
Under review as a conference paper at ICLR 2017

A DIFFERENTIABLE PHYSICS ENGINE
FOR DEEP LEARNING IN ROBOTICS

Jonas Degrave, Michiel Hermans∗, Joni Dambre & Francis wyffels
Department of Electronics and Information Systems (ELIS)
Ghent University – iMinds, IDLab
Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium
{Jonas.Degrave,Joni.Dambre,Francis.wyffels}@UGent.be

ABSTRACT

One of the most important fields in robotics is the optimization of controllers. Cur-
rently, robots are often treated as a black box in this optimization process, which
is the reason why derivative-free optimization methods such as evolutionary algo-
rithms or reinforcement learning are omnipresent. When gradient-based methods
are used, models are kept small or rely on finite difference approximations for
the Jacobian. This method quickly grows expensive with increasing numbers of
parameters, such as found in deep learning. We propose an implementation of a
modern physics engine, which can differentiate control parameters. This engine
is implemented for both CPU and GPU. Firstly, this paper shows how such an
engine speeds up the optimization process, even for small problems. Furthermore,
it explains why this is an alternative approach to deep Q-learning, for using deep
learning in robotics. Finally, we argue that this is a big step for deep learning in
robotics, as it opens up new possibilities to optimize robots, both in hardware and
software.

1 INTRODUCTION

To solve tasks efficiently, robots require an optimization of their control system. This optimization
process can be done in automated testbeds (Degrave et al., 2015), but typically these controllers are
optimized in simulation. Standard methods to optimize these controllers include particle swarms,
reinforcement learning, genetic algorithms and evolutionary strategies. These are all derivative-free
methods.

A recently popular alternative approach is to use deep Q-learning, a reinforcement learning algo-
rithm. This method requires a lot of evaluations in order to train the many parameters (Levine
et al., 2016). However, deep learning experience has taught us that optimizing with a gradient is
often faster and more efficient. This fact is especially true when there are a lot of parameters, as
is common in deep learning. However, in the optimization processes for control systems, the robot
is almost exclusively treated as a non-differentiable black box. The reason for this is that the robot
in hardware is not differentiable, nor are current physics engines able to provide the gradient of
the robot models. The resulting need for derivative-free optimization approaches limits both the
optimization speed and the number of parameters in the controllers.

Recent physics engines, such as mujoco (Todorov et al., 2012), can derive gradients through the
model of a robot but rely on a finite difference method to approximate the gradient. Evaluating finite
difference approximations, however, requires the same number of model evaluations as the number
of states with respect to which is differentiated. Additionally, the gradient is an estimation.

In this paper, we suggest an alternative approach, by introducing a differentiable physics engine
with analytical gradients. This idea is not novel. It has been done before with spring-damper models
in 2D and 3D (Hermans et al., 2014). This technique is also similar to adjoint optimization, a
method widely used in various applications such as thermodynamics (Jarny et al., 1991) and fluid

∗Former member, currently unaffiliated

1



Under review as a conference paper at ICLR 2017

dynamics (Iollo et al., 2001). However, modern engines to model robotics are not based on spring-
damper systems. The most commonly used ones are 3D rigid body engines, which rely on impulse-
based velocity stepping methods (Erez et al., 2015). In this paper, we test whether these engines are
also differentiable and whether this gradient is computationally tractable. We will show how this
method does speed up the optimization process tremendously, and give some examples where we
optimize deep learned neural network controllers with millions of parameters.

2 A 3D RIGID BODY ENGINE

The goal is to implement a modern 3D Rigid body engine, in which parameters can be differenti-
ated with respect to the fitness a robot achieves in a simulation, such that these parameters can be
optimized with methods based on gradient descent.

The most frequently used simulation tools for model-based robotics, such as PhysX, Bullet, Havok
and ODE, go back to MathEngine (Erez et al., 2015). These tools are all 3D rigid body engines,
where bodies have 6 degrees of freedom, and the relations between them are defined as constraints.
These bodies exert impulses on each other, but their positions are constrained, e.g. to prevent the
bodies from penetrating each other. The velocities, positions and constraints of the rigid bodies
define a linear complementarity problem (LCP) (Chappuis, 2013), which is then solved using a
Gauss-Seidel projection (GSP) method (Jourdan et al., 1998). The solution of this problem are the
new velocities of the bodies, which are then integrated by semi-implicit Euler integration to get the
new positions (Stewart and Trinkle, 2000). This system is not always numerically stable. Therefore
the constraints are usually softened (Catto, 2009).

The recent growth of automatic differentiation libraries, such as Theano (Al-Rfou et al., 2016),
Caffe (Jia et al., 2014) and Tensorflow (Abadi et al., 2015), has allowed for efficient differentiation
of remarkably complex functions before (Degrave et al., 2016). Therefore, we implemented such
a physics engine as a mathematical expression in Theano, a software library which does automatic
evaluation and differentiation of expressions with a focus on deep learning. The resulting compu-
tational graph to evaluate this expression is then compiled for both CPU and GPU. To be able to
compile for GPU however, we had to limit our implementation to a restricted set of elementary op-
erations. The range of implementable functions is therefore severely capped. However, since the
analytic gradient is determined automatically, the complexity of correctly implementing the differ-
entiation is removed entirely.

One of these limitations with this restricted set of operations, is the limited support for conditionals.
Therefore we needed to implement our physics engine without branching, as this is not yet available
in Theano for GPU. Therefore some sacrifices had to be made. For instance, our system only allows
for contact constraints between different spheres or between spheres and the ground plane. Collision
detection algorithms for cubes typically have a lot of branching (Mirtich, 1998). However, this
sphere based approach can in principle be extended to any other shape (Hubbard, 1996). On the
other hand, we did implement a rather accurate model of servo motors, with gain, maximal torque,
and maximal velocity parameters.

Another design choice was to use rotation matrices rather than the more common quaternions for
representing rotations. Consequently, the states of the bodies are larger, but the operations required
are matrix multiplications. This design reduced the complexity of the graph. However, cumulative
operations on a rotation matrix might move the rotation matrix away from orthogonality. To correct
for this, we renormalize our matrix with the update equation (Premerlani and Bizard, 2009):

A′ =
3A−A ◦ (A ·A)

2
(1)

where A′ is the renormalized version of the rotation matrix A. ‘◦’ denotes the elementwise multi-
plication, and ‘·’ the matrix multiplication.

These design decisions are the most important aspects of difference with the frequently used sim-
ulation tools. In the following section, we will evaluate our physics simulator on some different
problems. We take a look at the speed of computation and the number of evaluations required
before the parameters of are optimized.

2



Under review as a conference paper at ICLR 2017

2.1 THROWING A BALL

To test our engine, we implemented the model of a giant soccer ball in the physics engine, as shown
in Fig. 2a. The ball has a1 m diameter, a friction of� = 1 :0 and restitutione = 0 :5. The ball starts
off at position(0; 0). After 5 sit should be at position(10; 0) with zero velocityv and zero angular
velocity ! . We optimized the initial velocityv0 and angular velocity! 0 at timet = 0 s until the
errors att = 5 s are less than0:01 mand0:01 m=s respectively.

Since the quantity we optimize is only know at the end of the simulation, but we need to opti-
mize the parameters at the beginning of the simulation, we need to backpropagate our error through
time (BPTT) (Sutskever, 2013). This approach is similar to the backpropagation through time
method used for optimizing recurrent neural networks (RNN). In our case, every time step in the
simulation can be seen as one pass through a neural network, which transforms the inputs from
this timestep to inputs for the next time step. For �nding the gradient, this RNN is unfolded com-
pletely, and the gradient can be obtained by differentiating this unfolded structure. This analytic
differentiation is done automatically by the Theano library.

Optimizing the six parameters inv0 and! 0 took only 88 iterations with gradient descent and back-
propagation through time. Optimizing this problem with CMA-ES (Hansen, 2006), a state of the art
derivative-free optimization method, took 2422 iterations. Even when taking the time to compute the
gradient into account, the optimization with gradient descent takes16:3 s, compared to59:9 swith
CMA-ES. This result shows that gradient-based optimization of kinematic systems can in some
cases already outperform gradient-free optimization algorithms from as little as six parameters.

3 POLICY SEARCH

To evaluate the relevance of our differentiable physics engine, we use a neural network as a general
controller for a robot, as shown in Figure 1. We consider a general robot model in a discrete-time
dynamical systemx t +1 = f ph(x t ; u t ) with a task cost function ofl(x t ; p), wherex t is the state
of the system at timet andu t is the input of the system at timet. p provides some freedom in
parameterizing the loss. IfX t is the trajectory of the state up to timet � 1, the goal is to �nd a
policy ut = � (X t ) such that we minimize the lossL � .

L � =
TX

t =0

l (x t ; p)

s.t. x t +1 = f ph(x t ; � (X t )) and x0 = x init

(2)

In previous research, �nding a gradient for this objective has been described as presenting chal-
lenges (Mordatch and Todorov, 2014). An approximation to tackle these issues has been discussed
in Levine and Koltun (2013).

We implement this equation into an automatic differentiation library, ignoring these challenges in
�nding the analytic gradient altogether. The automatic differentiation library, Theano in our case,
analytically derives this equation and compiles code to evaluate both the equation and its gradient.

We de�ne our controller as a deep neural networkgdeepwith weightsW . We do not pass all infor-
mationX t to this neural network, but only a vector of valuesst observed by the modeled sensors
s(x t ). We also provide our network with (some of the) task-speci�c parametersp0. Finally, we add
a recurrent connection to the controller in the previous timesteph t . Therefore, our policy is the
following:

� (X t ) = gdeep(s(x t ); h t ; p0 j W )

s.t. h t = hdeep(s(x t � 1); h t � 1; p0 j W ) and h0 = 0
(3)

Notice the similarity between equations 2 and 3. Indeed, the equations for recurrent neural net-
works (RNN) in equation 3 are very similar to the ones of the loss of a physical model in equation 2.
Therefore, we optimize this entire system as an RNN unfolded over time, as illustrated in Figure 4.
The weightsW are optimized with stochastic gradient descent. The gradient required for that is the
JacobiandL=dW , which is found with automatic differentiation software.

3




	Introduction
	A 3D Rigid Body Engine
	Throwing a Ball

	Policy Search
	Quadrupedal Robot – Computing Speed
	4 Degree of Freedom Robot Arm
	Reaching a Fixed Point
	Reaching a Random Point

	A Quadrupedal Robot – Revisited
	The inverted pendulum with a camera as sensor


	Discussion
	Conclusion
	Appendix
	Figures
	Tables


