
Under review as a conference paper at ICLR 2019

NEURAL DISTRIBUTION LEARNING FOR
GENERALIZED TIME-TO-EVENT PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Predicting the time to the next event is an important task in various domains.
However, due to censoring and irregularly sampled sequences, time-to-event pre-
diction has resulted in limited success only for particular tasks, architectures and
data. Using recent advances in probabilistic programming and density networks,
we make the case for a generalized parametric survival approach, sequentially pre-
dicting a distribution over the time to the next event. Unlike previous work, the
proposed method can use asynchronously sampled features for censored, discrete,
and multivariate data. Furthermore, it achieves good performance and near perfect
calibration for probabilistic predictions without using rigid network-architectures,
multitask approaches, complex learning schemes or non-trivial adaptations of cox-
models. We firmly establish that this can be achieved in the standard neural net-
work framework by simply switching out the output layer and loss function.

1 INTRODUCTION

Many real-world tasks can be formulated as time-to-event (TTE) prediction problems, forecasting
the time taken until an event-of-interest happens in the future. Examples are predicting time to the
onset of a particular disease (Price et al., 2017), predicting when a machine fails (Salfner et al., 2010)
or predicting future user logins (Sobaszek & Gola, 2016). Unfortunately, the data often consists of
temporal features and recurrent events which are sparsely and irregularly sampled over time. This
makes the data challenging to work with. Furthermore, the main challenge is that if we do not
observe a terminating event for a sequence, the time to event becomes right censored (Klein &
Moeschberger, 2005). This essentially means that we only know that the event will take place later
than when it was known to not occur.

Proposed solutions taking account for censoring includes predicting TTE binned across fixed time
windows (classification approaches (Harutyunyan et al., 2017; Lee et al., 2018)), predicting TTE
point-wise (regressive approaches (Ishwaran et al., 2008)), ranking the risk of subjects (semi-
parametric (Katzman et al., 2016; Luck et al., 2017) and non-parametric (Kalderstam, 2015; Chen
et al., 2013)), or estimating the target and the feature distributions jointly (variational, stochastic
formulations (Soleimani et al., 2017; Ranganath et al., 2016; Mei & Eisner, 2017; Xu et al., 2017)).
Numerous works have used combinations of these approaches (Du et al., 2016; Li, 2017; Xiao
et al., 2017b;a; Harutyunyan et al., 2017; Lee et al., 2018). However, most existing solutions have
problems with tight couplings to particular types of queries, restrictive and data-dependent loss for-
mulations, complex model architectures, or improper handling of censored data.

While there has been no lack of novelty in the proposed solutions, we find that the seemingly most
straightforward generalized parametric survival approach has lacked a thorough treatment. In this
paper, we formulate the TTE prediction task as, in each timestep, predicting all parameters of some
discretized probability distribution over the current time to the next event. We show the benefits of
defining distributions in terms of cumulative hazard functions (Sec. 3.1). Finally, we show that the
regular negative log-likelihood for right-censored data, censored log-likelihood (known at least since
de Moivre (1731)) as the loss function is sufficient to yield near perfect calibration. All together,
this leads to an obvious yet novel framework for general-purpose TTE prediction. We will refer to
this as HazardNet. While generalizing previous work, it is easy to implement and evaluate while
being capable of yielding real-time predictions on various inference queries, such as predicting the
probability of a user returning in 30 days, the expected time to failure or median time of survival.

1



Under review as a conference paper at ICLR 2019

In section 4 we show that the model makes unbiased, calibrated probabilistic predictions and ef-
ficiently utilizes training data. This is shown by evaluating on three publicly available datasets
comparing multiple TTE-distributions and neural network architectures. For the purpose of estab-
lishing a strong baseline, we propose a novel evaluation scheme, designed for real-life applications.
In addition, in section 5 we reformulate the binary task of musical onset detection into a multivariate
distribution prediction task, achieving state of the art results.

2 RELATED WORK

There is a diverse array of problem formulations for TTE-prediction (Wang et al., 2017). The meth-
ods for censored data are mainly based on classical semi-parametric Cox-models for continuous
target values (Katzman et al., 2016; Luck et al., 2017; Joshi & Reeves, 2006). Others formulate it
as classification problems (Harutyunyan et al., 2017; Lee et al., 2018) or multi-task learning (Luck
et al., 2017; Lee et al., 2018) by predicting the event probability in each step for a fixed number
of steps τ ahead together with a ranking loss. Non-parametric learning-to-rank methods have been
proposed (Kalderstam, 2015) but they suffer from scalability problems. Some studies (Du et al.,
2016; Li, 2017; Xiao et al., 2017b;a) predict both TTE and classification of next event jointly using
composition of loss functions. Others have learned from censored data by predicting features and
target jointly, either using Gaussian processes (Soleimani et al., 2017) or deep exponential fami-
lies (Ranganath et al., 2016). Recent extensions of this work (Miscouridou et al.) includes an in-
teresting discussion on methods for approximating arbitrary distributions, discretization, evaluation
and missing feature data. Sequential prediction is often formulated as asynchronously predicting at
the same time as the event (Du et al., 2016; Li, 2017; Xiao et al., 2017b;a; Lee et al., 2018; Avati
et al., 2018). However, this makes it unclear how to make predictions between events. For features
arriving at different times, it has been proposed to use two recurrent neural networks (RNNs) acting
on different timescales (Xiao et al., 2017b), but it did not deal with censored data. For the gen-
eral problem of unevenly spaced sequences, there has been other notable successful neural network
approaches such as Phased LSTM (Neil et al., 2016) or Time-LSTM (Zhu et al.).

Limitations: Most solutions are designed specifically for each task, such as rank prediction (Katz-
man et al., 2016; Luck et al., 2017; Kalderstam, 2015; Chen et al., 2013), classification (Harutyunyan
et al., 2017; Lee et al., 2018), and more. When using stochastic formulations (Soleimani et al., 2017;
Ranganath et al., 2016; Mei & Eisner, 2017; Xu et al., 2017), inference requires extra steps and are
arguably made for other tasks (such as missingness of data or understanding feature importance).
Without taking into account censored data (Du et al., 2016; Li, 2017; Xiao et al., 2017b;a) probabilis-
tic predictions might have little meaning. Most models are based on strong assumptions about data
or underlying distributions, and are difficult to adapt to new problems. The pure parametric survival
approaches based on density networks either focused on specific distributions (Martinsson, 2016;
Avati et al., 2018) or made cases against the use of regular log-likelihood (Avati et al., 2018; Ren
et al., 2018). While there has been recent interest in the importance of calibration (Luck et al., 2017;
Avati et al., 2018), we argue for a different method of evaluating it in a real-world setting, and most
importantly we want to establish a baseline to compare against whether the regular log-likelihood
loss needs improvement at all.

Our contribution: Building on the work of Martinsson (2016), we present a flexible and general-
izable framework for time to event prediction that can work with multiple model architectures and
distributions, supporting various probabilistic inference queries and handle asynchronously arriving
features. We found no in-depth experiments or convincing results on how to evaluate performance,
especially calibration for probabilistic predictions. To this end, we propose an evaluation strategy
in Section 4. We found no general discussions on learning parametric survival distributions in this
setting nor any in depth examples using the Weibull, Pareto, LogLogistic, their mixtures, or other
distributions as discretized forms. By thoroughly investigating what ought to be a standard approach
and suggesting evaluation methods for it, we hope to establish a strong baseline for time to event
prediction. The implementation will be released online.

2



Under review as a conference paper at ICLR 2019

Figure 1: Schematic illustration of HazardNet. (a) We feed a sequence of feature vectors x, shown
as a heatmap, to an arbitrary model NN (i.e., a predictor). (b) NN predicts the parameter of a
distribution, θt = NN(xt), for each step t as an output (c). As an example, we can use an RNN to
sequentially predict Weibull distribution parameters θt = [αt, βt] = NN(x0:t).

3 HAZARDNET

While many previous approaches have focused on specific data distributions or tasks, our goal is to
provide a general framework by focusing on the problem formulation for TTE-prediction itself. We
frame it as a Distribution Learning problem.

The basic idea is a density network coupled with a parametric survival approach. Let a neural net-
work predict parameters of some TTE-distribution and train it using log-likelihood for censored
data. As shown in Figure 1, in every step t we let the predictor map features xt to predicted param-
eters θt, governing the shape of a distribution. The distribution is specified by fixing a functional
form of a cumulative hazard function Λ. In the following sections we will show how to use discrete
target values and the possibility of learning to approximate arbitrarily complex distributions.

3.1 EFFICIENTLY WORKING WITH DISTRIBUTIONS USING CUMULATIVE HAZARD
FUNCTIONS

We will employ the notational convenience of using cumulative hazard functions (CHF) to define
probability distributions. In the survival analysis context, it is common to focus on hazard functions,
but we found it more efficient to focus on its integral, defined in the following.
Definition 1. A cumulative hazard function Λ : R+ → R+ is a monotonically increasing positive
function such that for all x ≥ 0, ε ≥ 0,

0 = Λ(0) ≤ Λ(x) ≤ Λ(x+ ε) ≤ Λ(∞) =∞ (1)

where the hazard function λ(x) = ∂
∂xΛ(x) is its positive derivative if it exists.

A cumulative hazard function Λ(x) is a straightforward way of representing a positive distribution.
If X is a random variable, we can write its corresponding cumulative density function as F (x) =
Pr(X < x) = 1− e−Λ(x) or conversely, Λ ≡ − log(1− F ). Its probability density function can be
written f(x) = ∂

∂xF (x) = λ(x)e−Λ(x). If we let the random variable X represent a life span, the
survival function S(x) = Pr(X > x) = 1 − F (x) = e−Λ(x) is the probability of surviving until
time x.

Cumulative Hazard functions makes a good abstraction for implementation since the conditions of
Equation 1 are easily verifiable. It also simplifies transition from continuous to discrete distributions,
an important consideration since real-world data tend to be discrete. Given Λ(x), we can easily
form a discrete distribution by defining a probability mass function p(t) = S(t) − S(t + 1) =

3



Under review as a conference paper at ICLR 2019

Table 1: Examples of cumulative hazard function representations of distributions.

ΛExponential ΛWeibull ΛPareto ΛLogLogistic ΛLogLogisticMixedHazards

( xα ) ( xα )
β

β log (1 + x
α ) log (1 + ( xα )

β
)

∑
k ΛLogLogistic,k

e−Λ(t)−e−Λ(t+1) for t = 1, 2, . . . ,∞. This also makes it easy to use different levels of discretization
(i.e., days to weeks). In doing so, instead of using a continuous loss function after discretization, we
can learn the discretized distribution directly, which in turn can be used to approximate a continuous
distribution if needed.

Example The exponential distribution f(x) = 1
αe

− x
α can be defined with the CHF

ΛExponential(x) = x
α . Discretization yields the geometric distribution, with probability mass func-

tion p(x) = e−
x
α − e− x+1

α .

3.2 COMPOSING MIXTURES OF DISTRIBUTIONS

Another clear benefit of the Cumulative Hazards-perspective of distributions is that it simplifies the
creation of new distributions. Recent developments on simplifying probabilistic programming have
made it possible to effectively compose and work with distributions and their mixtures (Siddharth
et al., 2017; Dillon et al., 2017; Tran et al., 2016). One of the most well-known form of distribution
composition is the mixture-density network (MDN) (Bishop, 1994), where the probability density
f =

∑
k wkfk of the target data is a linear combination of more simple basis distributions. From

the perspective of CHFs, we propose that it is simple to create other powerful compositions that can
easily be learned from censored data. It is easy to show that the space of CHFs are closed under
strictly increasing mappings (Λ2

a), composition (Λa(Λb)), multiplication (Λa ·Λb), addition Λa+Λb,
and multiplication with positive scalars. As a simple example, ΛLogLogistic = ΛPareto(ΛWeibull).
Similar to MDNs, we can create expressive possibly multimodal distributions by composing simpler
CHFs, which can be easily learned with censored data and be discretized to any time resolution. In
section 4, apart from using the commonly used Weibull-, Pareto1- and LogLogistic distributions we
try their more expressive additive compositions respectively (named MixedHazards). We do this in
order to show the generality of our approach and how it works with arbitrary distributions.

3.3 CENSORED LOG-LIKELIHOOD

Under mild assumptions discussed here, we can accurately do maximum likelihood estimation using
censored data utilizing censored log-likelihood. With Y a random variable of interest parametrized
by θ, c a constant or random variable of censoring time s.t Y ⊥ c|θ, X = min (Y, c) the censored
(truncated) random variable of interest, and U = [Y ≤ c] is the non-censoring indicator, (with u = 1
indicating not censored). Under these conditions it is well known that the likelihood of a censored
(Klein & Moeschberger, 2005) random variable X = x with an observed non-censoring indicator
U = u can be factored as

L(X = x, U = u) ∝ f(x)uS(x)1−u =


f(x|θ) x < c (uncensored)
Pr(Y > c|θ) x = c (right censored)
0 x > c (impossible query)

Which also holds in discretized case, where the above are discretized as (Yd, cd, Xd) =
(bY c, bcc, bXc) and Ud = [Yd < cd] is the non-censoring indicator (Martinsson, 2016). The
practical implications of this assumption is that c should not be predictable by the features. Our
experiments (Sec. 4) show that we learn proper calibration, hence this assumption can be made to
hold in practice.

The log-likelihood for continuous (Eq. 2) and discrete (Eq. 3) observations (x, u), can be simplified
as below.

1Parametrized as the Lomax distribution.

4



Under review as a conference paper at ICLR 2019

0 100 200 300 400 500 600 700 800 900 1000
t

0

150.5

300

y t

predicted Weibull PMF

Figure 2: Predicted Weibull pmf as a heatmap, HazardNet prediction with single 2-node LSTM cell
fitted on evenly spaced events, using lagged event indicator as only input. Marked line is the actual
target TTE, a countdown reaching Yt = 0 at the time of event.

L(θ, x, c) = log [f(x)uS(x)1−u] = u · log [λ(x)]− Λ(x) (2)

Ld(θ, x, c) = log [p(x)uS(x+ 1)1−u] = u · log [eΛ(x+1)−Λ(x) − 1]− Λ(x+ 1) (3)

In this work we focus on the discrete log-likelihood as loss function, using the CHFs in Table 1.

3.4 LOSS FUNCTION FOR SEQUENTIAL PREDICTION

Consider a sequence indexed by t = 1, . . . T . We model the possibly censored observation (xt, ct)
of time to event and censoring time at timestep t as a realizations of some random variable Yt,
censored using a known censoring time ct s.t Xt = min (Yt, ct). The optimization task is to predict
parameters θt of a target distribution, given by a fixed form of Λ, which maximizes the log-likelihood
of the observation. The proposed (discrete) loss for one sequence is thus

∑T
t −Ld(θt, xt, ct).

While this might seem like an obvious formulation, most prior work has chosen different paths.
Most work has focused on specifics of certain continuous distributions. While widely known, we
hope to reaffirm that the principles of parametric survival analysis extends to all positive and discrete
distributions. In terms of data shape, the dominant theme is to asynchronously predicting continuous
inter-arrival times (Du et al. (2016); Li (2017); Xiao et al. (2017b;a); Lee et al. (2018); Avati et al.
(2018) etc) assuming the time of prediction to coincide with the event times. We focus on the
discrete form of TTE, predicted from arbitrary but equally-spaced timesteps.

Equal-spacing and discrete TTE addresses two problems. First, to use sequence models we need a
fixed order and want to reduce the maximum sequence length. With continuous time, the number
of events can be high, and the order of events may be unclear due to tied event times. Both of
these issues are solved through binning and discretization. A second problem is that with unevenly-
spaced predictions the loss function involves unevenly spaced terms over time. The adequacy of this
scheme when using arbitrary distributions is unclear. A subsequent question becomes how to predict
or incorporate features arriving between events. By predicting at fixed intervals these are both solved
since we decoupled the prediction and the event times. We have found no work addressing all these
questions for censored time to event. Apparent drawback with our method is that if we want to train
on a duration of 1000 time-units of data it yields a possibly sparse sequence of length 1000 (as in
Figure 2). It also limits the frequency of inference to the hop size (i.e. daily predictions).

4 EXPERIMENTAL RESULTS

We compare a diverse number of time to event distributions (Table 1) learned with different network
architectures (Figure 3) on three different datasets (Table. 2) against a binary baseline.

4.1 DATA DESCRIPTION

We used three publicly available event-log datasets close to real-world applications. LastFM-1k
(Celma, 2010) contains complete listening histories of about 1000 users. BPI (Dees & Van Dongen,
2016) includes one year of click stream data from 26k users who logged in an Employee Insurance

5



Under review as a conference paper at ICLR 2019

Figure 3: Models used in experiments with details. n is the number of features, k is the number of
distribution parameters. (a) MLP (b) RNN (c) Dilated Causal CNN (d) Specific CNN architecture
for musical onset detection discussed in Section 5.

Table 2: Dataset details

dataset sequences length(days) features sequence id event

LastFM-1k 991 1538 2 user id ‘song played’
BPI Challenge 2016 26613 242 8 user id ‘click event’
Linux git logs 13432 2664 5 contributor ‘commit’

Agency office website. We created the Linux commit log dataset, which contains all commits from
13k active contributors since 2011. 2

For each dataset, we discretized the resolution from millisecond to daily measurements. In doing
so, a day with multiple events is considered a day with event hence its discrete time to event is zero.
Features were aggregated by summation at each day per sequence and logarithmed if positive. The
log of the number of events for a sequence in a day becomes one of the feature inputs to the day
after. Furthermore, we define a new feature by aggregating events by date, marking the fraction of
daily active users the day prior. This is a dense feature while other features are sparse. If a user was
observed for 300 days, it yields 300 time steps of data, even if they were only seen once.

For every dataset, we use 80% of the dates for training and 20% for evaluation. The training target
TTE is calculated from the training set keeping training and test temporally separated but sharing
sequences. This can be visualized as in Figure 4. We only evaluate on the date immediately after the
testing set ends, yielding one prediction per active sequence. This is the same as training a model
on currently available data and doing a follow-up study to compare if events occurred as predicted.
This differs from prior work as many split into train-test by sequence. Note that temporal models
such as CNN and RNN will use past history as input.

4.2 BASELINE: BINARY WINDOW MODEL

In order to show the reliability of the model we need to show proper calibration of predicted prob-
abilities and good discriminatory performance. We did this by training individual binary models
predicting probability of event within a threshold τ = 10, 30, 90, 300 timesteps ahead. We com-
pared this against HazardNet by querying its predicted distribution on θτt = Pr (Yt < τ). While
a binary model is explicitly trained for one threshold, HazardNet needs to learn them all. For this
reason one could view the binary models’ performance as an upper bound.

While technically not a time to event model, in practice the binary window model is the dominant
modeling method for time to event problems. For experimental purposes it is illuminating. No other
relevant baseline could be justifiable compared for discrete TTE over different network architectures
and different probabilistic queries. The only confounding factor is the treatment of censoring in the
training set. HazardNet treats it explicitly while for the binary model there is two choices. One
can keep the last τ timesteps of data (which doesn’t have unbiased ground truth about no event) or
remove it. We used both methods, denoted as Bin and Bin*.

We use standard evaluation metrics for binary classification to evaluate the predicted probabilities.
Calibration is evaluated measuring Expected Calibration error (ECE) (Naeini et al., 2015), dis-

2Code for recreating datasets & experiments will be available online

6



Under review as a conference paper at ICLR 2019

Figure 4: LastFM listening histories as stacked sequences of events sorted by entry into dataset.
The training set (a) ends on 2008-06-01, where training TTE is artificially censored as shown as red
shades. Test set (b) begins the day after, 2008-06-02. We only report evaluation results comparing
prediction made on 2008-06-02 against test set TTE on this day, itself naturally censored by the
end of full dataset, 2009-05-09. We don’t use sequences shorter than test event lengths, as in blue
shades.

Table 3: Highest achieved AUC results on predicting events within 10,30,90 and 300 days after the
end of training set with baselines and HazardNet. Bin is the baseline, Bin* is the baseline trained
without the last τ time steps of the training set, Haz for HazardNet. Bold numbers indicate the best
result per model and dataset.

dataset window MLP 2x50 RNN 2x50 CNN 14x50
Bin Bin* Haz Bin Bin* Haz Bin Bin* Haz

lastfm1k 10 0.781 0.781 0.782 0.968 0.967 0.968 0.967 0.960 0.967
lastfm1k 30 0.759 0.759 0.759 0.966 0.967 0.965 0.957 0.955 0.965
lastfm1k 90 0.737 0.737 0.737 0.959 0.952 0.957 0.945 0.934 0.955
lastfm1k 300 0.705 0.705 0.705 0.918 0.893 0.917 0.907 0.903 0.911
bpi 10 0.687 0.687 0.690 0.798 0.809 0.845 0.799 0.807 0.834
bpi 30 0.702 0.702 0.708 0.835 0.837 0.877 0.846 0.798 0.866
linux 10 0.552 0.552 0.552 0.940 0.941 0.941 0.910 0.913 0.915
linux 30 0.534 0.534 0.534 0.927 0.925 0.929 0.885 0.886 0.895
linux 90 0.524 0.524 0.524 0.899 0.906 0.915 0.861 0.844 0.855
linux 300 0.517 0.517 0.517 0.863 0.864 0.885 0.789 0.772 0.795

criminatory performance using Area Under the Curve (AUC) and overall performance using Binary
Cross Entropy (BCE)3, the loss that the binary model is optimizing for.

We ran an excess of 452 individual training runs. HazardNet was trained repetedly for every archi-
tecture and distribution4 . Binary models were trained for every architecture and threshold, with and
without the last τ timesteps in the training set. More details can be found in Appendix.

4.3 RESULTS

HazardNet beats or has identical performance to the binary model for almost every dataset, architec-
ture and distribution. While HazardNet is significantly better on most metrics, the difference is very
small. In Table 3 we report the best AUC achieved per experiment. Additional figures and tables
can be found in Appendix. We summarize the results here.

Different datasets have different optimal TTE-distributions: The 1-parameter exponential dis-
tribution was consistently worse than the others. Weibull and WeibullMixedHazards was the least

3Negative Bernoulli loglikelihood.
4 2-parameter Weibull, Pareto, LogLogistic, and their MixedHazard-variants ( 3 mixed CHFs each) and the

1-parameter Exponential distribution.

7



Under review as a conference paper at ICLR 2019

numerically stable, often failing mid training. LogLogistic seems like a generally good choice.
Weibull was optimal for LastFm-1k, differing from other datasets with it’s very high event density.
Weibull is the only distribution that can model increasing hazard, suitable when lack of events im-
plies event is getting closer. The highly seasonal BPI-dataset was dominated by LogLogistic which
can model hazards that peak at some time, possibly suitable to model users certain to return at end
of month. The highly unpredictable Linux-dataset, characterized by high dropoff was dominated by
Pareto which a strictly decreasing hazard.

The binary model should not train on the last timesteps: The temporal CNN and RNN learned
that event-probability is artificially low at the end of the training set since we lack negative ground
truth samples. This makes the Binary model that were allowed to train on these timesteps poorly
calibrated (high ECE and BCE). On the calibration independent metric AUC, the models were in-
distinguishable except on the seasonal BPI-dataset where we assume the artifactc were more easily
overfitted on. This confirms that the binary approach is either biased or misses training data.

HazardNet beats the baseline overall: HazardNet was better calibrated (lower minimum ECE)
and had better discriminative performance (higher calibration independent AUC). The results are
most pronounced for the stronger models (CNN, RNN) implying that our model is most of the time
better or equal and less prone to overfit. Comparing the metric the binary model was optimized for
(BCE), the results are less convincing but very close. Over all metrics, HazardNet is significantly
better, but the difference is very small.

5 APPLICATION: MUSICAL ONSET DETECTION

Table 4: F1 scores and standard deviation of 8 folds on onset detection. F1 evaluated before & after
predicted probabilities were smoothed using a size 5 hamming window.

Model F1 F1 (Smoothed)

Schluter & Böck (2014) (our implementation) 0.853±0.014 0.853±0.015
Baseline (Modified Schlüter) 0.848±0.016 0.851±0.017
HazardNet (censored using c = 10) 0.878 ±0.014 0.874±0.015
HazardNet (censored using c = 20) 0.872±0.016 0.869±0.018

Aiming to show the versatility of the proposed model, we applied it for musical onset detection. The
task is to detect relevant musical events in audio signals which is broadly used in applications such
as automatic piano transcription (Hawthorne et al., 2017). The state of the art poses it as a binary
prediction task. To counter class imbalance and sparseness they apply various smoothing techniques
and weights on predicted probabilities (Schluter & Böck, 2014). We propose to soften this problem
instead by formulating it as a multivariate time to event problem, jointly predicting the distribution
of time to onset and time since onset (TSE). In this way the onset probability in each timestep can
be predicted as in Eq. 5:

pt = Pr (Onset within τ = 1 steps) = Pr ([TSE < 1] ∪ [TTE < 1]) = 1−STSEt (1)STTEt (1) (4)

Experiments were performed on the Böck dataset, a dataset for evaluating onset detection that is
used in several papers (Böck et al., 2012; Schluter & Böck, 2014) The dataset contains 321 audio
clips taken from various sources, including piano, violin, percussions, and more (Böck et al., 2012).
As feature input we use log scale mel-spectrograms (80 bins) computed with Librosa (McFee et al.,
2015) with frequency ranges between 27.Hz to 16kHz. For each audio clip, three mel-spectrograms
with different STFT window sizes(23ms, 46ms, 93ms) but same hop size(10ms) were computed and
concatenated channel-wise. A single network input is 15 frames of a precomputed mel-spectrogram,
where we predict on the center frame. The network architecture is shown in Figure 3 (d). To compare
with previous work we used the CNN architecture of Schlüter (Schluter & Böck, 2014). Our model
had two extra layers for the parametric output so a comparable baseline model was made to match
the number of parameters (Schluter & Böck, 2014).

Target values for training were naturally censored at start and end of song and artificially censored
s.t y < c with y the TSE and TTE and c = 10, 20. All experiments are trained on 300 epochs,
using SGD with a learning rate of 0.001 and momentum linearly increasing at 10 to 20 epochs

8



Under review as a conference paper at ICLR 2019

from 0.45 to 0.9. To choose predicted onset labels from the predicted probabilities we applied the
peak-picking method from Librosa (McFee et al., 2015), using parameters recommended by Böck
for offline detection (Böck et al., 2012). For evaluation, we use the onset evaluation metric from
mir-eval (Raffel et al., 2014) with 50ms tolerance. We achieved best results using the LogLogistic
distribution and c ≤ 10. Results as average optimal F1-scores from 8-fold cross validation are
reported in Table 4. We find that despite only differing by the loss function, our method achieves
state of the art results.

6 SUMMARY & CONCLUSION

In this paper we presented a simple generalized parametric survival approach for using neural net-
works to sequentially predict probability distributions over time to the next event.

In the experiments we trained the proposed model (HazardNet) and queryed it on classification
subtasks for which baseline binary models were explicitly trained for. We found that we often
achieve both higher performance and better calibrated probabilistic predictions. Since the model
predicts a distribution one can readily calculate other meaningful quantities from it such as predicting
quantiles, expected value or sample random TTEs.

While much prior research has focused on specifics of certain probability distributions, we unsurpris-
ingly find that the optimal choice depends on the dataset. We think this emphasizes the importance
of a broader discussion on generalized solutions and good abstractions, making it easy to experiment
and create new distributions. To this goal, we showed how to train with censored data and how this
extends to various continuous, discrete and multivariate distributions with minimal effort.

We introduced and tested a way to compose distributions using their cumulative hazard functions
while being able to use censored data (MixedHazards-distributions). Despite being much more ex-
pressive, we found no proof that they performed better (or worse) than simple distributions. It is
tempting to work on trying to encode more information into ever more expressive predicted distri-
butions or fine-grained predicted hazard rates. For the real-life event sequence data we used, we find
little to indicate that this is a fruitful path of research.

The main intention of the experiments was to verify that our model makes unbiased, calibrated
probabilistic predictions and efficiently utilizes training data. Our criteria for relevant baselines was
to be able to train with discrete censored TTE, use asynchronously arriving feature inputs while
predicting at each timestep and work with arbitrary neural network-architectures. It should also
be able to predict queries such as Pr (Y < 10), . . . ,Pr (Y < 300). To the best of our knowledge,
no existing work satisfied all of these demands. What was left for fair comparison was the binary
window prediction model.

A surprising result was that this baseline makes biased predictions unless one removes the last
time-window from the training data. This could have implications for all approaches relying on
fixed-window predictions (Harutyunyan et al., 2017; Lee et al., 2018; Luck et al., 2017) who did not
discuss or evaluate this apparent drawback.

That aside, comparisons between generalized parametric- and the dominant semi-parametric Cox-
Proportional Hazards approach (Katzman et al., 2016; Luck et al., 2017; Joshi & Reeves, 2006)
should be priority future work. The latter can only answer a subset of the probabilistic queries but
it is theoretically possible to compare models in terms of their predicted rankings between subjects,
calculating Pr(Y i < Y j). As we found no prior work on architecture agnostic semi-parametric
approaches we propose this as future work.

Finally, for extensions of our work we propose studies on how to extend and evaluate it for asyn-
chronously predicted time to event and how multivariate time to event can be connected to temporal
multi-class classification.

REFERENCES

Anand Avati, Tony Duan, Kenneth Jung, Nigam H Shah, and Andrew Ng. Countdown regression:
Sharp and calibrated survival predictions. arXiv preprint arXiv:1806.08324, 2018.

Christopher M Bishop. Mixture density networks. 1994.

9



Under review as a conference paper at ICLR 2019

Sebastian Böck, Florian Krebs, and Markus Schedl. Evaluating the online capabilities of onset
detection methods. In ISMIR, pp. 49–54, 2012.

O. Celma. Music Recommendation and Discovery in the Long Tail. Springer, 2010.

Yifei Chen, Zhenyu Jia, Dan Mercola, and Xiaohui Xie. A gradient boosting algorithm for survival
analysis via direct optimization of concordance index. Computational and mathematical methods
in medicine, 2013, 2013.

Abraham de Moivre. Annuities Upon Lives: Or, the Valuation of Annuities Upon Any Number of
Lives; as Also, of Reversions. To which is Added, an Appendix Concerning the Expectations of
Life, and Probabilities of Survivorship. By A. de Moivre. FRS. London printed: and, Dublin
re-printed, by and for Samuel Fuller, 1731.

M. Dees and B.F. Van Dongen. Bpi challenge 2016, 2016.

Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore,
Brian Patton, Alex Alemi, Matt Hoffman, and Rif A Saurous. Tensorflow distributions. arXiv
preprint arXiv:1711.10604, 2017.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: Embedding event history to vector. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 1555–1564. ACM, 2016.

Hrayr Harutyunyan, Hrant Khachatrian, David C Kale, and Aram Galstyan. Multitask learning and
benchmarking with clinical time series data. arXiv preprint arXiv:1703.07771, 2017.

Curtis Hawthorne, Erich Elsen, Jialin Song, Adam Roberts, Ian Simon, Colin Raffel, Jesse Engel,
Sageev Oore, and Douglas Eck. Onsets and frames: Dual-objective piano transcription. arXiv
preprint arXiv:1710.11153, 2017.

Hemant Ishwaran, Udaya B Kogalur, Eugene H Blackstone, and Michael S Lauer. Random survival
forests. The annals of applied statistics, pp. 841–860, 2008.

Rashmi Joshi and Colin Reeves. Beyond the cox model: artificial neural networks for survival
analysis part ii. In Proceedings of the eighteenth international conference on systems engineering,
pp. 179–184, 2006.

Jonas Kalderstam. Neural Network Approaches To Survival Analysis. PhD thesis, Lund University,
2015.

Jared Katzman, Uri Shaham, Jonathan Bates, Alexander Cloninger, Tingting Jiang, and Yu-
val Kluger. Deep survival: A deep cox proportional hazards network. arXiv preprint
arXiv:1606.00931, 2016.

J.P. Klein and M.L. Moeschberger. Survival Analysis: Techniques for Censored and Truncated
Data. Statistics for Biology and Health. Springer New York, 2005. ISBN 9780387953991. URL
https://books.google.co.kr/books?id=jS2Cy0lezJIC.

Changhee Lee, William R Zame, Jinsung Yoon, and Mihaela van der Schaar. Deephit: A deep
learning approach to survival analysis with competing risks. 2018.

Yang Li. Time-dependent representation for neural event sequence prediction. arXiv preprint
arXiv:1708.00065, 2017.

Margaux Luck, Tristan Sylvain, Héloı̈se Cardinal, Andrea Lodi, and Yoshua Bengio. Deep learning
for patient-specific kidney graft survival analysis. arXiv preprint arXiv:1705.10245, 2017.

Egil Martinsson. WTTE-RNN : Weibull Time To Event Recurrent Neural Network. Master’s thesis,
Chalmers University Of Technology, 2016.

Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg, and
Oriol Nieto. librosa: Audio and music signal analysis in python. In Proceedings of the 14th
python in science conference, pp. 18–25, 2015.

10

https://books.google.co.kr/books?id=jS2Cy0lezJIC


Under review as a conference paper at ICLR 2019

Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating mul-
tivariate point process. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30, pp.
6757–6767. Curran Associates, Inc., 2017.

Xenia Miscouridou, Adler Perotte, Noémie Elhadad, and Rajesh Ranganath. Deep survival analysis:
Nonparametrics and missingness.

Mahdi Pakdaman Naeini, Gregory F Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using bayesian binning. In AAAI, pp. 2901–2907, 2015.

Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased lstm: Accelerating recurrent network train-
ing for long or event-based sequences. In Advances in Neural Information Processing Systems,
pp. 3882–3890, 2016.

Bob Price, Lottie Price, Dylan Cashman, and Marzieh Nabi. Efficient bayesian detection of disease
onset in truncated medical data. In Healthcare Informatics (ICHI), 2017 IEEE International
Conference on, pp. 208–213. IEEE, 2017.

Colin Raffel, Brian McFee, Eric J Humphrey, Justin Salamon, Oriol Nieto, Dawen Liang, Daniel PW
Ellis, and C Colin Raffel. mir eval: A transparent implementation of common mir metrics. In
In Proceedings of the 15th International Society for Music Information Retrieval Conference,
ISMIR. Citeseer, 2014.

Rajesh Ranganath, Adler Perotte, Noémie Elhadad, and David Blei. Deep survival analysis. arXiv
preprint arXiv:1608.02158, 2016.

Kan Ren, Jiarui Qin, Lei Zheng, Zhengyu Yang, Weinan Zhang, Lin Qiu, and Yong Yu. Deep
recurrent survival analysis. arXiv preprint arXiv:1809.02403, 2018.

Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online failure prediction methods.
ACM Computing Surveys (CSUR), 42(3):10, 2010.

Jan Schluter and Sebastian Böck. Improved musical onset detection with convolutional neural net-
works. In Acoustics, speech and signal processing (icassp), 2014 ieee international conference
on, pp. 6979–6983. IEEE, 2014.

N. Siddharth, Brooks Paige, Jan-Willem van de Meent, Alban Desmaison, Noah D. Goodman,
Pushmeet Kohli, Frank Wood, and Philip Torr. Learning disentangled representations with semi-
supervised deep generative models. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30,
pp. 5927–5937. Curran Associates, Inc., 2017.

ukasz Sobaszek and Arkadiusz Gola. Survival analysis method as a tool for predicting machine
failures. 177:421–428, 03 2016.

Hossein Soleimani, James Hensman, and Suchi Saria. Scalable joint models for reliable uncertainty-
aware event prediction. IEEE transactions on pattern analysis and machine intelligence, 2017.

Dustin Tran, Alp Kucukelbir, Adji B Dieng, Maja Rudolph, Dawen Liang, and David M
Blei. Edward: A library for probabilistic modeling, inference, and criticism. arXiv preprint
arXiv:1610.09787, 2016.

Ping Wang, Yan Li, and Chandan K Reddy. Machine learning for survival analysis: A survey. arXiv
preprint arXiv:1708.04649, 2017.

Shuai Xiao, Junchi Yan, Mehrdad Farajtabar, Le Song, Xiaokang Yang, and Hongyuan Zha. Joint
modeling of event sequence and time series with attentional twin recurrent neural networks. arXiv
preprint arXiv:1703.08524, 2017a.

Shuai Xiao, Junchi Yan, Xiaokang Yang, Hongyuan Zha, and Stephen M Chu. Modeling the inten-
sity function of point process via recurrent neural networks. In AAAI, pp. 1597–1603, 2017b.

11



Under review as a conference paper at ICLR 2019

Hongteng Xu, Dixin Luo, and Hongyuan Zha. Learning hawkes processes from short doubly-
censored event sequences. In International Conference on Machine Learning, pp. 3831–3840,
2017.

Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng Cai. What to do
next: modeling user behaviors by time-lstm.

12



Under review as a conference paper at ICLR 2019

A APPENDIX

A.1 MORE DETAILS ON EXPERIMENTS OF SECTION 4

To validate our results we made a total of 452 individual training runs. All logs, results and code to
recreate the experiments will be released online.

The binary baselines were run for every dataset, threshold (τ = 10, 30, 90, 300) and model (MLP,
CNN, RNN) using both the last (biased) binary target value (labeled a ’Bin’ in tables) and when
removing the τ last timesteps of the training set (labeled as Bin∗). Every setting was repeated for
different random seeds; at least 5 times for LastFm1k (98 successful runs in total), 8 times for BPI
(64) and at least 4 times for linux dataset (69).

HazardNet was run for every dataset, distribution (Exponential, Weibull, LogLogistic, Pareto and
their MixedHazards-versions) and model. Binary evaluation was calculated for every τ . Every
setting was repeated for different random seeds; at least 2 times for LastFm1k (63 successful runs
in total), 3 times for BPI (76) and at least 3 times for linux dataset (82 runs in total). The TTE
was artificially censored s.t TTE < 300. This was found to increase numerical stability and reduce
overfit. We found little or no advantage in the more expressive often multimodal MixedHazards-
distributions. We speculate that this is due to the tasks being inherently hard and exact timings of
events unpredictable.

We present summaries of this large comparison matrix below. Here we also show results when using
a smaller 1-layer 5-hidden units RNN. Figure 5,6, 7 shows the best metrics (HazardNet vs Binary
baseline) evaluated per epoch. It is clear that the HazardNet approach is almost always better or at
least as good and seems less prone to overfit. Table 5, 6, 7 summarises the final results in more detail.
Figure 8 and 9 shows the test-set loss broken down per distribution. This was evaluated differently
(using the whole test set, not just the timesteps after the end of training set). When comparing the
binary scores for HazardNet among distributions evaluated in the more rigourous fashion proposed
in Section. 4 the overall trends are the same.

Table 5: Binary Cross Entropy evaluated as described in Section 4.

dataset threshold MLP2x50B MLP2x50B∗ MLP2x50H RNN1x5B RNN1x5B∗ RNN1x5H RNN2x50B RNN2x50B∗ RNN2x50H CNN14x50B CNN14x50B∗ CNN14x50H
lastfm1k 10 0.462* 0.462** 0.461*** 0.226* 0.226*** 0.226** 0.224** 0.225* 0.222*** 0.228** 0.236* 0.226***
lastfm1k 30 0.452* 0.452** 0.45*** 0.222* 0.221** 0.219*** 0.231* 0.22*** 0.221** 0.266* 0.258** 0.219***
lastfm1k 90 0.435* 0.435** 0.432*** 0.228** 0.229* 0.225*** 0.252* 0.249** 0.224*** 0.326* 0.278** 0.221***
lastfm1k 300 0.36* 0.333** 0.329*** 0.286* 0.244** 0.235*** 0.519* 0.347** 0.264*** 0.561* 0.264** 0.238***
bpi 10 0.627** 0.628* 0.625*** 0.637* 0.47*** 0.473** 1.03* 0.535** 0.509*** 0.867* 0.558** 0.508***
bpi 30 0.521* 0.518** 0.515*** 0.808* 0.355*** 0.356** 1.323* 0.442** 0.432*** 1.303* 0.545** 0.434***
linux 10 0.179** 0.18* 0.179*** 0.102*** 0.102** 0.104* 0.104** 0.104*** 0.107* 0.116* 0.111** 0.107***
linux 30 0.294** 0.295* 0.292*** 0.161*** 0.161** 0.169* 0.168*** 0.169** 0.18* 0.216* 0.188** 0.173***
linux 90 0.404** 0.408* 0.402*** 0.22*** 0.22** 0.236* 0.359* 0.24*** 0.261** 0.435* 0.271** 0.253***
linux 300 0.527*** 0.543* 0.534** 0.327** 0.312*** 0.351* 0.643* 0.362*** 0.418** 0.901* 0.384** 0.372***

Table 6: Area Under the Curve evaluated as described in Section 4.

dataset threshold MLP2x50B MLP2x50B∗ MLP2x50H RNN1x5B RNN1x5B∗ RNN1x5H RNN2x50B RNN2x50B∗ RNN2x50H CNN14x50B CNN14x50B∗ CNN14x50H
lastfm1k 10 0.781* 0.781** 0.782*** 0.967* 0.967*** 0.967** 0.968** 0.967* 0.968*** 0.967** 0.963* 0.967***
lastfm1k 30 0.759 0.759 0.759 0.965** 0.965* 0.966*** 0.966** 0.967*** 0.965* 0.961** 0.955* 0.965***
lastfm1k 90 0.737 0.737 0.737 0.957*** 0.956* 0.957** 0.959*** 0.952* 0.957** 0.948** 0.938* 0.955***
lastfm1k 300 0.705 0.705 0.705 0.914** 0.913* 0.916*** 0.918*** 0.893* 0.917** 0.907** 0.903* 0.911***
bpi 10 0.687** 0.687* 0.69*** 0.837* 0.852*** 0.851** 0.798* 0.817** 0.845*** 0.799* 0.807** 0.836***
bpi 30 0.702* 0.702** 0.708*** 0.879* 0.893*** 0.893** 0.853** 0.837* 0.881*** 0.847** 0.803* 0.866***
linux 10 0.552** 0.552* 0.552*** 0.943*** 0.943** 0.942* 0.94* 0.941** 0.941*** 0.91* 0.913** 0.915***
linux 30 0.534** 0.534* 0.534*** 0.932*** 0.932** 0.93* 0.927** 0.925* 0.929*** 0.885* 0.887** 0.895***
linux 90 0.524** 0.524* 0.524*** 0.921** 0.921*** 0.919* 0.899* 0.906** 0.915*** 0.861*** 0.851* 0.855**
linux 300 0.517** 0.517* 0.517*** 0.897*** 0.897** 0.897* 0.863* 0.876** 0.885*** 0.789* 0.806*** 0.795**

Table 7: Expected Calibration Error evaluated as described in Section 4.

dataset threshold MLP2x50B MLP2x50B∗ MLP2x50H RNN1x5B RNN1x5B∗ RNN1x5H RNN2x50B RNN2x50B∗ RNN2x50H CNN14x50B CNN14x50B∗ CNN14x50H
lastfm1k 10 0.003*** 0.006* 0.005** 0.019** 0.022* 0.017*** 0.019** 0.021* 0.016*** 0.017*** 0.018* 0.017**
lastfm1k 30 0.004*** 0.009* 0.005** 0.019** 0.02* 0.017*** 0.037* 0.027** 0.019*** 0.047* 0.035** 0.018***
lastfm1k 90 0.008** 0.014* 0.003*** 0.024* 0.014** 0.011*** 0.056* 0.044** 0.019*** 0.093* 0.044** 0.018***
lastfm1k 300 0.088* 0.019** 0.008*** 0.106* 0.056** 0.032*** 0.18* 0.097** 0.056*** 0.197* 0.065** 0.031***
bpi 10 0.029** 0.034* 0.021*** 0.212* 0.017** 0.011*** 0.355* 0.06** 0.029*** 0.304* 0.062** 0.019***
bpi 30 0.034* 0.027** 0.011*** 0.368* 0.016** 0.008*** 0.507* 0.061** 0.053*** 0.493* 0.079** 0.053***
linux 10 0.012** 0.013* 0.012*** 0.006* 0.006** 0.004*** 0.007* 0.005** 0.003*** 0.013* 0.005** 0.002***
linux 30 0.022** 0.026* 0.014*** 0.007*** 0.007** 0.008* 0.015* 0.009** 0.007*** 0.037* 0.016** 0.007***
linux 90 0.037** 0.052* 0.029*** 0.007** 0.004*** 0.009* 0.09* 0.023** 0.014*** 0.098* 0.019** 0.011***
linux 300 0.028*** 0.085* 0.058** 0.052* 0.011*** 0.021** 0.164* 0.052** 0.032*** 0.195* 0.015** 0.012***

13



Under review as a conference paper at ICLR 2019

MLP_2x50 RNN_1x5 RNN_2x50 CNN_14x50
10

lastfm
1k

30

lastfm
1k

90

lastfm
1k

300

lastfm
1k

10

bpi

30

bpi

10

linux

30

linux

90

linux

300

linux

0 1000 20000 1000 20000 1000 20000 1000 2000

0.2
0.3
0.4
0.5
0.6
0.7

0.2
0.3
0.4
0.5
0.6

0.3
0.4
0.5

0.2
0.4
0.6
0.8

0.6
0.8
1.0

0.3
0.6
0.9
1.2
1.5

0.100
0.125
0.150
0.175

0.16
0.20
0.24
0.28

0.3

0.4

0.5

0.4
0.6
0.8
1.0

epoch

B
C

E

type

HazardNet

Binary

Binary*

Figure 5: Minimum of each run for the test-loss during training evaluated as described in section 4.
Lower is better.

14



Under review as a conference paper at ICLR 2019

MLP_2x50 RNN_1x5 RNN_2x50 CNN_14x50
10

lastfm
1k

30

lastfm
1k

90

lastfm
1k

300

lastfm
1k

10

bpi

30

bpi

10

linux

30

linux

90

linux

300

linux

0 1000 20000 1000 20000 1000 20000 1000 2000

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.2
0.4
0.6
0.8

0.5
0.6
0.7
0.8

0.5
0.6
0.7
0.8
0.9

0.5
0.6
0.7
0.8
0.9

0.5
0.6
0.7
0.8
0.9

0.5
0.6
0.7
0.8
0.9

0.5
0.6
0.7
0.8
0.9

epoch

A
U

C

type

HazardNet

Binary

Binary*

Figure 6: Maximum of each run for the test-loss during training evaluated as described in section 4.
Higher is better.

15



Under review as a conference paper at ICLR 2019

MLP_2x50 RNN_1x5 RNN_2x50 CNN_14x50
10

lastfm
1k

30

lastfm
1k

90

lastfm
1k

300

lastfm
1k

10

bpi

30

bpi

10

linux

30

linux

90

linux

300

linux

0 1000 20000 1000 20000 1000 20000 1000 2000

0.0
0.1
0.2
0.3

0.0
0.1
0.2
0.3

0.00
0.05
0.10
0.15
0.20

0.0

0.1

0.2

0.0
0.1
0.2
0.3

0.0
0.1
0.2
0.3
0.4
0.5

0.005
0.010
0.015
0.020
0.025

0.01
0.02
0.03
0.04

0.000
0.025
0.050
0.075
0.100

0.00
0.05
0.10
0.15
0.20

epoch

E
C

E

type

HazardNet

Binary

Binary*

Figure 7: Minimum of each run for the test-loss during training evaluated as described in section 4.
Lower is better.

16



Under review as a conference paper at ICLR 2019

MLP_2x50 RNN_1x5 RNN_2x50 CNN_14x50

lastfm
1k

bpi
linux

0 1000 20000 1000 20000 1000 20000 1000 2000

0.3

0.4

0.5

0.6

0.5

0.6

0.7

0.2

0.3

0.4

0.5

0.6

epoch

lo
ss

_t
es

t

distribution:threshold

Bernoulli:10

Bernoulli:30

Bernoulli:90

Bernoulli:300

hide_timesteps

FALSE

TRUE

Figure 8: Minimum over each run and timestep for the test-loss during training for the binary base-
lines (evaluated on all timesteps of the test set)

17



Under review as a conference paper at ICLR 2019

MLP_2x50 RNN_1x5 RNN_2x50 CNN_14x50

lastfm
1k

bpi
linux

0 1000 20000 1000 20000 1000 20000 1000 2000

3.0

3.5

4.0

4.5

2.8

3.0

3.2

3.4

2.2

2.4

2.6

2.8

epoch

lo
ss

_t
es

t

distribution

Exponential

LogLogistic

LogLogisticMixedHazards

Pareto

ParetoMixedHazards

Weibull

WeibullMixedHazards

Figure 9: Minimum of each run for the test-loss during training for HazardNet models (evaluated on
all timesteps of the test set)

18


	Introduction
	Related Work
	HazardNet
	Efficiently Working with Distributions using Cumulative Hazard Functions
	Composing Mixtures of Distributions
	Censored Log-likelihood
	Loss function for Sequential Prediction

	Experimental Results
	Data Description
	Baseline: Binary Window Model
	Results

	Application: Musical Onset Detection
	Summary & Conclusion
	Appendix
	More details on experiments of section 4


