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ABSTRACT

Learning deep networks which can resist large variations between training and
testing data is essential to build accurate and robust image classifiers. Towards
this end, a typical strategy is to apply data augmentation to enlarge the training
set. However, standard data augmentation is essentially a brute-force strategy
which is inefficient, as it performs all the pre-defined transformations to every
training sample. In this paper, we propose a principled approach to train networks
with significantly improved resistance to large variations between training and
testing data. This is achieved by embedding a learnable transformation module
into the introspective networks (Jin et al., 2017; Lazarow et al., 2017; Lee et al.,
2018), which is a convolutional neural network (CNN) classifier empowered with
generative capabilities. Our approach alternatively synthesizes pseudo-negative
samples with learned transformations and enhances the classifier by retraining it
with synthesized samples. Experimental results verify that our approach signif-
icantly improves the ability of deep networks to resist large variations between
training and testing data and achieves classification accuracy improvements on
several benchmark datasets, including MNIST, affNIST, SVHN and CIFAR-10.

1 INTRODUCTION

Classification problems have rapidly progressed with advancements in convolutional neural net-
works (CNNs) (LeCun et al., 1989; Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; Szegedy
et al., 2015; He et al., 2016; Huang et al., 2017). CNNs are able to produce promising performance,
given sufficient training data. However, when the training data is limited and unable to cover all the
data variations in the testing data (e.g., the training set is MNIST, while the testing set is affNIST),
the trained networks generalize poorly on the testing data. Consequently, how to learn deep net-
works which can resist large variations between training and testing data is a significant challenge
for building accurate and robust image classifiers.

To address this issue, a typical strategy is to apply data augmentation to enlarging the training set,
i.e., applying various transformations, including random translations, rotations and flips as well as
Gaussian noise injection, to the existing training data. This strategy is very effective in improving
the performance, but it is essentially a brute-force strategy which is inefficient, as it exhaustively
performs all these transformations to every training samples. Neither is it theoretically formulated.

Alternatively, we realize that we can synthesize extra training samples with generative models. But,
the problem is how to generate synthetic samples which are able to improve the robustness of CNNs
to large variations between training and testing data. In this paper, we achieve this by embed-
ding a learnable transformation module into introspective networks (Jin et al., 2017; Lazarow et al.,
2017), a CNN classifier empowered with generative capabilities. We name our approach intro-
spective transformation network (ITN), which performs training by a reclassification-by-synthesis
algorithm. It alternatively synthesizes samples with learned transformations and enhances the clas-
sifier by retraining it with synthesized samples. We use a min-max formulation to learn our ITN,
where the transformation module transforms the synthesized pseudo-negative samples to maximize
their variations to the original training samples and the CNN classifier is updated by minimizing
the classification loss of the transformed synthesized pseudo-negative samples. The transformation
modules are learned jointly with the CNN classifier, which augments training data in an intelligent
manner by narrowing down the search space for the variations.
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Our approach can work with any models that have generative and discriminative abilities, such as
generative adversarial networks (GANs) and introspective networks. In this paper, we choose the
introspective networks to generate extra training samples rather than GANs, because introspective
networks have several advantages over GANs. Introspective learning framework maintains one
single CNN discriminator that itself is also a generator while GANs have separate discriminators
and generators. The generative and discriminative models are simultaneously refined over iterations.
Additionally, Introspective networks are easier to train than GANs with gradient descent algorithms
by avoiding adversarial learning.

The main contribution of the paper is that we propose a principled approach that endows classifiers
with the ability to resist larger variations between training and testing data in an intelligent and
efficient manner. Experimental results show that our approach achieves better performance than
standard data augmentation on both classification and cross-dataset generalization. Furthermore,
we also show that our approach has great abilities in resisting different types of variations between
training and testing data.

2 RELATED WORK

In recent years, a significant number of works have emerged focus on resisting large variations
between training and testing data. The most widely adopted approach is data augmentation that
applies pre-defined transformations to the training data. Nevertheless, this method lacks efficiency
and stability since the users have to predict the types of transformations and manually applies them
to the training set. Better methods have been proposed by building connections between generative
models and discriminative classifiers (Friedman et al., 2001; Liang & Jordan, 2008; Tu et al., 2008;
Jebara, 2012; Welling et al., 2003). This type of methods capture the underlying generation process
of the entire dataset. The discrepancy between training and test data is reduced by generating more
samples from the data distribution.

GANs (Goodfellow et al., 2014) have led a huge wave in exploring the generative adversarial struc-
tures. Combining this structure with deep CNNs can produce models that have stronger generative
abilities. In GANs, generators and discriminators are trained simultaneously. Generators try to gen-
erate fake images that fool the discriminators, while discriminators try to distinguish the real and
fake images. Many variations of GANs have emerged in the past three years, like DCGAN (Radford
et al., 2015), WGAN (Arjovsky et al., 2017) and WGAN-GP (Gulrajani et al., 2017). These GANs
variations show stronger learning ability that enables generating complex images. Techniques have
been proposed to improve adversarial learning for image generation (Salimans et al., 2016; Gulra-
jani et al., 2017; Denton et al., 2015) as well as for training better image generative models (Radford
et al., 2015; Isola et al., 2017).

Introspective networks (Tu, 2007; Lazarow et al., 2017; Jin et al., 2017; Lee et al., 2018) provide an
alternative approach to generate samples. Introspective networks are closely related to GANs since
they both have generative and discriminative abilities but different in various ways. Introspective
networks maintain one single model that is both discriminative and generative at the same time while
GANs have distinct generators and discriminators. Introspective networks focus on introspective
learning that synthesizes samples from its own classifier. On the other hand, GANs emphasize
adversarial learning that guides generators with separate discriminators. The generators in GANs
are mappings from the features to the images. However, Introspective networks directly models the
underlying statistics of an image with an efficient sampling/inference process.
3 METHOD

We now describe the details of our approach in this section. We first briefly review the introspective
learning framework proposed by (Tu, 2007). This is followed by our the detailed mathematical
explanation of our approach. In particular, we focus on explaining how our model generates unseen
examples that complement the training dataset.

3.1 INTROSPECTIVE LEARNING

We only briefly review introspective learning for binary-class problems, since the same idea can be
easily extended to multi-class problems. Let us denote x ∈ Rd as a data sample and y ∈ +1,−1
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as the corresponding label of x. The goal of introspective learning is to model positive samples by
learning the generative model p(x|y = +1). Under Bayes rule, we have

p(x|y = +1) =
p(y = +1|x)p(y = −1)
p(y = −1|x)p(y = +1)

p(x|y = −1), (1)

where p(y|x) is a discriminative model. For pedagogical simplicity, we assume p(y = 1) = p(y =
−1) and this equation can be further simplified as:

p(x|y = +1) =
p(y = +1|x)
p(y = −1|x)p(x|y = −1). (2)

The above equation suggests that a generative model for the positives p(x|y = +1) can be obtained
from the discriminative model p(y|x) and a generative model p(x|y = −1) for the negatives. How-
ever, to faithfully learn p(x|y = +1), we need to have a representative p(x|y = −1), which is very
difficult to obtain. A solution was provided in (Tu, 2007) which learns p(x|y = −1) by using an
iterative process starting from an initial reference distribution of the negatives p0(x|y = −1), e.g.,
p0(x|y = −1) = U(x), a Gaussian distribution on the entire space Rd. This is updated by

pt+1(x|y = −1) = 1

Zt

qt(y = +1|x)
qt(y = −1|x)pt(x|y = −1), (3)

where qt(y|x) is a discriminative model learned on a given set of positives and a limited number
of pseudo-negatives sampled from pt(x|y = −1) and Zt =

∫ qt(y=+1|x)
qt(y=−1|x)pt(x|y = −1)dx is the

normalizing factor. It has been proven that KL(p(x|y = +1)||pt+1(x|y = −1)) ≤ KL(p(x|y =
+1)||pt(x|y = −1))) (as long as each qt(y|x) makes a better-than-random prediction, the inequal-
ity holds) in (Tu, 2007), where KL(·||·) denotes the Kullback-Leibler divergences, which implies
pt(x|y = −1) t=∞→ p(x|y = +1). Therefore, gradually learning pt(x|y = −1) by following this
iterative process of Eqn.(3), the samples drawn from x ∼ pt(x|y = −1) become indistinguishable
from the given training samples.

3.2 LARGE VARIATIONS RESISTANCE VIA INTROSPECTIVE LEARNING

Introspective Convolutional Networks (ICN) (Jin et al., 2017) and Wasserstein Introspective Neural
Networks (WINN) (Lee et al., 2018) adopt the introspective learning framework and strengthen the
classifiers by a reclassification-by-synthesis algorithm. However, both of them fail to capture large
data variations between the training and testing data, since most of the generated pseudo-negatives
are very similar to the original samples. But in practice, it is very common that the test data contain
unseen variations that are not in training data, such as the same objects viewed from different angles
and suffered from shape deformation.

To address this issue, we present our approach building upon the introspective learning framework
to resist large data variations between training and test data. Arguably, even large training sets
cannot fully contains all the possible variations. Our goal is to quickly generate extra training
samples with beneficial unseen variations that is not covered by the training data to help classi-
fiers become robust. We assume that we can generates such training samples by applying a trans-
formation function T (· ;σ) parametrized by learnable parameters σ to the original training sam-
ples. Let us denote g(· ;ψ) as the function that maps the samples x to the transformation param-
eters σ, where ψ is the model parameter of the function g. The generated samples still belong to
the same category of the original samples, since the transformation function T only changes the
high-level geometric properties of the samples. The outline of training procedures of ITN is pre-
sented in Algorithm 1. We denote S+ = {(x+i ,+1), i = 1...|S+|} as the positive sample set,
Tt(S+) = {(xTi ,+1), i = 1...|S+|, xTi = T (x+i ;σt)} as the transformed positive sample set at tth

iteration with transformation parameter σt and S−t = {(x−i ,−1), i = 1...|S−|} as the set of pseudo-
negatives drawn from pt(x|y = −1). We then will describe the detail of the training procedure.

Discriminative model We first demonstrate the approach of building robust classifiers with given
σt. For a binary classification problem, at tth iteration, the discriminative model is represented as

qt(y|x; θt) =
1

1 + exp(−y ft(x; θt))
(4)
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Algorithm 1: Outline of ITN Training Algorithm

1: Input: Positive sample set S+, initial reference distribution p0(x|y = −1) and transformation function T
2: Output: Parameters θ, ω and ψ
3: Build S−0 by sampling |S+| pseudo-negatives samples from p0(x|y = −1)
4: initialize parameters θ, ω and ψ, set t = 1
5: while not converge do
6: for each x+i ∈ S

+ and x−i ∈ S
−
t do

7: Compute transformation parameters σi = g(x+i ;ψ)
8: Choose εi ∼ U(0, 1) and compute x̂i = εiT (x+i ;σi) + (1− εi)x−i
9: end for

10: Compute θ, ω by Eqn.(6)
11: Compute ψ by Eqn.(8)
12: Sample pseudo-negatives samples Zt = {zti , i = 1, ..., |S+|} from p0(x|y = −1)
13: Update all samples in Zt by Eqn.(12)
14: Augment pseudo-negatives sample set S−t = S−t−1 ∪ {(zti ,−1), i = 1, ..., |S+|} and t = t + 1
15: end while

where θt represents the model parameters at iteration t, and ft(x; θt) represents the model output
at tth iteration. Note that, qt(y|x; θt) is trained on S+, T (S+;σt) and pseudo-negatives drawn
from pt(x|y = −1). In order to achieve stronger ability in resisting unseen variations, we want the
distribution of T (S+;σt) to be approximated by the distribution of pseudo negatives pt(x|y = −1),
which can be achieved by minimizing the following Wasserstein distance (Gulrajani et al., 2017):

D(θt, ωt) = ExT∼T (S+;σt)
[ft(x

T ; θt, ωt)]− E
x−∼S−

t
[ft(x

−; θt, ωt)] + λEx̂∼X̂t
[‖∇x̂ft(x̂; θt, ωt)− 1‖22],

(5)
where ωt is the extra parameter together with ft(·; θt) to compute the Wasserstein distance. Each x̂
in the set X̂t is computed with the formula x̂ = εxT + (1 − ε)x−, where ε samples from uniform
distribution U(0, 1), xT ∈ T (S+;σt) and x− ∈ S−t . The term λ(||∇x̂ft(x̂; θt)||2 − 1)2 is the
gradient penalty that stabilizes the training procedure of the Wasserstein loss function.

The goal of the discriminative model is to correctly classify any given x+, xT and x−. Thus, the
objective function of learning the discriminative model at iteration t is

min
θt,ωt

J(θt) +D(θt, ωt), where J(θt) = E
(x,y)∼S+∪S−

t ∪T (S+;σt)
[−log q(y|x; θt)] (6)

The classifiers obtain the strong ability in resisting unseen variations by training on the extra samples
while preserving the ability to correctly classify the original samples. We discussed the binary
classification case above. When dealing with multi-class classification problems, it is needed to
adapt the above reclassification-by-synthesis scheme to the multi-class case. We can directly follow
the strategies proposed in (Jin et al., 2017) to extend ITN to deal with multi-class problems by
learning a series of one-vs-all classifiers or a single CNN classifier.

Exploring variations. The previous section describes how to learn the robust classifiers when the
σt is given. However, σt is unknown and there are huge number of possibilities to selecting σt. Now,
the problem becomes how do we learn the σt in a principled manner and apply it towards building
robust classifiers? We solve this issue by forming a min-max problem upon the Eqn.(6):

min
θ,ω

max
σ

J(θ, σ) +D(θ, ω, σ), (7)

Here, we rewrite J(θ) and D(θ, ω) in Eqn.(5) and Eqn.(6) as J(θ, σ) and D(θ, ω, σ), since σ is
now an unknown variable. We also subsequently drop the subscript t for notational simplicity. This
formulation gives us a unified perspective that encompasses some prior work on building robust
classifiers. The inner maximization part aims to find the transformation parameter σ that achieves
the high loss values. On the other hand, the goal of the outer minimization is expected to find the the
model parameters θ that enables discriminators to correctly classify xT and ω allows the negative
distribution to well approximate the distribution of T (S+;σt) . However, direclty solving Eqn. 7 is
difficult. Thus, we break this learning process and first find a σ∗ that satisfies

max
σ

E(xT ,y)∼T (S+;σ)[− log(q(y|xT ))]+ExT∼T (S+;σ)[f(x
T ; θ, ω)]+λEx̂∼X̂ [‖∇x̂f(x̂; θ, ω)− 1‖22] (8)
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where θ and ω are fixed. Then, θ and ω are learned with Eqn.(6) by keep σ = σ∗. Empirically, the
first term in the Eqn. 8 dominates over other terms, therefore we can drop the second and third terms
to focus on learning more robust classifiers. The purpose of empirical approximation is to find the
σ∗ that make xT hard to classify correctly. Instead of enumerating all possible examples in the data
augmentation, Eqn.(8) efficiently and precisely finds a proper σ that increase the robustness of the
current classifiers.

We use g(· ;ψ) to learn σ, thus σ = g(x;ψ)+ζ, where ζ is random noise follows the standard normal
distribution. The function parameter ψ is learned by Eqn.(8). Notably, following the standard
backpropagation procedure, we need to compute the derivative of the transformation function T
in each step. In other words, the transformation function T (·;σ) need to be differentiable with
respect to the parameter ψ to allow the gradients to flow through the transformation function T
when learning by backpropagation.

Generative model In the discriminative models, the updated discriminative model p(y|x) is learned
by Eqn.(6). The updated discriminative model is then used to compute the generative model by
the Eqn.(3) in section 3.1. The generative is learned by maximizing the likelihood function p(x).
However, directly learning the generative model is cumbersome since we only need samples from
the latest generative model.

Let’s denote initial reference distribution as p−0 (x) and pn(x|y = −1) as p−n (x) for simplicity.
Following standard introspective learning, we can approximate samples drawn from latest negative
distribution by first sampling from p−0 (x) and iteratively update them to approach desired samples.
With p−0 and Eqn.(3), we have

p−n (x) = (

n−1∏
t=1

1

Zt

qt(y = +1|x)
qt(y = −1|x) )p

−
0 (x), (9)

where Zt indicates the normalizing factor at tth iteration. The random samples x are updated by
increasing maximize the log likelihood of p−n (x). Note that maximizing log p−n (x) can be simplified
as maximizing

∏n−1
t=1

qt(y=+1|x)
qt(y=−1|x) since Zt and p−0 are fixed in Eqn.(9). From this observation, we

can directly learn a model ht(x) such that

ht(x) =
qt(y = +1|x)
qt(y = −1|x) = exp(ft(x; θt)) (10)

Taking natural logarithm on both side of the equation above, we can get lnht(x) = ft(x; θt).
Therefore, log p−n (x) can be rewritten as

log p−n (x) = log(

n−1∏
t=1

1

Zt

qt(y = +1|x)
qt(y = −1|x) )p

−
0 (x) = C

n−1∑
t=1

ft(x; θt) p
−
0 (x), (11)

where C is the constant computed with normalizing factors Zt. This conversion allows us to max-
imize log p−n (x) by maximizing

∑n−1
t=1 ft(x; θt). By taking the derivative of log p−n (x), the update

step∇x is:

∇x = λ∇(
n−1∑
t=1

ft(x; θt)) + η, (12)

where η ∼ N(0, 1) is the random Gaussian noise and λ is the step size that is annealed in the
sampling process. In practice, we update from the samples generated from previous iterations to
reduce time and memory complexity. An update threshold is introduced to guarantee the generated
negative images are above certain criteria, which ensures the quality of negative samples. We modify
the update threshold proposed in (Lee et al., 2018) and keep track of the ft(x; θt) in every iteration.
In particular, we build a set D by recording E[ft(x; θt)], where x ∈ S+ in every iteration. We form
a normal distributionN (a, b), where a and b represents mean and standard deviation computed from
set D. The stop threshold is set to be a random number sampled from this normal distribution. The
reason behind this threshold is to make sure the generated negative images are close to the majority
of transformed positive images in the feature space.

4 EXPERIMENTS

In this section, we demonstrate the ability of our algorithm in resisting the large variations between
training and testing data through a series of experiments. First, we show the outstanding classifi-
cation performance of ITN on several benchmark datasets. We also analyze the properties of the
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generated examples from different perspectives. We then further explore the ability of our algorithm
in resisting large variations with two challenging classification tasks and show the consistently better
performance. Finally, we illustrate the flexibility of our architecture in addressing different types of
unseen variations.

Baselines We compare our method against CNNs, DCGAN (Radford et al., 2015), WGAN-GP
(Gulrajani et al., 2017), ICN (Jin et al., 2017) and WINN (Lee et al., 2018). For generative models
DCGAN and WGAN-GP, we adopt the evaluation metric proposed in (Jin et al., 2017). The training
phase becomes a two-step implementation. We first generate negative samples with the original
implementation. Then, the generated negative images are used to augment the original training set.
We train a simple CNN that has the identical structure with our method on the augmented training
set. All results reported in this section are the average of multiple repetitions.

Experiment Setup All experiments are conducted with a simple CNN architecture (Lee et al., 2018)
that contains 4 convolutional layers, each having a 5× 5 filter size with 64 channels and stride 2 in
all layers. Each convolutional layer is followed by a batch normalization layer (Ioffe & Szegedy,
2015) and a swish activation function (Ramachandran et al., 2018). The last convolutional layer is
followed by two consecutive fully connected layers to compute logits and Wasserstein distances.
The training epochs are 200 for both our method and all other baselines. The optimizer used is
the Adam optimizer (Kingma & Ba, 2014) with parameters β1 = 0 and β2 = 0.9. Our method
relies on the transformation function T (·) to convert the original samples to the unseen variations.
In the following experiments, we demonstrate the ability of ITN in resisting large variations with
spatial transformers (STs) (Jaderberg et al., 2015) as our transformation function unless specified.
Theoretically, STs can represent all affine transformations, which endows more flexible ability in
resisting unseen variations. More importantly, STs are fully differentiable, which allows the learning
procedure through standard backpropagation.

4.1 CLASSIFICATION

To demonstrate the effectiveness of ITN, we first evaluate our algorithm on 4 benchmark datasets,
MNIST (LeCun et al., 1998), affNIST (Tieleman, 2013), SVHN (Netzer et al., 2011) and CIFAR-10
(Krizhevsky & Hinton, 2009). The MNIST dataset includes 55000, 5000 and 10000 handwritten
digits in the training, validation and testing set, respectively. The affNIST dataset is a variant from
the MNIST dataset and it is built by applying various affine transformations to the samples in MNIST
dataset. To accord with the MNIST dataset and for the purpose of the following experiments, we
reduce the size of training, validation and testing set to 55000, 5000 and 10000, respectively. SVHN
is a real-world dataset that contains house numbers images from Google Street View and CIFAR-10
contains 60000 images of ten different objects from the natural scenes. The purpose of introducing
these two datasets is to further verify the performance of ITN on real-world datasets. The data aug-
mentation we applied in the following experiments is the standard data augmentation that includes
affine transformations, such as rotation, translation, scaling and shear.

w/o DA w/ DA
Method MNIST affNIST SVHN CIFAR-10 MNIST affNIST SVHN CIFAR-10
CNN 0.89% 2.82% 9.86% 31.31% 0.57% 1.65% 7.01% 24.35%
DCGAN 0.79% 2.78% 9.78% 31.22% 0.57% 1.63% 6.98% 24.18%
WGAN-GP 0.74% 2.76% 9.73% 31.08% 0.56% 1.56% 6.73% 24.07%
ICN 0.72% 2.97% 9.72% 32.34% 0.56% 1.54% 6.81% 24.98%
WINN 0.67% 2.56% 9.84% 30.72% 0.52% 1.48% 6.44% 23.74%
ITN 0.49% 1.52% 6.73% 21.93% 0.47% 1.09% 5.92% 20.65%

Table 1: testing errors of the classification experiments discussed in Section 4.1, where w/DA and
w/o DA indicates whether data augmentation is applied.

As shown in Table 1, our method achieves the best performance on all four datasets. The overall
improvements can be explained by the fact that our method generates novel and reliable negative
images (shown in Figure 1) that effectively strengthen the classifiers. The images we generate
are different from the previous ones, but can still be recognized as the same class. The boosted
performance in value on MNIST dataset is marginal perhaps because the performance on the MNIST
dataset is close to saturation. The difference between training and testing split in MNIST dataset is
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CNN WGAN-GP WINN ITN
w/o DA 72.06% 70.60% 70.36% 34.29%
w/DA 40.74% 36.29% 33.53% 21.31%

Table 2: testing errors of the classification experiments described in Section 4.2.1, where w/DA and
w/o DA indicates whether data augmentation is applied.

also very small compared to other datasets. Moreover, the amount of improvements increases as the
dataset becomes complicated. Based on the observation of the results, we conclude that our method
has stronger ability in resisting unseen variations especially when the dataset is complicated. On the
other hand, we can clearly observe that our method outperforms the standard data augmentation on
all datasets. This result confirms the effectiveness and the advantages of our approach. Additionally,
ITN does not contradict with data augmentation since ITN shows even greater performance when
integrating with data augmentation techniques. The possible reason for this observation is that the
explored space between ITN and data augmentation is not overlapped. Therefore, the algorithm
achieves greater performance when combining two methods together since more unseen variations
are discovered in this case.

Figure 1: Images generated by our method on MNIST, affNIST, SVHN and CIFAR-10 dataset. In
each sector, the top row is the original images and the bottom row is our generated images.

4.2 QUANTITATIVE ANALYSIS

4.2.1 CROSS DATASET GENERALIZATION

We have shown the substantial performance improvements of ITN against other baselines on several
benchmark datasets. In this section, we want to further explore the ability of our method in resisting
large variations. We design a challenging cross dataset classification task between two significantly
different datasets (cross dataset generalization). The training set in this experiment is the MNIST
dataset while the testing set is the affNIST dataset. The difficulty of this classification tasks is clearly
how to overcome such huge data discrepancy between training and testing set since the testing set
includes much more variations. Another reason why we pick these two datasets as training and
testing set is that they share the same categories, which ensures the challenge is only about resisting
large data variations.

As shown in Table 2, ITN has clear improvements over CNN, WGAN-GP and WINN. The amount
of improvement is much larger than on the regular training and testing splits shown in Section 4.1.
More importantly, our performance in this challenging task is still better than CNN with data aug-
mentation. This encouraging result further verifies the efficiency and effectiveness of ITN compared
with data augmentation. It’s not surprising that data augmentation improves the performance by a
significant margin since the space of unseen variations is huge. Data augmentation increases the
classification performance by enumerating a large number of unseen samples, however, this brute-
force searching inevitably lacks efficiency and precision.
4.2.2 RESISTING ABILITY UNDER DATA PAUCITY

Another way to evaluate the ability of resisting variations is to reduce the amount of training samples.
Intuitively, the discrepancy between the training and testing sets increases when the number of
samples in the training set shrinks. The purpose of this experiment is to demonstrate the potential
of ITN in resisting unseen variations from a different perspective. We design the experiments where
the training set is the MNIST dataset with only 0.1%, 1%, 10% and 25% of the whole training set
while the testing set is the whole MNIST testing set. Each sample is randomly selected from the
pool while keeps the number of samples per class same. Similarly, we repeat the same experiments
on the CIFAR-10 dataset to further verify the results on a more complicated dataset. As shown in
Table 3, our method has better results on all tasks. This result is consistent with Section 4.2.1 and
Section 4.1, which undoubtedly illustrate the strong ability of ITN in resisting unseen variations in
the testing set. The constant superior performance over data augmentation also proves the efficiency
of ITN.

7



Under review as a conference paper at ICLR 2019

w/o DA w/ DA
Method CNN WGAN-GP WINN ITN CNN WGAN-GP WINN ITN
0.1%(M) 36.50% 29.43% 27.18% 16.47 % 18.07% 15.35% 14.46% 12.67%
1%(M) 7.66% 6.86% 5.10% 3.48 % 4.48% 3.98% 3.66% 2.82%
10%(M) 2.02% 1.63% 1.49% 0.98 % 1.24% 1.18% 1.00% 0.92%
25%(M) 1.29% 1.13% 1.00% 0.78 % 0.83% 0.79% 0.77% 0.66%
0.1%(C) 81.99% 80.92% 78.24% 72.50 % 79.04% 78.75% 76.97% 70.43%
1%(C) 72.31% 71.34% 69.79% 61.48 % 65.23% 64.84% 63.26% 58.07%
10%(C) 59.02% 57.37% 56.02% 45.06 % 47.75% 46.86% 46.04% 42.62%
25%(C) 51.35% 49.01% 48.43% 34.56 % 36.50% 35.46% 34.29% 30.60%

Table 3: testing errors of the classification tasks described in Section 4.2.2, where M and C repre-
sents the experiments conducted on the MNIST dataset and CIFAR-10 dataset, respectively.
4.3 BEYOND SPATIAL TRANSFORMER

Even though we utilize STs to demonstrate our ability in resisting data variations, our method ac-
tually has the ability to generalize to other types of transformations. Our algorithm can take other
types of differentiable transformation functions and strengthen the discriminators in a similar man-
ner. Moreover, our algorithm can utilize multiple types of transformations at the same time and
provide even stronger ability in resisting variations. To verify this, we introduce another recently
proposed work, Deep Diffeomorphic Transformer (DDT) Networks (Detlefsen et al., 2018). DDTs
are similar to STs in a way that both of them can be optimized through standard backpropagation.

We replace the ST modules with the DDT modules and check whether our algorithm can resist such
type of transformation. Then, we include both STs and DDTs in our model and verify the perfor-
mance again. Let MNIST dataset be the training set of the experiments while the testing sets are the
MNIST dataset with different types of transformation applied. We introduce two types of testing
sets in this section. The first one is the normal testing set with random DDT transformation only.
The second one is similar to the first one but includes both random DDT and affine transformations.
The DDT transformation parameters are drawn from N(0, 0.7× Id) as suggest in (Detlefsen et al.,
2018), where Id represents the d dimensional identity matrix. Then the transformed images are
randomly placed in a 42× 42 images. We replicate the same experiment on the CIFAR-10 dataset.

MNIST CIFAR-10
DDT DDT + ST DDT DDT + ST

CNN 17.75% 55.11% 76.14 % 78.01 %
WGAN-GP 17.53% 53.24% 75.93% 77.02 %
WINN 17.20% 52.43% 75.43 % 76.92 %
ITN(DDT) 12.85 % 40.60% 53.62% 63.56 %
ITN(DDT + ST) 9.41% 34.37% 45.26% 56.95 %

Table 4: testing errors of cross dataset classification experiments, where CNN (w/ DA) represents
the CNNs with data augmentation.

We can make some interesting observations from the Table 4. First, ITN can integrate with flexibly
with DDT or DDT + ST to resist the corresponding variations. Second, ITN can resist partial unseen
variations out of a mixture of transformations in the testing data. More importantly, the performance
of ITN won’t degrade when the model has transformation functions that doesn’t match the type of
variations in the testing data, e.g. ITN(DDT + ST) on testing data with DDT only. This observation
allows us to apply multiple transformation functions in ITN without knowing the types of variations
in the testing data and still maintain good performance.

5 CONCLUSION

We proposed a principled and smart approach that endows the classifiers with the ability to resist
larger variations between training and testing data. Our method, ITN strengthens the classifiers
by generating unseen variations with various learned transformations. Experimental results show
consistent performance improvements not only on the classification tasks but also on the other chal-
lenging classification tasks, such as cross dataset generalization. Moreover, ITN demonstrates its
advantages in both effectiveness and efficiency over data augmentation. Our future work includes
applying our approach to large scale datasets and extending it to generate samples with more types
of variations.
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