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Abstract

We introduce Avatar++ as an optimization-free pipeline that
converts a single frontal photograph into a 3D representa-
tion in a single forward pass, taking less than 15 seconds.
Generating a human avatar from a single image is challeng-
ing due to the complex structure of the human body and
the intricacies of facial features, and most existing mod-
els employ Score Distillation Sampling [9, 42] or iterative
refinement [6] methods to progressively enhance the gen-
erated textures. However, they have limitations of relying
on computationally expensive and time-consuming optimiza-
tion steps. To address these challenges, we propose a novel
approach, named Avatar++, that generates a human avatar
through a fast and efficient single forward pass. Our model
uses two different types of embeddings, one is facial identity
and the other one is visual embedding. By combining two
embeddings, our multi-view Diffusion Transformer (DiT)
generates viewpoint-aligned images that preserve the sub-
ject’s facial identity. Additionally, we introduce an atten-
tion mechanism that propagates information from the input
image during sampling to enhance visual quality. We ad-
ditionally give guidance on the pose. This pose guidance
allows the model to generate either a canonical pose (e.g.,
T-pose or A-pose) or replicate the pose from the input image
using OpenPose [2]. In addition to offering control over
the pose in the generated multi-view images, this mecha-
nism also enables the creation of animatable human avatars
by generating canonical poses compatible with Gaussian
Articulated Template Models [14]. Canonical poses are es-
pecially advantageous for the animating process, as they
typically provide less occluded views of the body, thereby im-
proving reconstruction quality. These contributions position
Avatar++ as a unified and efficient framework for generating
identity-consistent and pose-controllable 3D human avatars
from a single image. The proposed model achieves state-
of-the-art performance on Thuman2.0 and RenderPeople
benchmarks across all evaluation metrics, while delivering
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a 5× faster inference time than the fastest existing method.

1. Introduction

The rise of digital interaction has intensified the demand for
automated 3D avatar generation, especially in applications
such as mixed reality and virtual communication. Manually
creating a realistic human avatar needs multi-view image
capture and manual modeling, making it labor-intensive and
costly. To address this, generative methods that synthesize
3D avatars from limited input, such as a single image, have
gained significant attention [9, 29, 30, 38, 42].

Prior approaches to generating a human avatar from a
single image can be broadly categorized into explicit and
implicit methods. Explicit [12] methods rely on mesh-based
parametric models to estimate 3D human shape and pose,
but they often struggle to represent complex clothing or
non-standard body poses. In contrast, implicit [19] function-
based models represent human geometry as a continuous
field, providing greater flexibility in capturing loose gar-
ments and intricate poses.

To overcome the limited information provided by a single
input image, many recent methods utilize pre-trained 2D
diffusion models (e.g., Stable Diffusion) to guide texture
generation. Techniques such as Score Distillation Sampling
(SDS) [24] iteratively optimize a 3D representation using
the gradients from these diffusion models. In some cases,
DreamBooth [28] is applied beforehand to personalize the
diffusion model, which is widely used for human avatar
generation.

A wide range of existing avatar generation ap-
proaches—whether based on implicit representation or ex-
plicit representation (e.g., Gaussian splatting)—depend heav-
ily on optimization-based pipelines such as SDS or iterative
refinement to synthesize high-fidelity 3D results. In addition
to being time-consuming, these optimization-based methods
often produce results that are difficult to predict, as their
outcomes are highly dependent on initialization and the be-
havior of the optimization process.



Figure 1. comparison of in-the-wild avatar generation. Each pair shows our result (left) and Human3Diffusion [38] (right).

In this work, we propose Avatar++, a fast, unified,
and optimization-free pipeline that generates a pose-
controllable, animation-ready 3D avatar from a single
image in under 15 seconds. By leveraging identity-aware
embeddings for diffusion transformer and pose-guided multi-
view generation, Avatar++ bridges the gap between personal-
ization and efficient 3D avatar synthesis. As illustrated in Fig-
ure 1, our method successfully generates human avatars with
better facial details in less than 15 seconds with a consumer-
grade GPU while achieving state-of-the-art performance on
rendered novel view images.

Firstly, our model leverages two distinct types of embed-
dings: facial identity and visual features. For the Face ID
embedding, we extract facial features using ArcFace [3] and
map them into a semantic space via a pre-trained text en-
coder [21], which is designed to interpret Face ID features
as text-like embeddings. This allows our model to generate
a consistent face based on the input identity. In addition, we
use a CLIP vision encoder to capture clothing, body pose,
and overall appearance from the input image, enabling the
avatar to reflect both the subject’s identity and visual context.

Secondly, we propose a modified cross-attention mecha-
nism in which temporary guidance is injected into the query.
While less conventional than conditioning keys and values,
this formulation allows the model to focus attention in a
controlled manner without permanently modifying the la-
tent representations. Since both the diffusion latent and the
reference latent aim to represent the same subject, we con-
catenate them to form the attention query. This enables the
model to attend to visual features with enhanced identity
awareness. After the attention operation, the added dimen-
sion of reference latent is removed, allowing the model to
maintain a generative trajectory while still being guided by
the reference input.

Lastly, we employ a pose-guided multi-view generation
mechanism based on ControlNet [40] to provide explicit hu-
man body anatomy. This additional pose-based guidance is
critical in 3D generation, as it directly impacts the structural
anatomy of the human body and ensures geometric consis-
tency across synthesized views. This additional control is
important in single-image settings, where the model lacks
prior knowledge of the human body. By conditioning on 2D
pose annotations [2], our method compensates for this lim-
itation by injecting precise structural cues. Furthermore, it
enables generating canonical poses (e.g., T-pose or A-pose)
that are vital for downstream animation tasks such as rig-
ging, and replicating the pose of the input image to preserve
fidelity when canonicalization is not desired.

By integrating these components, Avatar++ enables ef-
ficient and personalized 3D avatar generation from a sin-
gle front-view image. Combined with our multi-view
synthesis model and a fine-tuned Large Gaussian Model
(LGM) [34], the two-stage pipeline produces high-quality,
full-body avatars while significantly reducing computational
demands.

2. Related Work
2.1. Diffusion Models
The field of text-to-image generation has seen significant
progress, driven by several key advances. Stable Diffu-
sion [27], a powerful diffusion model, excels in efficiency
and high-quality image generation. To control image genera-
tion, ControlNet [40] introduces additional encoding layers
with auxiliary inputs, such as pose, masks, edges, and depth,
allowing for more precise control of visual content.

Recently, Stable Diffusion 3 [4] presents a text-to-image
multi-modal diffusion transformer architecture that inte-
grates a rectified flow model. This architecture employs sepa-



rate weight parameters for image and text representations, fa-
cilitating bidirectional information exchange. Consequently,
it significantly enhances text comprehension and accuracy,
enabling better handling of complex prompts. Moreover,
the implementation of the rectified flow model supports an
efficient and stable training and inference process, which
gives an advantage in high-resolution image generation.

2.2. Multi-view Diffusion Models
A foundational contribution to the multi-view diffusion field
is zero-1-to-3, which first proposed using camera view-
points as control conditions for image diffusion models to
achieve novel view synthesis. However, its outputs often
produce inconsistencies across views due to the stochastic
nature of diffusion models. Subsequent approaches, such as
Zero123++ [31], shifted to an all-view-at-once generation
to mitigate the inconsistency. MVDream [32] introduces
dense multi-view attention for single-object text to multi-
view generation. ImageDream [35] expands this approach
to image-conditioned generation. Wonder3D [17] incorpo-
rates normal data and cross-domain attention to enhance
geometric consistency. However, these methods are trained
on non-human objects, leading to challenges in rendering
human faces. Recent work has started to optimize the com-
plexity of multi-view attention. EpiDiff [10] employs epipo-
lar attention to restrict matching candidates along epipolar
lines, while Era3D [16] proposes row-wise attention un-
der orthographic projection assumptions. These strategies
greatly reduce attention costs, but EpiDiff can struggle with
complex scenes or wide fields of view where epipolar ge-
ometry is ambiguous, and Era3D’s performance degrades
once the orthographic assumption no longer holds. Unlike
prior methods that suffered from view inconsistency and
relied on SMPL [18]/text prompts, Avatar++ leverages an
Identity-Aware Diffusion Transformer, a Pose-ControlNet
for canonical poses to generate high-quality and cross-view
consistent multi-views from a single frontal photo.

2.3. Single image human reconstruction
Reconstructing a human from a single image generally in-
volves two primary approaches: using explicit parametric
models and relying on implicit representations.

2.3.1. Explicit parametric models
Explicit approaches rely on mesh-based parametric models,
e.g., SMPL [18] or SMPL-X [23], which aim to estimate
a minimally clothed human body mesh from the input im-
age. These methods employ neural networks to predict the
SMPL shape and pose parameters, enabling the generation
of a base body mesh. To incorporate clothing details, subse-
quent techniques have proposed applying 3D offsets to the
body surface or using pre-defined garment templates. Al-
though these approaches achieve reasonable reconstructions,
their mesh topology is limited by the underlying parametric

model, posing challenges in reconstructing loose or complex
clothing.

2.3.2. Implicit function based models

Implicit representation methods, on the other hand, cap-
ture human geometry as continuous fields, such as occu-
pancy [29] functions, signed distance fields [22], or neural
radiation fields (NeRF) [19], offering greater flexibility in
topology. PiFU [29] utilizes pixel-aligned image features to
predict 3D occupancy values and colors at sampled points
within a predefined grid. The PIFuHD [30] enhances geo-
metric and textural detail by incorporating front- and back-
facing normal maps as additional inputs. GTA [41] employs
Transformers with fixed learnable embeddings to transform
single-image features into 3D tri-plane representation. Simi-
larly, SIFU [42] refines 3D features by conditioning them on
side-view information. TeCH [9] leverages diffusion models
to synthesize invisible regions, though they demand exten-
sive optimization and a precise SMPL-X alignment. Hu-
manSGD [1] also adopts diffusion models for texture inpaint-
ing but remains dependent on the mesh estimation model,
which introduces inaccuracies. In parallel, NeRF-based ap-
proaches such as SHERF [7] and ELICIT [8] represent the
human body as radiance fields, enabling photorealistic ren-
dering from single images. SHERF addresses incomplete
data by filling gaps using 2D cues, while ELICIT employs
a pre-trained CLIP [25] model to guide the reconstruction
process via semantic understanding. Although these meth-
ods produce highly detailed renderings, they often require
significant optimization time and can struggle with explicit
mesh extraction.

Despite the advancements in implicit methods, achieving
an optimal balance between rendering quality and computa-
tional efficiency remains a challenge. Recent innovations in
3D Gaussian splatting (3DGS) have demonstrated promis-
ing progress in this regard. HumanSplat [20] exemplifies
this trend, introducing a generalizable framework that pre-
dicts 3D Gaussian properties from a single image without
per-instance optimization. It integrates a 2D multi-view
diffusion model to hallucinate unseen regions and a latent re-
construction Transformer with SMPL-based structure priors
to enhance geometric and appearance consistency. However,
the reliance on SMPL introduces difficulties in generalizing
across diverse body types and clothing styles and a depen-
dency on specific data for accurate pose and shape estimation.
In contrast, our approach utilizes a diffusion Transformer to
generate highly detailed novel multi-view images without
depending on SMPL priors. By directly learning from image
data, our model overcomes the generalization and data de-
pendency issues of SMPL-based methods, resulting in more
accurate and versatile human reconstruction across a broader
range of scenarios.



3. Method

Our proposed method, as illustrated in Figure 2, introduces
an effective framework for reconstructing a 3D human rep-
resentation from a single front-view input image. Our ap-
proach consists of a two-stage process that integrates multi-
view synthesis and 3D avatar generation, achieving high-
quality reconstructions. The first stage generates multi-view
images of the human subject from a single input by lever-
aging the 2D diffusion transformer, while the second stage
leverages these synthesized views to synthesize a 3D avatar
using Gaussian splatting.

3.1. Preliminary

3D Gaussian Splatting [13] is an efficient representation for
novel view synthesis. 3D Gaussian splatting employs a col-
lection of 3D Gaussians. Each Gaussian is parameterized by
a center position xi ∈ R3, a scale vector si ∈ R3, a rotation
quaternion ri ∈ R4, an opacity αi ∈ R, and a color feature
ci ∈ RC . The complete set of parameters for the i-th Gaus-
sian is denoted as Gi = {xi, ci, si, ri, αi}, encompassing its
spatial configuration, appearance, and transparency. The 3D
Gaussians are rendered by projecting them onto the image
plane as 2D Gaussians and performing alpha composition
on each pixel in front-to-back depth order, resulting in the
final color and alpha value.

3.2. Image generation diffusion model for multi-
view generation

We leveraged a powerful text-to-image diffusion model, Sta-
ble Diffusion 3.5 medium [33]. Stable Diffusion 3.5 is a
strong image generation model that can effectively reflect
text conditions.

Our multi-view generation transformer integrates both im-
age and face information within a single framework. As our
model does not require text conditioning, we employ a sepa-
rate vision encoder (OpenCLIP bigG [11]) to produce global
image embeddings from the input. We employed a CLIP [25]
vision encoder to get the pooled output of the vision encoders
and then project it to the text encoder space. Additionally,
the Arc2Face [21] encoder takes ArcFace-based face embed-
dings to capture fine-grained facial information. To further
make a robust representation, we combine the face represen-
tation and the global image representations, and concatenate
multiple representations as illustrated in Figure 2.

The model takes pooled embeddings and prompt embed-
dings. The pooled prompt embeddings are concatenation
of pooled output of Arc2Face encoder and pooled output of
vision embedding. To align with the prompt embeddings, the
image embeddings are first projected and then concatenated
with Arc2Face prompt embeddings. This results in a fused
conditioning embedding that integrates multi-modal infor-
mation from both facial features and the input image. This

approach contributes to generating more robust multi-view
outputs.

3.3. Image conditioning mechanism
Our model is designed to generate consistent multi-view
images from a given front-view image. To cooperate with
this, our model has two mechanisms to preserve the face
and outfit of the conditioning front-view image. First, our
model leverages a multiple-embedding strategy as described
above. Second, it directly manipulates the attention mecha-
nism to inject information from the conditioning image. This
mechanism incorporates a reference image into the existing
attention-based architecture, enabling the generation pro-
cess to leverage additional contextual cues. Consequently,
our model benefits from enhanced contextual information,
leading to improved output quality and relevance.

Our transformer-based Diffusion Transformer block uses
Cross-Attention and Self-Attention. Our attention injection
process is involved when processing Cross-Attention. Dur-
ing the conditional forward pass, our attention processor
captures the encoded conditional information and stores it
in a reference memory. Then, during the actual generation
or reference injection process, the processor retrieves the
saved reference image’s hidden states from the memory and
concatenates them with the current encoded conditional in-
formation. After computing Cross-Attention, it removes
the added dimension where the retrieved reference image’s
hidden state is concatenated. By dynamically managing ref-
erence states and augmenting the attention mechanism, our
approach supports reference-based generation while main-
taining compatibility with existing architectures. With two
conditional conditioning mechanisms, our model generates
multi-view images while maintaining the identity and ap-
pearance of the input face and clothing.

3.4. Pose Guidance with ControlNet for better
Avatar Generation

When reconstructing or synthesizing human avatars from
images, not all views provide full visibility of all body parts.
To address this, it is beneficial to generate multi-view im-
ages under specific poses where key body regions are clearly
visible. Controllable pose when generating multi-view with
canonical pose provides maximum visibility for animation
and rigging, and direct replication of the input pose to pre-
serve appearance fidelity. This capability allows the model
to synthesize multi-view images in a structurally consistent
and pose-aware manner, effectively covering occluded or
ambiguous regions in the original input.

L = Ez0,t,ci,cf ,ϵ∼N (0,1)

[
wtλ

′

t∥ϵ− ϵθ (zt, t, ci, cT)
∥∥∥2
2

]
(1)1



Figure 2. The overall architecture of our proposed model. The symbol + denotes concatenation. The predefined linear
projection is a fixed mapping that projects the pooled output of the vision encoder into the prompt embedding space.

Figure 3. Hidden state injection during Cross-
Attention for injecting conditioning image’s infor-
mation.

To train Pose ControlNet, we use a combination of
the MVHumanNet [36] dataset and the Renderpeople [26]
dataset. Our Renderpeople subset contains rigged human
models originally in canonical poses, which we retarget to
cover a wide range of diverse body poses. MVHumanNet
provides multi-frame sequences of the same subject with
varying poses. We train Pose ControlNet by using the front-
view image at a given timestep as input and conditioning on
a target pose from another timestep, enabling the model to
generate multi-view images aligned with the desired pose.

3.5. Large Multi-View Gaussian Model for Avatar
Generation

To further enhance our avatar reconstruction quality, we inte-
grate the Large Multi-View Gaussian Model (LGM) [34] in
our second-stage pipeline. LGM efficiently generates high-
resolution 3D Gaussian representations from synthesized
multi-view images provided by our diffusion transformer.
Specifically, we adopt its asymmetric U-Net architecture,
which predicts a set of compact and expressive Gaussian fea-
tures from viewpoint-aligned images. These Gaussian splats

are then fused through differentiable rendering to form a
detailed and animatable 3D representation, significantly im-
proving the fidelity and structural accuracy of our generated
avatars.

4. Experiment

Inference Time (on RTX 3090)
TeCH 10428s
SIFU 80.81s
SIFU Texture Refinement 349s + 80.81s = 429.81s
MagicMan 497.6 s
Human3Diffusion GS 68.96s
Ours(multi-view) 11.28 s
Ours(GS) 11.28 s + 2.52 s = 13.79 s

Table 1. Inference time measured on RTX 3090

4.1. Implementation details

In multi-view generation stage, we trained the model on
four Nvidia A100 GPUs (80GB) for approximately 560000
iterations. We used the AdamW optimizer with a learn-
ing rate of 3× 10−5 and batch size of 1, together with a
CosineAnnealingWarmRestarts scheduler. We used mixed
precision(bfloat16 for Transformer and CLIP; float32 for
the VAE). For the Pose controlnet stage, we simply aug-
mented the trained multi-view generation model with a pose-
conditioned ControlNet module and continued training under
the same hyperparameters for approximately 280000 itera-
tions.

Finally, LGM[34] was finetuned using a single Nvidia
A6000 GPU over two weeks on the combination of the
2K2K, Renderpeople, and Thuman 2.1 dataset.



4.2. Training dataset
We train our model using a comprehensive collection of 3D
scans and reconstructions drawn from multiple datasets.

For training, we leverage a diverse set of 3D human data,
combining both high-quality scans and real-world multi-
view captures. Specifically, we use 2,050 scans from the
2K2K dataset [5], 500 scans from THuman2.0 [39], an addi-
tional 1,464 samples from the extended THuman2.1, and 478
commercial scans from Renderpeople [26], resulting in 4,497
high-quality 3D human models with relatively simple cloth-
ing. In addition, we incorporate 3,172 identities and 10,135
multi-view captures from the MVHumanNet [36] dataset,
which provides more diverse clothing and pose variations
from real subjects captured using calibrated multi-camera
systems. To obtain 3D representations from MVHumanNet,
we apply the SplatFacto algorithm to reconstruct Gaussian
splats from the captured multi-view images. In total, our
model is trained on 14,632 3D human samples.

For consistency, all 3D assets from 2K2K, THuman, THu-
man2.1, Renderpeople, and MVHumanNet reconstructions
are rendered into four standardized views using a uniform
camera setup, with cameras placed 90 degrees apart around
the object center. This consistent projection protocol en-
sures that all datasets contribute comparable training sam-
ples, enabling effective learning of our 3D reconstruction
framework.

We render all views at a resolution of 4096 x 4096 and
resize to 512 × 512, and for every dataset, we extract face em-
beddings using ArcFace to capture detailed facial attributes.

4.3. Evaluation
We evaluated our proposed model against existing baselines
to measure overall performance and further conduct ablation
studies to analyze the contribution of each component. The
baselines include TeCH [9], SIFU [42], and MagicMan [6],
which are all optimization-based methods relying on itera-
tive refinement. In contrast, Human-3Diffusion [38], similar
to our scenario, employs a single feed-forward pass, offering
faster inference. Our model requires 2D pose annotations
as input, which we obtain using OpenPose [2]. During in-
ference, we extract 2D poses for the remaining four views
by projecting the reconstructed ECON [37] mesh into those
views and applying OpenPose on the projected images.

4.3.1. Quantitative Evaluation
We quantitatively evaluate our approach on the 21 samples
on THuman2.0 [39] and 10 samples on the RenderPeople
datasets. For every test subject, we render two view sets: (i)
four canonical views—frontal, right, rear, and left—obtained
by rotating the virtual camera in 90° steps, and (ii) twenty
dense views generated every 18°. Each cell in Tables 2, 3,
4, and 5 contains a pair of values in the format: 4-view /
20-view. We average PSNR, SSIM, and LPIPS over the cor-

responding views to measure image fidelity and perceptual
quality.

On THuman2.0, our method reaches 21.086 / 20.634
PSNR, 0.896 / 0.891 SSIM, and 0.0970 / 0.101 LPIPS,
markedly outperforming TeCH, SIFU, MagicMan, and the
recent Gaussian-Splatting baseline Human-3Diffusion.

The advantage persists on RenderPeople: our pipeline
records 24.637 / 24.200 PSNR, 0.904 / 0.900 SSIM, and
0.088 / 0.092 LPIPS, again surpassing Human-3Diffusion as
well as all other baselines.

These consistent improvements demonstrate the effec-
tiveness of our single forward-pass pipeline, which fuses
identity-aware ArcFace embeddings, pose conditioning, and
multi-view diffusion to achieve superior fidelity without ex-
pensive iterative optimization. The model’s ability to output
pose-controllable, animation-ready canonical avatars further
enhances reconstruction quality, especially when driven by
2D pose inputs.

Table 1 shows inference times measured on an RTX 3090.
Optimization based methods like TeCH take over 10,000
seconds, while SIFU requires around 80 seconds plus an
additional 349 seconds for texture refinement. MagicMan
and Human3Diffusion GS take 498 and 69 seconds, respec-
tively. Our model achieves a significant speed-up, running
inference in about 14 seconds, which is about 5 to 900 times
faster than previous methods.

4.3.2. Qualitative Evaluation
Figure 4 shows the qualitative comparison against three other
baselines on the Thuman2.0 dataset. Human3Diffusion strug-
gles particularly around facial regions, producing distorted
or blurred features, whereas our results preserve facial de-
tails. This limitation arises because its multi-view diffusion
backbone is capped at 256 × 256 resolution, which smooths
out details of facial features such as eyes, nose, and mouth.
Also, there is no mechanism to deliver facial information.

SIFU deterministically regresses a 3D avatar directly from
an input image, generating texture via a separate optimiza-
tion process, which leads to misalignment between textual
annotations and the generated mesh. As a result, it generates
frontal regions seen in the input image, but fails to produce
coherent texture on unseen regions.

Finally, TeCH, which employs BLIP [15] to annotate in-
put images before optimization which often fails to generate
accurate annotations on the input image, leading to textures
that do not match the input or failure to generate coherent
textures. For example, the input image is asian, but the
caption generated by BLIP is caucasian.

4.4. Ablation studies
As part of our ablation studies, we evaluate structurally mod-
ified versions of our model by removing face embeddings
and attention injection to assess their impact.



Thuman2.0
PSNR SSIM LPIPS

TeCH+ 17.004 / 16.496 0.852 / 0.843 0.137 / 0.146
SIFU (W/O Texture Refinement) 18.33 /18.01 0.878 / 0.875 0.115 / 0.115
SIFU (Texture Refinement)+ 19.699 / 19.482 0.872 / 0.870 0.118 / 0.123
MagicMan◦ 19.186 / 18.07 0.863 / 0.853 0.122 / 0.13
Human-3Diffusion (GS) 20.146 / 19.729 0.884 / 0.880 0.108 / 0.106
Ours (GS) 21.086* / 20.634* 0.896* / 0.891* 0.097*/ 0.101*

Table 2. Quantitative results on the THuman2.0 dataset. ’+’ indicates optimization-based models and ’◦’ indicates iterative
methods.

RenderPeople
PSNR SSIM LPIPS

TeCH+ 18.683 / 18.212 0.870 / 0.862 0.119 / 0.127
SIFU (W/O Texture Refinement) 20.389 /19.975 0.894 /0.888 0.096 /0.102
SIFU (Texture Refinement)+ 23.701 / 23.078 0.894 / 0.888 0.094 / 0.101
MagicMan◦ 24.224 / 23.535 0.890 / 0.889 0.090 / 0.098
Human-3Diffusion (GS) 24.262 / 23.744 0.900 / 0.894 0.091 / 0.096
Ours (GS) 24.637* / 24.200* 0.904* / 0.900* 0.088* / 0.092*

Table 3. Quantitative results on the RenderPeople dataset. ’+’ indicates optimization-based models and ’◦’ indicates iterative
methods.

Figure 4. Qualitative results on THuman2.0 dataset. Our method captures appearance faithfully. Please zoom in for a
detailed inspection.

As shown in Table 4 and Table 5, both components con-
tribute significantly to the final performance. On the THu-

man2.0 dataset, removing attention injection causes PSNR
to drop from 21.086 / 20.634 to 18.894 / 18.697, SSIM from



Thuman2.0
PSNR SSIM LPIPS

W/O attn injection 18.894 / 18.697 0.850 / 0.862 0.133 / 0.126
W/O Face embeddings 18.789 / 18.542 0.866 / 0.862 0.124 / 0.128
Ours (GS) 21.086* / 20.634* 0.896* / 0.891* 0.097*/ 0.101*

Table 4. Ablation studies on THuman2.0 dataset

RenderPeople
PSNR SSIM LPIPS

W/O attn injection 20.976 / 20.824 0.884 / 0.882 0.109 / 0.112
W/O Face embeddings 22.000 / 21.770 0.887 / 0.884 0.106 / 0.109
Ours (GS) 24.637 / 24.200 0.904 / 0.900 0.088 / 0.092

Table 5. Ablation studies on the RenderPeople
dataset

0.896 / 0.891 to 0.850 / 0.862, and LPIPS increases from
0.097 / 0.101 to 0.133 / 0.126. Similarly, removing face
embeddings also degrades performance across all metrics,
though to a slightly lesser extent.

On the RenderPeople dataset, a similar trend is observed:
without attention injection, PSNR drops by around 3.7 points,
SSIM by 0.02, and LPIPS increases by 0.021 compared to
the full model. Removing face embeddings also yields lower
PSNR (from 24.637 / 24.200 to 22.000 / 21.770), lower
SSIM (from 0.904 / 0.900 to 0.887 / 0.884), and higher
LPIPS (from 0.088 / 0.092 to 0.106 / 0.109).

These results clearly demonstrate that both face embed-
dings and attention injection are essential for achieving high-
fidelity, identity-consistent multi-view image synthesis, con-
tributing to sharper textures, better structural similarity, and
perceptual quality.

4.5. Application

Figure 5. Animatable avatar generation using
GART

To animate the static 3D avatars generated by Avatar++,
we adopt the GART (Gaussian Articulated Template) [14]
framework as a post-processing stage, as illustrated in Fig-
ure5. While Avatar++ generates high-quality Gaussian repre-
sentations from a single image, these outputs are inherently
static and lack temporal articulation. GART offers an effi-
cient and explicit method to bring motion into these avatars
by leveraging forward skinning and latent bone modeling,
enabling realistic animation from sparse monocular cues.

Specifically, we initialize the GART model using the
Gaussian parameters produced by Avatar++. These Gaus-
sians are aligned with a canonical pose, and we associate

them with the SMPL template skeleton to define an artic-
ulated structure. We then optimize GART to learn defor-
mation fields and skinning weights that adaptively model
both rigid body motion and non-rigid deformations (e.g.,
clothing). This process allows our avatars to be animated
across diverse poses while preserving the original geometry
and appearance fidelity generated by Avatar++.

Through this integration, we enable a seamless transition
from static 3D avatar creation to fully animatable avatars
capable of dynamic pose rendering at high frame rates. Fast
inference, efficient rendering via 3D Gaussian Splatting, and
expressiveness in capturing complex motions significantly
extend the usability of Avatar++ in downstream applications
such as gaming, virtual try-on, and real-time communication
in VR/AR environments.

5. Conclusion

In conclusion, Avatar++ presents an efficient and robust
solution for generating high-quality, animation-ready 3D
human avatars from a single image. By employing dual
embeddings—facial identity through ArcFace and global
visual features via CLIP—combined with an attention in-
jection mechanism and pose-guided multi-view synthesis,
our method significantly surpasses existing models in both
speed and quality. Avatar++ achieves state-of-the-art per-
formance on benchmark datasets such as THuman2.0 and
RenderPeople, demonstrating improved image fidelity, struc-
tural coherence, and perceptual quality, all while maintaining
inference speeds that are 4 times faster than the fastest alter-
natives. This advancement not only simplifies the process of
avatar generation but also expands potential applications in
virtual reality, animation, gaming, and real-time communi-
cation, marking a substantial step forward in accessible and
high-fidelity digital human representation.

6. Limitation and future works

Avatar++ has limitations on Pose estimation. To synthe-
size multi-view images with the same pose as the input, our
method relies on the external ECON [37] framework for 3D
pose estimation. However, this dependency can introduce
inaccuracies during inference, especially under challenging
articulations or occlusions. Also, its performance is con-
strained by limited and biased training data. THuman2.1 and
MVHumanNet datasets are heavily biased toward East Asian
subjects, resulting in possible racial bias. Future work will
therefore focus on developing more robust pose predictors to
address ECON-related error. Additionally, we aim to curate
more diverse and representative datasets to mitigate racial
and demographic biases, ensuring equitable performance
across varied user groups. We expect Avatar++ to evolve
into a more faithful solution for real-time avatar creation
across all users by overcoming these limitations.
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