68.33 62.92 56.24 51.37 40.30 30.91 26.49 22.71

joint learning model with recon-all with denoising constraints 76.56 69.67 64.53 57.88 52.74 42.24 36.90 30.93 27.41

proposed-base; Figure 1(b) 70.79 66.57 59.91 52.98 43.29 32.25 26.19 20.92 17.45

proposed-base with denoising constraints 71.03 67.49 60.37 53.52 44.28 33.40 28.00 25.06 21.34

proposed-perturb (random); Figure 1(c) 71.89 67.12 59.22 52.79 43.87 31.82 25.04 20.97 17.43

proposed-perturb (semantic); Figure 1(c) 71.59 66.90 58.64 52.34 42.74 30.94 24.45 20.10 16.16

Set No.2 (# train examples per class) 10 20 50 100 200 500 1k 2k

feed-forward model; Figure 2(a) 72.39 69.49 60.45 54.85 46.91 33.39 26.73 21.00

joint learning model with recon-one; Figure 2(b) 74.06 69.14 60.71 54.54 45.70 33.54 27.43 20.90

joint learning model with recon-one with denoising constraints 76.40 69.33 60.28 55.38 47.40 36.29 29.31 24.60

joint learning model with recon-all; Figure 2(b) 72.28 67.60 61.53 56.65 49.99 42.08 32.99 26.33

joint learning model with recon-all with denoising constraints 73.90 69.23 61.90 57.99 52.35 45.12 37.23 30.14

proposed-base; Figure 1(b) 72.49 65.62 57.82 52.66 43.20 32.24 25.60 21.32

proposed-base with denoising constraints 72.99 66.75 57.78 53.81 44.33 33.56 28.40 25.03

proposed-perturb (random); Figure 1(c) 71.84 65.98 58.08 53.37 43.44 31.56 25.69 21.03

proposed-perturb (semantic); Figure 1(c) 72.85 66.65 57.44 52.21 42.74 31.17 24.99 20.54

Set No.3 (# train examples per class) 10 20 50 100 200 500 1k 2k

feed-forward model; Figure 2(a) 75.78 68.24 61.02 54.29 46.28 33.38 26.11 20.85

joint learning model with recon-one; Figure 2(b) 77.79 67.62 61.37 55.22 45.96 33.21 26.29 21.81

joint learning model with recon-one with denoising constraints 76.60 69.27 61.13 55.10 47.50 37.12 29.63 24.88

joint learning model with recon-all; Figure 2(b) 72.92 66.97 63.31 56.23 50.16 41.41 33.75 26.31

joint learning model with recon-all with denoising constraints 76.83 68.53 65.58 58.29 52.43 45.42 39.01 32.32

proposed-base; Figure 1(b) 71.60 66.31 58.99 52.30 43.88 31.10 25.48 20.95

proposed-base with denoising constraints 72.39 67.20 60.60 52.64 44.62 33.52 28.01 25.25

proposed-perturb (random); Figure 1(c) 71.34 67.15 59.55 52.86 43.81 32.01 25.78 20.42

proposed-perturb (semantic); Figure 1(c) 70.06 67.07 58.83 52.41 43.47 30.61 25.00 19.94
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(A4.1) QUALITATIVE ANALYSIS

Extended from Section 4.4. Figure 7 shows reconstructed examples from perturbed (random or
semantic) latent representations (refer to Figure 5 and the analysis described in Section 4.4).

Example.1 random perturbation Example.1 semantic perturbation

Example.2 random perturbation Example.2 semantic perturbation

Figure 7: For each example, top row is the original examples selected from the training set, and
the rest are reconstructed from the perturbed representations via random (left) and semantic (right)
perturbations.
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(A4.2) QUALITATIVE ANALYSIS

Extended from Section 4.4. Figure 8 shows the t-SNE results per class on MNIST. The overall
tendency is similar to the description in Section 4.4.
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Figure 8: From top to bottom: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. From left to right: training exam-
ples (circle), training examples (circle) + random-perturbed samples (cross), and training examples
(circle) + semantic-perturbed samples (cross). Best viewed in color.
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