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Abstract

We find a surprising connection between multitask learning and robustness to
neuron failures. Our experiments show that bilingual language models retain
higher performance under various neuron perturbations, such as random deletions,
magnitude pruning and weight noise compared to equivalent monolingual ones. We
provide a theoretical justification of this robustness by mathematically analyzing
linear representation learning and showing that multitasking creates more robust
representations. Our analysis connects robustness to spectral properties of the
learned representation and proves that multitasking leads to higher robustness for
diverse task vectors. We open-source our code and models in the following URL:
https://github.com/giannisdaras/multilingual robustness.

1 Introduction

Converging evidence from cognitive science research indicates that bilingualism increases brain
robustness by reducing the rate of cognitive decline due to aging [1, 2] and delaying the onset of
symptoms of dementia [3, 4]. It appears that individuals who speak more than one language on a
regular basis are able to maintain typical cognitive functioning despite neural degeneration. This
mismatch between cognitive functioning and brain pathology is called Cognitive Reserve [5], and its
underlying mechanisms are poorly understood and are an active topic of investigation.

Inspired by this research, we study whether artificial neural networks are more robust when trained
on multiple languages or multiple tasks. Our experiments demonstrate that training on multiple
tasks indeed increases structural robustness. We train monolingual and bilingual GPT-2 models
with the same architecture and dataset sizes. Initially, monolingual GPT-2 [6] models are slightly
outperforming the bilingual ones, but when we introduce structural noise (by randomly deleting
neurons or adding noise to the weights) bilingual models degrade more gracefully and eventually
outperform the monolingual models in the high-noise regime. For some amount of noise, bilingual
models start outperforming the monolingual ones demonstrating a cross-over in performance due
to their increased robustness. We observe this phenomenon for numerous models across three
different types of corruption: additive Gaussian noise to the weights, random weight pruning and
magnitude-based weight pruning [7].

Our Contributions: We provide a theoretical justification of this phenomenon by mathematically
analyzing linear multitask representation learning [8, 9]. Our analysis shows that introducing more

˚equal contribution.
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Cross-over point

Figure 1: Performance of monolingual and bilingual GPT-2 models with the same architecture and training
dataset size. We show the performance as we randomly erase weights. The x-axis indicates the probability of
erasing an attention weight parameter (setting to it zero). The y-axis indicates the average perplexity over 20
runs with 95% confidence intervals. The bilingual model initially shows slightly worse performance, but as more
weights are deleted, the monolingual model declines faster and performs worse in the highly damaged regime.
This indicates that the bilingual GPT-2 model is more robust to neuron weight erasures. We show similar results
for several models and types of errors in our experimental section.
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Figure 2: Let c1, c2, c3 be the standard basis of R3. For two tasks, the best one dimensional approximation
to c1, c2 is ĉ1 “ r1{2, 1{2, 0s

T but the best one dimensional approximation to three tasks c1, c2, c3 is ĉ1
1 “

r1{3, 1{3, 1{3s
T . Multi-tasking is creating ℓ2 regularization since ||ĉ1

1||2 ă ||ĉ1||2. It is important that the
original task vectors c1, c2, c3 are orthogonal i.e. diverse, since this creates regularization.

diverse tasks creates ℓ2 regularization in the linear task heads. Further, we formally connect the
Euclidean norm of the learned representations to structural robustness under errors in the network
weights. Our main theorem establishes that multitasking leads to higher robustness to additive noise
for linear representations when the task vectors are selected as random and independent Gaussian
vectors. Our results also establish that when the tasks are significantly overlapping, multitasking does
not lead to higher robustness and hence task diversity is necessary.

We experimentally observe that multitasking increases structural robustness for numerous networks
and multiple problems including MNIST, CIFAR10, Newsgroup20, GPT models and finetuned
GPT models on GLUE tasks. We train networks under exactly comparable dataset and architecture
conditions and show that models become more robust to structural failures as they are trained with
more tasks. We experiment with three different types of structural failures and show robustness
increases for all of them. We also experimentally observe that the addition of diverse tasks seems to
regularize the model weights, as we predict in our theoretical analysis.

2 Theoretical Analysis

Building intuition. We start with a small numerical example to build intuition. Given a feature vector
x P Rd we compute a k dimensional linear representation Wx using a matrix W P Rkˆd. We choose
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W such that we best approximate a set of ground truth task vectors, tc1, c2, ..., cT u, that lie in Rd.
The learned approximation is ĉi “ WT γi. Essentially, we use linear combinations of the columns
of WT to approximate the task vectors. For simplicity, we assume that the columns of WT are unit
norm. We study the case where k ă T , otherwise there are infinite solutions.

Assume we work in d “ 3 dimensions with T “ 3 total tasks, c1 “ r1, 0, 0sT , c2 “ r0, 1, 0sT , c3 “

r0, 0, 1sT . Set our learned representation dimension to be k “ 1 dimensional. When T “ 2, using
only the first two tasks c1, c2, an optimal solution is W “ 1?

2
r1, 1, 0s. The corresponding linear head

is now the scalar γ1 “ 1?
2

“ γ2 and the approximate vectors are ĉ1 “ WT γ1 “ r0.5, 0.5, 0sT “ ĉ2.
Therefore the best one dimensional subspace to jointly approximate c1, c2 is the span of W “
1?
2

r1, 1, 0s. Now we introduce one more task and find the one dimensional subspace that best
approximates c1, c2, c3. That becomes W 1 “ 1?

3
r1, 1, 1s with linear heads γ1

1 “ 1?
3

“ γ1
2 “ γ1

3.
The approximate vectors now are ĉ1

1 “ pW 1qT γ1
1 “ r1{3, 1{3, 1{3sT “ ĉ1

2 “ ĉ1
3. Notice that

||ĉ1
i||

2 “ 1{3 for 3 tasks but ||ĉi||
2 “ 1{2 for two tasks. The point is that for more tasks, the vector

that jointly approximates all task vectors becomes shorter. Equivalently, the ℓ2 norm of the linear
task heads decreases from γi “ 1?

2
to γ1

i “ 1?
3

as the tasks increased from two to three showing
how multitasking creates regularization. A graphical representation of this example is given in Figure
2. It is important that the task vectors ci are orthogonal, increasing the effective dimensionality of
the problem. The intuition is that diverse tasks increase the effective dimension, making the best
approximation vector shorter.

Our main theoretical result is that this phenomenon is quite general and makes multitasking lead
to structural robustness. We connect the norm of the approximated task vectors with robustness to
weight perturbations and show that for Gaussian, independent task vectors the average norm shrinks
as more tasks are added. This is intuitive since high dimensional Gaussian vectors are near-orthogonal.
Surprisingly, we empirically show that task vectors for numerous problems also exhibit this behavior.

Analysis. We consider a neural network fθ : Rd Ñ Rk and a collection of tasks tT1, ..., TT u. We are
trying to learn θ, γi P Rk to solve the following optimization problem:

argminθ,tγ1,...,γT
u

T
ÿ

i“1

Epx,yqPTi
LpγT

i fθpxq, yq. (1)

The neural network fθ can be as simple as a single matrix W : Rd Ñ Rk. For linear networks,
we consider the following dataset generation process: for task Ti, we sample a Gaussian x and we
generate its label y by taking the inner-product with a task vector ci, i.e. y “ cTi x for task Ti. Given
infinite samples and MSE loss, the optimization problem of (1) is equivalent to the following problem.
Definition 2.1 (Optimization Problem). Let k ă T ă d. We define the Factorized Best Rank-k
approximation of a matrix C P RdˆT as the optimization problem:

W˚,Γ˚ “ argminWPRkˆd,ΓPRkˆT

ˇ

ˇ

ˇ

ˇWTΓ ´ C
ˇ

ˇ

ˇ

ˇ

2

F
. (2)

We are interested in the case when the dimensionality of the representation k is smaller than the
number of tasks T , otherwise the best Rank-k approximation of C is not unique.

The following Proposition states that in the considered setting, Problem 2 can be solved with SVD.
Proposition 2.2. For any matrix C P RdˆT with distinct singular values, any solution of 2.1 satisfies:

W˚
T

Γ˚ “ UΣkV
T , (3)

where UΣV T is the SVD of C and Σk is the same as Σ except than the last T ´ k diagonal entries
that are zeroed out.

The fact that the Singular Value decomposition computes the best rank-k approximation to a matrix
can be found in several textbooks e.g. Golub and Van Loan [10], Blum et al. [11].

This proposition establishes that W˚ “ UT and Γ˚ “ ΣkV
T is a valid solution of (2). Onwards, we

will be calling this the SVD Solution.
Definition 2.3. We define the SVD solution of (2), to be:

WSVD “ UT , ΓSVD “ ΣkV
T . (4)

3



We note that if any multitask learning algorithm is used to obtain W˚,Γ˚, one can run Gram-Schmidt
to make W˚ orthonormal and hence obtain the factorization we use. It is important that W stays
normalized and all scaling is pushed to Γ since to measure robustness to weight shifts, we are going
to add noise to W only, and higher W scaling is equivalent to lower effective noise.

We study how the performance is affected when the representation network, fθ, is corrupted.
Definition 2.4. For any sample x, the Mean Squared Error (MSE) for task i is defined to be the
expected error between the model prediction under noise and the true value y. Namely,

MSEi
“ Eθc

“

pγT
i fθcpxq ´ yq2

‰

, (5)
where fθc is the model that emerges after corrupting fθ.

This measures how well the model approximates the ground truth under the presence of noise and
under the constraint of a joint representation for multiple tasks.

The simplest corruption process to study is adding noise to the representation matrix, i.e.
Wc “ W ` N, Nij „ N p0, σ2q, i.i.d (6)

Then, we denote the mean squared error for the task i with MSEi,σ2

and the average mean squared

error across the T tasks with ĘMSE
T,σ2

. We are now ready to introduce our results.
Theorem 2.5 (Mean Squared Error for Additive Noise). Let C P RdˆT be a matrix with distinct
singular values σ1 ą σ2 ą ... ą σT . Let W,Γ be the SVD solution of (2). Under the Additive Noise
Model defined in (6), we have that:

ĘMSE
T,σ2

“ ĘMSE
T,0

`

řk
i“1 σipCq2

T
¨ σ2 . (7)

Average MSE under noise

Average MSE without noise

Noise Variance

As shown, the noisy MSE decomposes into the sum of the noiseless MSE plus the noise variance
times a function that depends on the number of tasks:

RpT q “

řk
i“1 σipCq2

T
. (8)

It is important to emphasize that as more tasks are added, the matrix C changes, but the interlacing
theorem allows us to connect the singular values of smaller submatrices, as discussed in the Appendix.
RpT q is the robustness slope: if a model with T tasks has smaller slope, it will eventually outperform
a model with, say T ´ 1 tasks and larger slope, for sufficiently large noise. This is true even if the
noiseless performance for the T ´ 1-task model is better, indicating a cross-over in MSE. Therefore
the key is understanding when the sum of the top k singular values of C scales sublinearly in T . This
is not true for tasks that are aligned, but we can show it holds for independent Gaussian task vectors.
We believe it holds for more general families of diverse task vectors and our experiments verify it
also holds for numerous real task vectors learned from text and vision datasets.

Connection with l2 regularization. For the SVD solution (see Definition 4), the sum of the top-k
singular values squared is the squared Frobenius norm of Γ. Indeed, we have that ||ΓSVD||2F “

||ΣkV
T ||2F . Since Σk is a diagonal matrix, each row of ΣkV

T is a rescaling of the corresponding
row of V T . Rows of V T have norm 1, hence the i-th row of ΣkV

T will have norm σi. The Frobenius
norm squared is just the sum of the squared norms of the rows. Hence, we get that

||ΓSVD||2F “

k
ÿ

i“1

σipCq2. (9)

Using this simple observation, we can get the following alternative expression of Theorem 2.5.
Corollary 2.6. Let C P RdˆT be a matrix with distinct singular values. Let W,Γ be the SVD solution
of (2). Under the Additive Noise Model defined in (6), we have that:

ĘMSE
T,σ2

“ ĘMSE
T,0

`
||Γ||2F

T
σ2 . (10)
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Corollary 2.6 provides two important insights: i) the normalization with the number of tasks that
appears in (7) is justified since the Frobenius norm of Γ grows with the number of task, ii) if we
can prove that the slope (defined in Equation (8)) is dropping, then we are effectively proving that
multitasking gives l2 regularization as we showed in the toy introductory example. This also holds
for the case of Gaussian, i.i.d. task vectors, as shown in the following theorem.
Theorem 2.7. Let C P RdˆT be a random matrix with Gaussian, i.i.d. entries of variance 1{d and
d “ ΩpT 3q. Let Ct, Ct`1 be the matrices formed by selecting the first t, pt ` 1q columns of C. Then,

there is a noise level σthres such that with probability ě 1 ´ exp
´

´Ω
´?

d
¯¯

, the SVD solutions
(see (4)) of (2) (for Ct, Ct`1 respectively), under the noise corruption model, satisfy:

ĘMSE
t`1,σ2

ă ĘMSE
t,σ2

, @σ ě σthres. (11)

Remark 2.8. In words, this result shows that adding new tasks gives provably increased robustness
to high noise corruption in the weights, when the task vectors are Gaussian.
Remark 2.9. Observe that the MSE under noise drops for every single new task added. The assumption
d “ ΩpT 3q, can be relaxed to d “ Ωpt3q, and we get increased robustness for the first t added tasks.
Nevertheless, for most applications d “ ΩpT 3q is a realistic assumption: Even for our smallest
dataset MNIST d “ 728, and we experiment with up to 10 tasks.

3 Experimental Evaluation

We divide the experimental section in two parts. In the first part, we add noise to the final linear repre-
sentation layer of various networks and verify that our theoretical analysis agrees with experimentally
observed multitasking robustness on real datasets (MNIST, CIFAR10, NewsGroup20). In the second
part, we show that multitasking leads to robustness to general weight corruptions in any layer of a
complex transformer. Specifically, we show that multilingual Language Models are more robust to
weight shifts (across all the layers) compared to monolingual trained under the same setting. This is
the first evidence of increased Cognitive Reserve in bilingual artificial neural networks.

Experiments with Linear Representation Layers. We perform experiments on three datasets
(MNIST, CIFAR10, Newsgroup20) and two modalities (Vision and Language). The datasets normally
involve one classification task each. We create multiple binary tasks by distinguishing between pairs
of labels. For example, in CIFAR10, one task might be to distinguish between dogs and cats and
another between airplanes and cars. We assign a value in r0, 1s to each sample for each task to
transform them to regression tasks (to match our theory). For example, if task i is to distinguish
between dogs and cats, value 0 corresponds to dog and value 1 to cat.

The second issue is learning the task vectors from training data. For MNIST, we can simply learn a
linear layer C with columns tc1, ..., cT u such that: cTi x « y for each task. For more complex datasets
like CIFAR or Newsgroup20, linear networks have lower performance and hence it is less interesting
to examine their robustness. Instead, we first use another network to extract representations gθpxq

and then learn a linear layer acting on the encodings such that cTi gθpxq « y. For CIFAR we used
a pre-trained Resnet50 as the encoder while for NewsGroup, a pre-trained BERT [12]. We would
like to point out that our theory is still valid for this case – this is equivalent to the linear layer C
receiving inputs from a learned representation as opposed to the features directly. As the number of
tasks increase, we reduce the number of training examples per task. We do this to make sure that the
total training dataset size stays the same as the number of tasks increase.

Figure 3 shows how the average MSE behaves as noise increases for different number of tasks.
Note that even though all models begin from roughly the same performance in the noiseless setting,
the multitask models are much more robust to the corruption of their weights consistently among
all the datasets and modalities. This is aligned with our theoretical analysis which predicts that
the robustness slope (defined in Equation (8)) decreases with the number of tasks. We calculate
robustness slopes for learned task vectors for real datasets and plot their decay in the Appendix,
where we further include all the details of how these models were trained.

Experiments with Language Models. Our objective is to compare robustness to neural weight
perturbations in monolingual and bilingual language models. We use the following perturbation
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Figure 3: MSE of model (versus optimal task vector) as a function of noise added to the weights. From left to
right: MNIST, CIFAR10, NewsGroup20. As shown for all these datasets, adding tasks increases the robustness
of the model to noise in the weights.

models: 1) Random deletion of weight parameters: we zero-out p percent of the attention layer
weights, 2) Magnitude pruning: we sort model attention weights by the magnitude and delete the
smallest p percent of weights [7], 3) Random normal noise: we add zero-mean random Gaussian
noise with standard deviation σ2 to the attention weights.

On the selection of the linguistic pair, we selected Greek, a highly inflected language with very
different morphology, syntax and phonology compared to English. It also uses a different script since
Greek characters were not Romanized. This minimizes transfer between languages, something we
wanted to avoid. In the Appendix, we present additional experiments for other Romance languages.

The dataset for the bilingual model is a concatenation of articles from English and Greek Wikipedia.
To avoid the computational cost of training for a new language, we start from the pre-trained GPT-2
(small)[6] and we use the Language Model Recycling Technique, introduced in [13]. GPT-2 small is
a transformer-based architecture for causal language modeling, with 12 attention blocks and 124M
parameters. The tokenizer uses Byte Pair Encoding and has a vocabulary of 50, 257 tokens. For the
bilingual model, we generate a new tokenizer, vocabulary and embedding layer without changing
the architecture. We keep the vocabulary size the same, as changing the vocabulary size can affect
the scale of the perplexity score for these models. Note that Wikipedia documents were not in the
original training of GPT-2, but our monolingual baseline was subsequently finetuned on English
Wikipedia. Details on all our training hyperparameters are included in the Appendix.

We measure the quality of generated text using perplexity. Our bilingual model achieves 89 perplexity
on a randomly picked subset of the OSCAR [14] dataset and 76 perplexity on the English IMDB
dataset [15]. Monolingual GPT-2 model achieves 36 perplexity on the IMDB dataset. In the Appendix
we include generated text for both the models. Although the perplexity of the bilingual model does
not match the pre-trained GPT-2, the generated text is of reasonable quality text in both languages.

Text Generation. Our first experiment is to compare the performance of both models under various
parameter perturbations. First, we try deleting a random portion p (p from 0% to 40%) of attention
layers’ weight to observe and compare the trend of decay in text generation quality between the
two models. We evaluate both models on the IMDB dataset. As the graph in Figure 1 shows, the
monolingual model starts with text predictions closer to the source text, resulting in lower perplexity
without noise. However, as we delete a more significant portion of weights, the bilingual model
matches the performance of the monolingual one and eventually outperforms that.

Next, we try magnitude-based pruning of a portion of weights, p, to observe and compare the trend
of decay in text generation quality between the two models. We sort the attention layer weights by
the magnitude and set p percent of weights with the lowest magnitude to zero. Again, we use the
IMDB dataset to evaluate models. The graphs in Figure 4 show that as the training process continues,
the model achieves a lower perplexity. Moreover, pruning additional weights has a less substantial
impact on the model’s performance. This graph shows that training the pre-trained GPT-2 model for
a few epochs on a bilingual dataset significantly improves robustness to weight perturbations.

In another experiment, we observe how the maximum singular value of the weight matrices changes
throughout training process. We track the maximum singular value of attention layer weights. We use
a pretrained GPT-2 model baseline, and train this model for 16k iterations on English text data from
Wikipedia. Resuming from this checkpoint, we train two new models: 1) We continue training model
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Figure 4: Robustness to magnitude-based weight pruning and additive Gaussian noise. When plotting perplexity
under additive Gaussian noise, x-axis indicates the standard deviation of noise added to weights. Y-axis indicates
the average perplexity over 20 runs with 95% confidence intervals. The second plot shows perplexity as we
delete more weights based on magnitude, for the bilingual model at each epoch. X-axis indicates the probability
of deleting sorted attention weight parameters. After only one epoch, the model shows higher sensitivity to
weight perturbations. However, after eight epochs of training, it becomes more robust.

1 on task 1 (English Wikipedia dataset) for 16k more iterations. 2) We train a second model on a
different English dataset, the LAMBADA dataset [16], for 16k more iterations. Figure 5 indicates
the results of this experiment by plotting maximum singular values of the first attention layer. As
the Figure shows, training model on a new dataset (task 2) results in a faster decay of the maximum
singular value.
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Figure 5: We show the effect of monolingual and bilingual training on the maximum singular value of attention
weights. The red line shows the maximum singular value for a monolingual model trained on English Wikipedia
for 32k iterations. The green line shows the maximum singular value if in the 16K iteration we switch to
bilingual training. As shown, bilingual training leads to faster decay in the maximum singular value.

Text Classification. We conduct another set of experiments to observe the robustness of fine-tuned
monolingual and bilingual GPT-2 models for text classification. In this section, we fine-tune both
the monolingual and the bilingual GPT-2 models (previously trained) for downstream classification
tasks using the GLUE benchmark [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] to compare the
robustness of models to weight perturbations. The two perturbation methods tested in this section are
random weight deletion and random Gaussian noise added to attention weights. For each task, we
fine-tune both models for ten epochs. When applying random pruning, the accuracy of each model is
evaluated after deleting p percent of model weights, p ranging from 0% to 45%. When perturbing
model weights by adding noise, we try various Gaussian noise distributions with standard deviations
ranging from 0 to 0.09. Experiment results can be found in the Appendix section.

Random Pruning. We compare the classification accuracy between the fine-tuned model from the
monolingual pre-trained network and the fine-tuned model using the bilingual network. Each element
in attention parameters is pruned with probability p, where p ranges from .0 to .45. We evaluate the
classification accuracy for the following GLUE tasks: CoLA, QQP, SST2, MRPC, QNLI, and RTE.
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Task Fine-tuned using
Monolingual ckpt Bilingual ckpt

SST2 70567.875 60663.121
QQP 70608.195 60649.586

MRPC 70498.953 60590.769
RTE 70508.968 60590.765

CoLA 70519.781 60600.933
Table 1: We compute the sum of the squares of the weights of an attention layer for monolingual and bilingual
models. The latter have smaller magnitudes, indicating that multitasking induces weight regularization.

Pruning Probability QQP SST2 COLA MRPC RTE
m. b. m. b. m. b. m. b. m. b.

0.00 0.876 0.843 0.908 0.862 0.437 0.218 0.828 0.774 0.646 0.595
0.05 0.873 0.842 0.909 0.866 0.425 0.203 0.804 0.769 0.640 0.589
0.10 0.867 0.833 0.899 0.868 0.403 0.204 0.730 0.744 0.603 0.575
0.15 0.848 0.819 0.871 0.866 0.366 0.185 0.619 0.730 0.600 0.562
0.20 0.804 0.786 0.836 0.859 0.326 0.179 0.416 0.663 0.561 0.553
0.25 0.711 0.732 0.806 0.847 0.267 0.159 0.377 0.653 0.543 0.546
0.30 0.656 0.678 0.760 0.828 0.216 0.137 0.320 0.504 0.537 0.536
0.35 0.638 0.674 0.714 0.815 0.153 0.092 0.317 0.420 0.522 0.494
0.40 0.632 0.655 0.683 0.793 0.097 0.058 0.316 0.328 0.521 0.488
0.45 0.632 0.636 0.651 0.773 0.060 0.042 0.316 0.328 0.525 0.485

Table 2: Performance under a range of random pruning probabilities for various GLUE tasks. Columns labeled
with “m” determine classification accuracy of monolingual models and columns labeled as “b” determine
accuracy of bilingual. CoLA is evaluated using Matthew’s Correlation and other tasks are evaluated by accuracy.

We expect the accuracy of both models to decay as we prune a more considerable number of
parameters. The monolingual model shows a faster decay in almost all tasks. For some tasks such
as SST2, QQP, and MRPC, we observe that the bilingual model starts with lower accuracy, and its
performance exceeds the monolingual model as we prune « 5% to « 25% of parameters. A detailed
set of results in Table 2 show models’ average prediction accuracy on the GLUE benchmark.

Random Noise. We also experiment with adding Gaussian noise to the weights. We vary the noise
standard deviation from .0 to 0.09. We evaluate the classification accuracy for the same tasks. When
no noise is added to model parameters, the monolingual model performs slightly better for tasks like
QQP and SST2. As we increase the noise, the accuracies of both models drop with almost identical
rates. However, both graphs illustrate a cross-over point after which the bilingual model outperforms
the monolingual. The bilingual model achieves significantly higher accuracy in the MRPC task when
the standard deviation is greater than « 0.03. For CoLA and RTE, the monolingual model maintains
maintains higher performance regardless of the noise level. A detailed set of results in the Appendix
section shows models’ average prediction accuracy on the GLUE benchmark.

4 Related Work

Cognitive Reserve and Bilingualism. Our work is inspired by Cognitive Science and evidence of
Cognitive Reserve in bilinguals. One implication of our theory is that multitasking leads to smaller
weights on average. This could be related to studies performed in healthy older adults that indicate
that despite overall less gray matter volume and poorer white matter integrity (i.e., poorer structural
brain connectivity), older healthy bilinguals perform equally well or outperform monolinguals in
several cognitive tasks [1, 2].

We would like to emphasize that our research is solely on artificial networks which have huge differ-
ences to biological neurons. No definite extrapolations should be made to Cognitive Neuroscience
without further work. Nonetheless, we show that there is a simple mathematical abstraction that seems
to align with the significantly more complex phenomena observed in bilingual cognitive reserve.

Multitask Learning. The most closely related work is by Mao et al. [29] which shows that multitask
learning increases adversarial robustness. The intuition behind their proof is that, with task diversity,
the gradient of the loss with respect to the wrong label is small as orthogonal tasks make gradients
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Figure 6: Performance comparison in GLUE tasks: QQP, SST2, CoLA, and MRPC under random erasures.
QQP: Monolingual drops lower than the bilingual model after « 25% of the parameters are deleted. SST2:
Monolingual drops with a faster rate, falling behind the bilingual after deleting « 15% of the parameters. CoLA:
Both models reach « 0 MCC (random prediction) with « 45% of parameters pruned. MRPC: The accuracy of
the monolingual degrades at a faster rate as pruning probability increases higher than « 10%.

that cancel out. Wu et al. [30] establishes a connection between robustness to weight perturbations
and adversarial attacks. Our work is related but different since it directly establishes a connection
between structural robustness and multitasking and shows a cross-over in performance across various
domains and tasks. Our theoretical analysis is also completely different compared to prior works.
More information on multitask learning can be found in Mao et al. [29] and Ghamizi et al. [31].

Many studies on network compression and the Lottery Ticket Hypothesis are related to our Magnitude
Pruning experiments. LeCun et al. [32], Han et al. [7] find that selectively pruned networks can be
trained from randomly initialized weights to match the performance of the original network. Frankle
and Carbin [33] introduces the hypothesis that randomly initialized neural networks contain a very
sparse sub-network that, if initialized correctly, can achieve the accuracy of the original model. Chen
et al. [34] studies this in continual learning and examines various pruning methods.

5 Conclusions

We demonstrated a connection between multitask learning and robustness to structural failures
for artificial neural networks. For linear representation learning we obtained a characterization of
robustness through the spectrum of the task matrix. We showed that robustness comes from diverse
tasks which imply a bounded spectral norm for C. One limitation of our theoretical work is that we
did not analyze learning algorithms but directly used the SVD solution. It would be interesting to see
if gradient descent introduces further regularization or other effects, especially in the non-linear case.

Experimentally, we observed increased robustness for both linguistic and non-linguistic tasks. More
complex settings like multi-lingual models, cross-language transfer and their interactions remain to
be explored. Finally, it remains open if bilingualism and cognitive reserve in humans can indeed be
connected to our framework. It would be fascinating if neuroimaging techniques can measure any
form of anatomical or functional regularization that bilingualism could be creating in humans.
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