
Deep Learning Approximation: Zero-Shot Neural
Network Speedup

Anonymous Author(s)
Affiliation
Address
email

Abstract

Neural networks offer high-accuracy solutions to a range of problems, but are1

computationally costly to run in production systems. We propose a technique2

called Deep Learning Approximation to take an already-trained neural network3

model and build a faster (and almost equally accurate) network by manipulating4

the network structure and coefficients without requiring re-training or access to5

the training data. Speedup is achieved by applying a sequential series of indepen-6

dent optimizations that reduce the floating-point operations (FLOPs) required to7

perform a forward pass. An optimal lossy approximation is chosen for each layer8

by weighing the relative accuracy loss and FLOP reduction. On PASCAL VOC9

2007 with the YOLO network, we show an end-to-end 2x speedup in a network10

forward pass with a 5% drop in mAP that can be re-gained by finetuning, enabling11

this network (and others like it) to be deployed in compute-constrained systems.12

1 Introduction13

At deploy time, the dollar cost of a production pipeline using a neural network is proportional to14

the time required to execute a forward pass, which is proportional to the number of floating-point15

operations (FLOPs) required. We want to run faster models to achieve higher throughput, lower16

cost, better hardware utilization, and lower power, cooling, and CPU speed requirements. However,17

training the smallest possible network to achieve the desired task is challenging.18

Instead, we propose the DLA method to take a network that is slightly too slow and reduce the FLOP19

count with minimal accuracy loss, reducing the need to train and re-train to find an appropriately-20

sized network. We automatically select an appropriate singular value decomposition (SVD) to apply21

to each weight tensor in the original network, replacing it with a set of weights that, when applied22

sequentially, offer similar outputs but using fewer FLOPs. Intuitively, using low-rank decomposition23

to determine which FLOPs to keep and which to approximate means that representation layers that24

are redundant will have a lower-rank decomposition and yield more speedup for less accuracy loss25

when approximated. The sensitivity of this approximation is controlled by a single parameter that26

represents whether accuracy or speedup is more important. Because this method does not require27

access to the original network training data, it can be used to speed up systems where networks are28

a black-box or training data is confidential.29

On a benchmark set of standard computer vision tasks and neural network architectures, we show30

between a 1.5x and 2x speedup without additional re-training and minimal accuracy loss. In each31

case, funetuning after applying DLA recovers lost accuracy.32

This work extends that of Denton et al. [1], who use SVD and factorization approaches to approx-33

imate weight layers, but rely on re-training after every layer has been approximated. DLA extends34

this method by applying approximations in a zero-shot manner, without requiring re-training.35

Submitted to Workshop on Compact Deep Neural Network Representation with Industrial Applications at 32nd
Conference on Neural Information Processing Systems (NIPS 2018). Do not distribute.

Original

Factorization Type

Filterwise Projection-First Separable Perchannel

!"

!#
$%

$&

!#

$%

$&

⋮ (

!#
$%

$&

!#

$%

$&

⋮

(
1

1

⋮

(
1

1

!"+

!#
1

1

⋮

!#
1

1

(!"

(

$%

$&

(

$%

$&

⋮+ (

!#
$%

1

!#

⋮

(

⋮

(

!"+ !#⋮

(!#
1

1

⋮

(!#
1

1

!"+

$&
1

$&
1$%

1

$%
$& 1

(

⋯

$%
$& 1

(

⋯

Figure 1: A visual representation of the 4 factorization methods used in DLA. ci is the number of
input channels, co is the number of output channels, kw is the kernel width, kh is the kernel height,
and b is the factorization parameter.

2 Computationl Model and Weight Tensors36

According to the roofline computation model [11], network runtime is dominated by FLOP count37

and memory movement to and from the GPU. Weight layers fall in the FLOP-dominated regime38

because they have a high arithmetic intensity. DLA replaces FLOP-heavy operations with operations39

that have a lower FLOP count, pushing the layers’ operations into the memory-limited regime.40

The FLOP count is dominated by the duplication factor on the input blob size. A convolutional layer41

is a 4D tensor W in Rco×ci×kh×kw , where co is the number of output feature maps, ci is the number42

of input channels, and kh and kw are the kernel dimensions in y and x respectively. The convolution43

traverses an input blob in Rh×w with stride sh in y and sw in x. In a grouped convolution, the input44

and output channels are broken into g groups and the 4D weight tensor is in Rco×
ci
g ×kh×kw .45

3 The Approximation Pipeline46

Table 1: Properties of 4 types of SVD approximations, shown as a multiple of hw

Filterwise Projection-First Separable Perchannel

W1 shape Rb×ci×kh×kw Rb×ci×1×1 Rb×ci×kh×1 Rbco×
ci
co

×kh×kw

W2 shape Rco×b×1×1 Rco×b×kh×kw Rco×b×1×kw Rco×bco×1×1

FLOPs for
W1 +W2

cibkhkw
shswg

+
bco
shsw

cib+
bcokhkw
shswg

cibkh
shswg

+
bcokw
shsw

cibkhkw
shsw

+
bco

2

shsw

A
sb

2∑co
j=0 sj

2

sb
2∑co

j=0 sj
2

sb
2∑co

j=0 sj
2

1

ci

∑ci
c=0

sc,b
2∑co

j=0 sc,j
2

R
b

co
+

bg

cikhkw

bshswg

cokwkh
+

b

ci

b

cokw
+

bg

cikh

bg

co
+

bgco
cikwkh

An optimal approximation is chosen by calculating the runtime and accuracy loss from all possible47

decompositions (including chaining multiple approximations) and selecting the one with the highest48

score. The lossy approximations that are enumerated (both independently and chained together) are49

low-rank approximations of the original weight tensor W using SVD [4], resulting in two convolu-50

tions W1 and W2 that can be applied sequentially in place of W , shown visually in Figure 1. An51

accuracy score A (the percentage of variation explained by the approximation) and runtime score52

R (the FLOP reduction) is computed for each approximation. The operation with the highest com-53

bined score pA + (1 − p)R is selected. A table of SVD decompositions and FLOP reductions for54

each type of approximation is shown in Table 1. When chaining approximations, R for is the ratio55

of the final output FLOPs to the FLOPs from W . A is the product of the accuracy scores for each56

approximation in the chain, since any error introduced by the first will be carried over to the next.57

2

Table 2: DLA applied to 4 networks and datasets

Runtime (ms) Accuracy (top-1 or mAP)
Network / dataset Baseline DLA Speedup Baseline DLA Finetuned
AlexNet [7] / CIFAR10 [6] 6.06 3.47 1.75x 70.3% 67.75% 68.8%
ResNet50 [3] / ImageNet2012 [9] 40.9 26.8 1.50x 72.3% 62.2% 68.6%
VGG16 [10] / ImageNet2012 78.6 45.2 1.75x 70.38% 59.60% 70.4%
YOLO [8] / VOC2007 [2] 63 31 2.00x 66.9 61.9 65.9

4 Experimental results58

Table 2 shows between 1.5x and 2x runtime improvement, between 5 and 10% loss in accuracy, and59

nearly full recovery of accuracy after finetuning on 4 standard networks.1 FLOP reduction correlates60

with the absolute speedup, with the exception of the ResNet50 network, as shown in Table 3. Table61

4 shows that the input parameter p can be chosen based on the desired runtime / accuracy tradeoff.62

Table 3: Speedup, FLOP reduction, and memory reduction

Network on dataset Speedup FLOP ↓ Memory ↓
AlexNet [7] on
CIFAR10 [6] 1.75x 2.50x 1.10x

ResNet50 [3] on
ImageNet2012 [9] 1.50x 1.20x 1.50x

VGG16 [10] on
ImageNet2012 1.75x 1.70x 1.50x

YOLO [8] on
VOC2007 [2] 2.00x 2.00x 1.60x

Table 4: Runtime and
accuracy on YOLO

p ms mAP
baseline 63 66.9
0.9 57 66.9
0.8 54 66.0
0.7 45 65.4
0.6 41 65.0
0.5 32 61.9
0.4 27 50.0

Memory-limited layers such as fully-connected layers and 1 × 1 convolutions do not see as much63

of an improvement in runtime from DLA (for example ResNet50 in Table 3). Additionally, pushing64

beyond the 2x speedup observed on YOLO without significant accuracy loss is not possible with65

DLA, because layers are moved from the FLOP-limited regime to the memory-limited regime so66

more aggressive approximation trades off mode accuracy for less runtime improvement.67

5 Conclusion68

After networks see diminishing returns with FLOP-reduction methods like DLA, it means that mem-69

ory movement is the runtime bottleneck, and memory-reducing optimizations should be applied,70

suggesting a future research direction into zero-shot memory reduction.71

Deep Learning Approximation can be applied to an already-trained network to speed it up and incur72

only a small amount of accuracy loss. Access to training data is not required and the techniques73

are framework-agnostic, which means DLA can be used on black-box networks or in environments74

where the training data cannot be accessed. The combination of approximations that best achieve75

the desired accuracy loss is chosen for each layer through an exhaustive search. DLA can be com-76

bined with other methods for speeding up neural networks. This runtime reduction can generate a77

multiplier in cost reduction for production services that use neural networks. Any accuracy loss that78

that was introduced can be recovered by fine-tuning or re-training the new resultant network.79

1Runtime was tested on a single input with Caffe [5] compiled with CUDA8 on a g2 cloud instance.

3

References80

[1] Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear structure81

within convolutional networks for efficient evaluation. In Proceedings of the 27th International Confer-82

ence on Neural Information Processing Systems - Volume 1, pages 1269–1277, 2014.83

[2] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual ob-84

ject classes (voc) challenge. International Journal of Computer Vision, 2007. URL http://link.85

springer.com/10.1007/s11263-009-0275-4.86

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.87

In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.88

[4] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural networks with low rank89

expansions. In Proceedings of the British Machine Vision Conference (BMVC), 2014.90

[5] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio91

Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. 2014.92

[6] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced research).93

Technical report. URL http://www.cs.toronto.edu/~kriz/cifar.html.94

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional95

neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in96

Neural Information Processing Systems 25, pages 1097–1105. 2012.97

[8] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. 2016.98

[9] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,99

Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large100

scale visual recognition challenge. Int. J. Comput. Vision, 10(1007):11263–015, December 2015.101

[10] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.102

Technical report, 2014.103

[11] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual performance104

model for multicore architectures. In Commun. ACM, pages 65–76, April 2009.105

4

http://link.springer.com/10.1007/s11263-009-0275-4
http://link.springer.com/10.1007/s11263-009-0275-4
http://link.springer.com/10.1007/s11263-009-0275-4
http://www.cs.toronto.edu/~kriz/cifar.html

	Introduction
	Computationl Model and Weight Tensors
	The Approximation Pipeline
	Experimental results
	Conclusion

