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ABSTRACT

The quality of the features used in visual recognition is of fundamental impor-
tance for the overall system. For a long time, low-level hand-designed feature
algorithms as SIFT and HOG have obtained the best results on image recognition.
Visual features have recently been extracted from trained convolutional neural
networks. Despite the high-quality results, one of the main drawbacks of this ap-
proach, when compared with hand-designed features, is the training time required
during the learning process. In this paper, we propose a simple and fast way to
train supervised convolutional models to feature extraction while still maintaining
its high-quality. This methodology is evaluated on different datasets and compared
with state-of-the-art approaches.

1 INTRODUCTION

The design of high-quality image features is essential to vision recognition related tasks. They
are needed to provide high accuracy and scalability on processing large image data. Many ap-
proaches to building visual features have been proposed such as dictionary learning that aims to
find a sparse representation of the data in the form of a linear combination of fundamental elements
called atoms (Lazebnik et al., 2006). Scattering approaches provide mathematical frameworks to
build geometric image priors (Oyallon & Mallat, 2015). Unsupervised bag of words methods iden-
tifies object categories using a corpus of unlabeled images (Sivic et al., 2005). Unsupervised deep
learning techniques are also used to extract features by using neural networks based models with
many layers and frequently trained using contrastive divergence algorithms (Le et al., 2011). All
of them have been shown to improve the results of hand-crafted designed feature vectors such as
SIFT (Lowe, 2004) or HOG (Dalal & Triggs, 2005) with promising results (Bo et al., 2010; Oyallon
& Mallat, 2015).

Another recent but very successful alternative is to use supervised Convolutional Neural Networks
(CNN) to extract high-quality image features (Razavian et al., 2014). These models take into consid-
eration that images are symmetrical by a shift in position and therefore weight sharing and selective
fields techniques are used to create filter banks that extract geometrically related features from the
image dataset. The process is composed hierarchically over many layers to obtain higher level fea-
tures after each layer. The network is typically trained using gradient backpropagation techniques.
After the CNN training, the last layer (usually a fully connected layer) is removed to provide the
learned features.

A drawback of this approach is the time needed to thoroughly train a CNN to obtain high accuracy
results. In this paper, we propose the Simple Fast Convolutional (SFC) feature learning technique to
significantly reduce the time required to learning supervised convolutional features without losing
much of the representation performance presented by such solutions. To accelerate the training time,
we consider few training epochs combined with fast learning decay rate.

To evaluate the proposed approach we combined SFC and alternative features methods with classical
classifiers such as Support Vector Machines (SVM) (Vapnik, 1995) and Extreme Learning Machines
(ELM) (Huang et al., 2006). The results show that SFC provides better performance than alterna-
tive approaches while significantly reduces the training time. We evaluated the alternative feature
methods over the MNIST (Lecun & Cortes), CIFAR-10 and CIFAR-100 (Krizhevsky, 2009).
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2 PROPOSAL

The training time required for a supervised convolutional approach to learning features from an
image dataset is usually high. Indeed, it typically takes more than a hundred of training epochs to
fully train a CNN to obtain high accuracy test results in classification tasks (Razavian et al., 2014).
If the dropout technique is used, the process becomes even slower because much more epochs will
probably be needed. However, this paper shows that as few as 10 epochs is generally enough to
generate high-quality features.

In our proposal, the first innovation to learning feature fast is to design a step decay schedule that is
a function of the total number of epochs predicted to train the model. For example, if the application
needs to be trained in a time that is equivalent to only 10 training epochs, the SFC will provide a
step decay schedule that is optimal to that amount of time. However, in the maximum training time
allowed by the application permits to training 30 epochs, SFC will provide a step decay schedule that
is optimal to provide the best possible accuracy performance training precisely 30 epochs. Taking in
consideration the amount of time available to train to design an optimal step decay schedule is very
import to develop a fast convolutional neural networks training procedure.

The second inspiration comes from the recent work of Shwartz-Ziv & Tishby (2017). The mentioned
paper suggests that deep networks go through two learning phases. In the first one, the training hap-
pens very fast, while in the second one a slow progress represented by a fine-tuning takes place. In
fact, Shwartz-Ziv & Tishby (2017) shows that at the beginning of training each layer is learning to
preserve relevant input information. In this process, the mutual information between the representa-
tion of each layer and the relation input/output is enhanced in some cases almost to linear. The next
phase, in consequence, stabilizes the mutual information between each layer and the output allowing
each layer to adapt its weights to prioritize the information that is important for the output mapping.

In this sense, considering previews mentioned results, we assume that preserving for a large per-
centage of epochs this first phase of the network training, which has significant gradient means and
small variance, is very important to generate high-quality features fast. Regarding our proposal, it
suggests that an initial high learning rate has to be kept for a high percentage of training epochs.

Regarding the second phase of the training of deep neural networks (Shwartz-Ziv & Tishby, 2017),
we understand that concerning step decay scheduling the opposite should happen. For this stage,
we consider exponential and fast decay of the learning rate to produce high-quality fine-tuning of
the models. In this sense, after keep the initial high learning rate for a considerable percentage of
epochs, we start exponential decays faster and faster.

2.1 STEP DECAY SCHEDULE

Taking into consideration the above explanations, we define SFC as follows. Given a number of
epochs to train, we set up the first learning rate decay after 60% of the predicted training epochs.
After, a new learning rate decay should happen at 80% of the total scheduled of epochs. Finally,
the last learning rate decay is set to be performed at the 90% of the chosen number of epochs. For
example, if the number of epochs selected is 30, the learning rate decay should happen at epochs 18,
24 and 27. We define the learning rate decay to be 0.2. These values were obtained and validated
experimentally considering different datasets, models, architectures, and parameters.

2.2 FEATURE EXTRACTION

After we train the convolutional network and therefore learning the features, the last fully connected
layer is dropped, exposing the nodes of the previous layer. Given a target image, we apply the
example to the input layer of the learned model, and the network output is the high-level Simple
Fast Convolutional (SFC) feature representation. After extracting the SFC features some classical
classifier can be used to construct the decision surface as proposed by works such as LeCun et al.
(1998) and Huang & LeCun (2006).
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3 EXPERIMENTS

The MNIST is a dataset of 10 handwritten digits classes. In our experiments, we used 60 thousand
images for training and 10 thousand for the test. Each example consists of a grayscale 28x28 pixels
image. The CIFAR-10 dataset consists of 10 classes, each containing 6000 32x32 color images,
totalizing 60000. There are 5000 training images and 1000 test images for each class. The CIFAR-
100 dataset has 100 classes containing 600 images each. For training, there are 500 images per class
while for the test there are 100 images per class.

For MNIST dataset, we are using as baseline model the LeNet5 (LeCun et al., 1998). Our modifi-
cations to the original model were changing the activation function to ReLU and adding the batch
normalization to the convolutional layers. Despite being a tiny and almost twenty years old model,
the proposed LeNet5 is capable of presenting a high performance concerning training time and test
accuracy with only 10 training epochs.

The CIFAR-10 and CIFAR-100 dataset were trained with an adapted Visual Geometry Group (Si-
monyan & Zisserman, 2014) type model. We designed the system with nineteen layers and batch
normalization but without dropout (VGG19). In both cases, to extract for each image a 256 linear
feature vector, the last layer before the full connected classifier was changed to present 256 nodes.

The initial learning rate was 0.1. We used stochastic gradient descent with Nesterov acceleration
technique and moment of 0.9 as the optimization method. The chosen weight decay was 0.0005.
The mini-batches were set to have the size of 128 images each. Since one of our objectives is
to produce a fast solution with smaller training times while keeping a high accuracy, we did our
experiments avoiding any data augmentation (distortion, scaling or rotation).

We used SVM and ELM as base classifiers to evaluate the quality of features compared in this study.
For SVM we used the default values (C = 1 and the gamma value is the inverse of the number of
features) and regular Gaussian Kernels. For ELM, we used 1024 nodes in the hidden layer. In the
following figures and tables, we used the label SVM to refer experiments that consist of using the
SVM classifier with Gaussian kernel directly into a flat array of raw image pixels.

Similarly, we used the label ELM to refer experiments that use an ELM classifier with 1024 hidden
nodes applied directly to the flat array of raw pixel values. The SVMSFC10 refers to experiments with
the SVM classifier using SFC features trained during 10 epochs and similarly ELMSFC10 means that
the experiments using ELM classifiers, instead of being trained in raw pixels, use the SFC features
obtained after 10 CNN training epochs.

If no classifier is mentioned at all, as in the expression SFC10, then the original CNN classifier (the
last fully connected layer) was kept as an example of a classifier in this particular case. Therefore,
SFC30 represent the performance of the CNN itself trained for 30 epochs using the SFC training
schedule. In such situations, we compared multiple variations of Fast Convolution (SFC10, SFC30,
and SFC100) to the classical training schedule approach, which uses numerous training epochs with
a fixed learning rate.

Therefore, in the first classical training schedule (CNN0.1), we trained the models during 100 epochs
with a constant learning rate of 0.1. In the second regular training schedule (CNN0.01), the models
were trained throughout 100 epochs with a learning rate of 0.01.

The experiments were performed using a Linux Ubuntu machine with Intel(R) Core(TM) i7-4790K
CPU @ 4.00GHz, 16GB RAM memory, 1T hard drive, and a NVIDIA GeForce GTX 980 Ti.
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3.1 MNIST

In Table 1, we compared the test accuracy and training time of SVMSFC10 with H-ELM (Tang et al.,
2016), a speedy approach to expand ELM to multilayer networks. SFC10 not only produces better
accuracy but also reduces the training time considerably. In Table 2, the experiments show that
SFC10 provides test accuracy similar to CNN0.1 and CNN0.01, despite being about 10 times faster.

Table 1: MNIST performance comparison

Method Test Accuracy(%) Training Time(s)

H-ELM (Tang et al., 2016) 99.13 281.37

SVMSFC10 99.39 27.98

Table 2: MNIST Simple Fast Convolution performance

Method Test Accuracy(%) Training Time(s)

SFC10 99.37±0.05 15.28±0.75

SFC30 99.38±0.05 46.88±0.97

SFC100 99.46±0.02 154.40±0.14

CNN0.1 99.24±0.04 164.49±1.86

CNN0.01 99.22±0.07 154.57±0.34

3.2 CIFAR-10

The Fig. 1 presents the experiments on CIFAR-10. The SVM, ELM, and even H-ELM present low
accuracy when trained on raw features. It happens because CIFAR-10, unlikely MNIST, is a non-
sparse dataset and since the importance of using high-quality features is high in this case. The use
of the SFC features significantly reduces the training time. Moreover, the SVM and ELM classifiers
improved their performance on the test set in about 30% and 50%, respectively.

The comparative study is shown in the Table 3, where it can be seen that SFC features achieve the
best performance when compared with alternative approaches. Naturally, the test accuracy can go
even higher if the training time is not an issue and more epochs could be used.

The Table 4 shows how fast the SFC can learn high-quality representations if the final objective is
not the absolute maximum possible test accuracy. The mentioned table compare the test accuracy
of SVMSFC10, ELMSFC10, and the original VGG19 model. All results presented are a mean of 10
runs. The VGG19 model was trained with the aim to achieve the best possible accuracy. In this
sense, it was trained with 100 epochs, and learning rate decays at epochs 60, 80 and 90, which is
equivalent to the SFC100 training schedule. The results show that about 95% of the final accuracy
can be achieved with approximately 10% of the training time.

In table 5, the experiments showed that SFC10 provided better test accuracy than both CNN0.1 and
CNN0.01, despite being about 10 times faster. If training time is not an issue, even better test accuracy
can be obtained with slower SFC variants.
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Figure 1: Mean test accuracy and training time of 10 runs on CIFAR-10 dataset.

Table 3: CIFAR-10 performance comparison

Method Type Test Accuracy(%)

SIFT (Bo et al., 2010) Prior Knowl. 65.6

LIFT (Sohn & Lee, 2012) Unsup. Deep 82.2

RotoTrans. Scat. (Oyallon & Mallat, 2015) Prior Knowl. 82.3

NOMP (Lin & EDU, 2014) Unsup. Dict. 82.9

RFL (Yangqing Jia et al., 2012) Unsup. Dict. 83.1

SVMSFC10 Supervised 88.40±0.24

Table 4: CIFAR-10 fully trained VGG19 and Simple Feature Convolutional

Model Accuracy(%) [VGG19(%)] Time(s) [VGG19(%)]

SVMSFC10 88.40 [95.88] 308.40 [12.06]
ELMSFC10 88.34 [95.82] 275.20 [10.76]
VGG19 92.19 [100.00] 2556.29 [100.00]

Table 5: CIFAR-10 Simple Fast Convolution performance

Method Test Accuracy(%) Training Time(s)

SFC10 88.44±0.27 266.18±0.86

SFC30 91.17±0.14 805.83±0.88

SFC100 92.19±0.19 2556.29±3.74

CNN0.1 85.12±0.37 2611.74±7.52

CNN0.01 87.57±0.10 2571.10±6.58
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3.3 CIFAR-100 EXPERIMENTS

The Fig. 2 shows that training on raw data produces even worst results on this dataset and that
SFC, in fact, improves the performance of the test accuracy by providing high-quality features to the
classifiers. Once again, the results presented by the two used classifiers are mostly the same, with
all the differential of the solution being the feature representation used.

The comparative study on dataset CIFAR-100 is shown in the Table 6. Once again, the SFC feature
learning approach produces the best results. Our experiments showed that SFC30 provided better
test accuracy than both CNN0.1 and CNN0.01, despite being about three times faster (Table 7).
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Figure 2: Mean test accuracy and training time of 10 runs on CIFAR-100 dataset.

Table 6: CIFAR-100 performance comparison

Method Type Test Accuracy(%)

RFL (Yangqing Jia et al., 2012) Unsup. Dict. 54.2

RotoTrans. Scat. (Oyallon & Mallat, 2015) Prior Knowl. 56.8

NOMP (Lin & EDU, 2014) Unsup. Dict. 60.8

SVMSFC30 Supervised 65.03±0.31

Table 7: CIFAR-100 Simple Fast Convolution performance

Method Test Accuracy(%) Training Time(s)

SFC10 52.96±1.01 256.87±1.37

SFC30 65.40±0.27 798.42±2.01

SFC100 69.31±0.38 2554.85±2.99

CNN0.1 54.26±0.25 2545.86±3.67

CNN0.01 59.27±0.41 2559.71±6.50
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The results presented in the Tables 2, 5 and 7 essentially show that, when compared to classical
approach of numerous epochs of constant learning rate (CNN0.1 and CNN0.01), the SFC variants
provide better test accuracy despite being many times faster. Therefore, a fast changing in the
learning rate is indeed a viable alternative to speed up deep neural networks training time.

4 CONCLUSION

In this paper, we showed that convolutional feature learning can be performed in a fast way. More-
over, despite being very fast, it is still capable of generating representations that present better per-
formance than other approaches. The proposed method is also flexible enough since a compromise
can be obtained between the speed of the training and the final solution test accuracy. Naturally,
the difference in test accuracy presented in this paper could be even greater if more training time is
allowed to be used.

We emphasize that transfer learning techniques can be used to extend the application of the proposed
method. Finally, we show that despite efforts to the contrary, supervised convolutional method still
provides state-of-the-art results for image feature generation. Moreover, the experiments showed
that a quick change in the learning rate decay is a valid method to speed up the training of deep
neural networks significantly.
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