TopicGAN: Unsupervised Text Generation from Explainable Latent Topics

Anonymous authors
Paper under double-blind review

Abstract

Learning discrete representations of data and then generating data from the discovered representations have been increasingly studied, because the obtained discrete representations can benefit unsupervised learning. However, the performance of learning discrete representations of textual data with deep generative models has not been widely explored. In this work, we propose TopicGAN, a two-step generative model on text generation, which is able to discover discrete latent topics of texts and generate natural language from the discovered latent topics in an unsupervised fashion. Promising results are shown on unsupervised text classification and text generation for both subjective and objective evaluation.

1 Introduction

Recently, deep generative models (Goodfellow et al., 2014; Kingma & Welling, 2013; Makhzani et al., 2015) have achieved a great success on generating realistic images, videos and audio. Learning discrete representations of data and then generating data from the discovered representations have been increasingly studied, because the obtained discrete representations can benefit unsupervised learning (Chen et al., 2016; van den Oord et al., 2017), semi-supervised learning (Odena et al., 2016), and few-shot learning. However, it remains extremely challenging for generating texts and learning interpretable discrete representations of texts due to the discrete, sparse and high dimensional properties of textual data.

Arjovsky et al. (2017) mentioned that the original generative adversarial network (GAN) fails to generate discrete data due to the gradient vanishing problem. Wasserstein distance has been proposed to more precisely measure the distance between real and fake distributions and therefore tackles the gradient vanishing problem (Arjovsky et al., 2017; Gulrajani et al., 2017). Another obstacle for generating discrete data is the non-differentiable function when generating words, which makes the gradients unable to be backpropagated from the discriminator to the generator. With the help of reinforcement learning, the generator is able to maximize the scores from the discriminator when the gradient is not able to flow from discriminator (Yu et al., 2017; Li et al., 2017; Fedus et al., 2018).

In natural language processing (NLP), learning representations of texts is shown useful for unsupervised language understanding. While learning continuous text representations has been widely studied (Kiros et al., 2015; Arora et al., 2017; Logeswaran & Lee, 2018), learning high-level discrete representations has been explored by fewer work (Zhao et al., 2018; Miao et al., 2017). In order to take non-differentiable discrete variables as latent representations of an auto-encoder, some special methods such as Gumbel-Softmax (Jang et al., 2016) or vector quantisation (van den Oord et al., 2017) were applied by the prior work. Furthermore, because textual data is high dimensional and has rich but sometimes noisy information such as stop words, it is challenging to learn useful discrete representations of texts.

To mitigate the difficulty of text generation and text discrete representation learning, this paper proposes TopicGAN, which simplifies the problem by a two-step progressive generation. The idea of dividing the generation process into a pipeline yielded impressive results on high resolution image generation (Zhang et al., 2016; Karras et al., 2018). The progressive generation is a natural way to generate texts considering how human writes texts. During writing, human first plans the which key words should be included, and then organizes these key words into the structural texts. Hence, in our proposed TopicGAN, given a discrete topic and a continuous noise, we generate bag-of-words
that represent the topical words of the target texts in the first step. In the second step, based on the generated topical words, we decode a sequential text by a recurrent neural network (RNN).

We utilize InfoGAN (Chen et al., 2016) to discover the latent topics and generate a bag of topical words without supervision in the first step, where the categorical classifier of InfoGAN can be considered as a topic model, which is able to discover latent topics of documents. We show that our model can yield explainable topics and outperform previous topic models such as latent Dirichlet allocation (LDA) (Blei et al., 2003) or variational topic model (Miao et al., 2017) for unsupervised document classification. Topic modeling can be applied to many applications, including extractive text summarization (Titov & McDonald, 2008), document retrieval (Wei & Croft, 2006) or unsupervised classification. Also, unlike previous topic models that did not consider the word correlation during generating words, our method is able to regularize the correlation between words by the generator so that it yields more reasonable bag-of-words and produces high-quality texts.

The contributions of this work are three-fold:

- We propose two-step progressive text generation, which aligns well with the nature of text generation.
- Our model is able to discover explainable topics by a topic classifier and achieves promising performance on unsupervised learning.
- Compared to previous topic models, the proposed TopicGAN is able to capture the correlation between words, and thus performs better generation results.

2 RELATED WORK

Text Generation via GAN Prior work attempted at generating texts using GAN (Yu et al., 2017; Che et al., 2017; Li et al., 2017; Liu et al., 2018), and there are two main directions. One is to tackle the gradient vanishing problem in the original GAN, where the work used Jensen-Shannon divergence to evaluate the discrete real data distribution and the continuous generated distribution. By using Wasserstein distance, the discrete and continuous distributions can be properly measured. However, the Wasserstein distance requires the discriminator to be a Lipschitz continuous function; therefore some restrictions including weight-clipping (Arjovsky et al., 2017), gradient penalty (Gulrajani et al., 2017) are imposed on the discriminator.

Another direction is to feed sampled discrete words from generated distribution to the discriminator. While the sampling operation is non-differentiable, reinforcement learning is applied to optimize the score from the discriminator. Some designed reward functions, such as Monte Carlo tree search (MCTS) (Yu et al., 2017), are proposed to evaluate the generated word for each time step (Lin et al., 2017; Fedus et al., 2018; Li et al., 2017). Our proposed progressive two-step generation framework can be easily combined with any current text generation models, because we can choose one those current work as our final jointly optimization method. Our framework effectively facilitates the training process of text generation by decomposing the task into two sub-problems.

InfoGAN InfoGAN has shown impressive performance for learning disentangled representations of images in an unsupervised manner (Chen et al., 2016). The original GAN generates images from a continuous noise z, while each dimension of the noise does not contain disentangled features of generated images. To learn semantically meaningful representations, InfoGAN maximizes the mutual information between input code c and the generated output $G(z, c)$. However, maximizing the mutual information is intractable, because it requires the access of $P(c \mid G(z, c))$. Based on variational information maximization, Chen et al. (2016) used an auxiliary distribution $Q(c \mid G(z, c))$ to approximate $P(c \mid G(z, c))$. The auxiliary function Q can be a neural network that can be jointly optimized:

$$
\min_{G,Q} \max_D \mathbb{E}_{x \sim P_{\text{data}}} \left[\log(D_{\text{bow}}(x)) \right] + \mathbb{E}_{z \sim P_z, c \sim P_c} \left[\log(1 - D(G(z, c))) - \lambda Q(c \mid G(z, c)) \right],
$$

where P_{data} is the real data distribution, P_z is the noise distribution, and P_c is the code distribution. The code c can be either continuous or categorical. In our work, the code c is set to be categorical, and the categorical classifier Q becomes a topic model. Therefore, we call the third term in the categorical loss.
3 TopicGAN

In unsupervised natural language generation, the generator has difficulty choosing proper content words and using the correct grammar simultaneously. In addition, when feeding a sequential text to the InfoGAN categorical code classifier, due to its complex structure, the classifier fails to discover meaningful discrete information. The key idea of this work is that we divide text generation into two steps: 1) generating bag-of-words that can roughly represent the topical information, and then 2) generating sequential texts from the learned topical words. As shown in Figure 1, given a discrete topic c and a continuous noise z as the input, the bag-of-words generator G_{bow} generates topical words. After obtaining topical words, the sequence generator G_{seq} generates texts according to topical words.

3.1 Generating Topical Words

The upper part of Figure 1 illustrates how our model generate topical words, where there are a bag-of-words generator G_{bow}, a bag-of-words discriminator D_{bow}, a topic model Q, and a noise predictor E.

- **Bag-of-words generator G_{bow}**: It takes a discrete one-hot topic code c and a continuous noise z as the input, and manages to generate bag-of-words that captures the input topical information and are indistinguishable from the bag-of-words of real texts. Here the bag-of-words is a vector, where each dimension indicates a single word in the dictionary.

- **Bag-of-words discriminator D_{bow}**: It takes the bag-of-words vector as its input and distinguishes whether it is generated or human-written.

- **Topic model Q**: It is a categorical code classifier that is implemented by a matrix, considering that a linear model is easier to interpret the generated bag-of-words.

- **Noise predictor E**: It focuses on reconstructing the noise z in the input.
Similar to Chen et al. (2016), we apply (2) to train our generator, discriminator, and the topic model. In order to obtain better results, an auto-encoder is included in the optimization procedure (Larsen et al., 2015; Huang et al., 2018). Here the objective is to minimize the reconstruction loss $L_{\text{rec}}(G_{\text{bow}}(Q(x), E(x)), x)$, where the topic classifier Q and the noise predictor E encode real text bag-of-words x into the discrete code and continuous noise respectively.

In addition, during training, there is a severe mode collapse issue within the same topic. That is, given the same topic code, the generator ignores the continuous noise and output the same topical words. The reason is that outputing the same bag of words for the generator is the optimal solution to maximize the mutual information between the discrete input topic code and its output. To tackle this issue, we clip the value of the categorical loss in (2) to a specific range α, so the objective function of generating bag-of-words becomes:

$$\min_{G, Q, E} \max_D \mathbb{E}_{x \sim P_{\text{data}}} \left[\log(D_{\text{bow}}(x)) \right] + \mathbb{E}_{z \sim P_z, c \sim P_c} \left[\log(1 - D_{\text{bow}}(G_{\text{bow}}(z, c))) \right] - \lambda \mathbb{E}_{z \sim P_z, c \sim P_c} \left[\max(Q(c \mid G_{\text{bow}}(z, c), \alpha)) \right] + \mathbb{E}_{x \sim P_{\text{data}}} L_{\text{rec}}(G_{\text{bow}}(Q(x), E(x)), x).$$

(2)

Also, we apply batch-normalization to alleviate the mode collapse problem (Ioffe & Szegedy, 2015).

3.2 Generating Texts from Topical Words

The lower part of Figure 1 illustrate how the model generates natural language, where there are a sequence generator G_{seq} and a sequence discriminator D_{seq}.

- **Sequence generator G_{seq}**
 After obtaining bag of topical words, we use an LSTM model to generate sequential texts from the bag-of-words. We use an extra vector as the LSTM input to keep track of which input bag-of-words have been generated in order to avoiding generating the same words repeatedly. As each sequential text has its corresponding bag-of-words, we can obtain numerous (bag-of-words, sequential text) pairs to pretrain G_{seq}. To make G_{seq} robust to the noisy bag-of-words input, during pretraining, we add some noise such as randomly deleting words from the input texts. After pretraining G_{seq}, we jointly optimize the whole model.

- **Sequence discriminator D_{seq}**
 We introduce a sequence discriminator D_{seq} that encourages G_{seq} to produce realistic sequential texts. If D_{seq} simply takes sequential text as the input, it may make the sequence generator generate texts that is realistic but unrelated to the topical words. Therefore, conditioned on the generated bag-of-words, D_{seq} discriminates whether the input text is produced from input bag-of-words.

3.3 Joint Training

In the proposed model, two steps are jointly trained, where WGAN-gp is applied for both generators.

4 Experiments

In this section, we evaluate whether our method is able to learn meaningful latent topics, and show that our two-step progressive generation can generate high-quality texts. For all experiments, in the first step, we set our bag-of-words vocabulary size to 3k and removed stopwords. In the second step, during text generation, we set the vocabulary size to 15k. By setting smaller vocabulary size in the first step, the topic classifier discovered better topics.

4.1 Topic Modeling Results

To evaluate the quality of the captured latent topics, we test whether the topic classifier is able to correctly discover the latent class same as labeled by human without supervision called “unsupervised classification”.

4
Table 1: Unsupervised classification accuracy

<table>
<thead>
<tr>
<th>Methods</th>
<th>20NewsGroups</th>
<th>Yahoo! Answers</th>
<th>DBpedia</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA</td>
<td>29.78</td>
<td>25.95</td>
<td>68.42</td>
</tr>
<tr>
<td>TopicVAE</td>
<td>23.98</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>TopicGAN</td>
<td>41.01</td>
<td>42.14</td>
<td>83.73</td>
</tr>
</tbody>
</table>

Table 2: Ablation study on unsupervised classification.

<table>
<thead>
<tr>
<th>Methods</th>
<th>20NewsGroups</th>
<th>Yahoo! Answers</th>
<th>DBpedia</th>
</tr>
</thead>
<tbody>
<tr>
<td>TopicGAN</td>
<td>41.01</td>
<td>42.14</td>
<td>83.73</td>
</tr>
<tr>
<td>TopicGAN w/ one hidden layer</td>
<td>36.89</td>
<td>42.14</td>
<td>71.26</td>
</tr>
<tr>
<td>TopicGAN w/o loss clipping</td>
<td>35.83</td>
<td>33.46</td>
<td>74.12</td>
</tr>
<tr>
<td>TopicGAN w/o auto-encoder</td>
<td>23.11</td>
<td>20.66</td>
<td>62.43</td>
</tr>
</tbody>
</table>

4.1.1 Unsupervised Classification

For all experiments including baseline methods, we set the number of latent topics same as the number of true classes in each dataset. We used the topic classifier Q to predict the latent topic distribution of each sample, and we assigned each sample to the latent topic with the maximum probability. The samples within a latent topic cluster used its true label to vote for which label should be assigned to the whole cluster. After assigning each latent topic to its corresponding label, we evaluate the classification accuracy as the quality of the captured latent topics. We evaluate unsupervised classification on three datasets including 20NewsGroups, DBpedia ontology classification dataset and Yahoo! answers.

The 20NewsGroups is a news classification dataset composing of 20 different classes of news with 11,314 training and 7,531 testing documents. DBpedia ontology classification dataset is constructed by [Zhang & LeCun (2015)]. They selected 14 ontology classes from DBpedia 2014, and for each class they randomly picked 40,000 training samples and 5,000 testing samples. Thus, there are total 560,000 and 70,000 training and testing samples respectively. Yahoo! answers is a question type classification dataset with 10 types of question-answer pairs constructed by [Zhang & LeCun (2015)]. There are 1,400,000 training samples and 60,000 testing samples.

We compared our method with a statistical topic model, LDA (Blei et al., 2003), and a variational topic model, TopicVAE (Miao et al., 2017). The results of unsupervised classification are shown in Table 1 where compared to previous topic models, our model significantly outperforms baselines for unsupervised classification.

Our method outperforms LDA, because LDA is a statistical model, while our generator is a deep generative model. With several layers of deep feed forward neural network, the generator is able to generate texts from disentangled features, which helps the topic classifier learn more distinctive topics. Another reason is that previous topic models assumed that the documents are produced from mixture of topics, while our method assumes that the documents are produced from a single topic and a noise controlling the variance of texts within a topic. Our assumption aligns well with human intuition that most documents are generated from a single main topic.

4.1.2 Ablation Study

In this section we show that all mechanisms described in Section 3.1 including categorical loss clipping, training with auto-encoder are useful for unsupervised classification. As shown in Table 1, the key trick that greatly improved the performance is training our bag-of-words generator and topic classifier with auto-encoder. In 20NewsGroups and Yahoo! Answers dataset, without training with auto-encoder, there was almost only half of the original performance. Categorical loss clipping also improved the performance, and we also found that it made the training process more stable.

The model complexity of topic classifier also influenced the classification accuracy. In the simpler dataset like 20 news or DBpedia, using a single matrix as model of discriminator (Table 1 no hidden layer) yielded better performance. While in more difficult dataset like Yahoo! Answers dataset, topic classifier with one hidden feed forward layer performed slightly better.
4.2 TEXT GENERATION RESULTS

We conducted sequential text generation experiments on two datasets including DBpedia and English Gigaword. English Gigaword is a summarization dataset which is composed of first sentence of articles and their corresponding titles. The pre-process script (Rush et al., 2015) yielded 3.8M training samples and 400K validation samples. We trained our model to generate the first sentence of articles on training set. Unlike DBpedia which has the labeled classes, English Gigaword has no labeled classes. Therefore, we conducted human evaluation to evaluate whether our model is able to generate text from meaningful discovered topics.

We compare our method with the baseline method which was pre-trained with VAE and then fine tuned by WGAN-gp. Instead of generating text conditioned on discrete code and continuous noise, the baseline method was simply conditioned on a continuous noise. When pre-training variational auto-encoder, the tricks like KL-term annealing (Semeniuta et al., 2017) were applied. We chose this method as our baseline because our sequence generator were pre-trained with bag-of-words to text language model, and we expected our baseline also pre-trained with a proper language model. The performance of our method with and without jointly training of WGAN-gp on sequential text generation was also evaluated. In order to evaluate the quality of generated text, we measured the perplexity of generated text and conducted human evaluation.

4.2.1 PERPLEXITY

The original English Gigaword and DBpedia datasets are already split into training set and testing set. We trained a general LSTM language model on the text of all training data, and for each class we trained a class LSTM language model initialized from general language model. The language models were then used to compute the perplexity of generated text. The perplexity of text on English Gigaword and DBpedia are shown in Table.3.

In both dataset, the perplexity of Topic GAN was almost as low as baseline method VAE+WGANGP, which suggested our method was able to generated equally smooth text. In addition, our method not only generated text with equal quality, it also generated text conditioned on discrete topic. As shown in Table 3 the perplexity of Topic GAN in class language model is lower than general language model. This implied that the generated text of topic GAN captured the information of each class. Jointly training also slightly improved the perplexity. As perplexity can not precisely reflect the quality of text, we conducted human evaluation to further discuss the performance of our model.

4.2.2 HUMAN EVALUATION

As there are no labeled categorical data on English Gigaword and perplexity is not an accurate evaluation of the quality of the text, we conduct human evaluation. The human evaluation experiment was composed of two parts. The first part evaluated whether the text generated from the same latent
Table 5: Topical words generated for different captured latent topics.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Topic ID</th>
<th>Topical Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Gigaword</td>
<td>1</td>
<td>midfielder, liverpool, munich, milan, defender, friendly, boss, debut, dallas, professional, portuguese, premiershipt</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>#,###.##, benchmark, composite, hang, profit-taking, #,###.##, stories, clients, investor, shenzhen</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>killings, teenager, fbi, yemen, fatal, reportedly, jordanian, ring, transfer, cia, smuggling, atlanta</td>
</tr>
<tr>
<td>DBpedia</td>
<td>1</td>
<td>event, vocalist, songwriter, alpine, singing, pianist, bassist, piano, host, guitarist, rb, paintings</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>streets, plaza, residence, mansion, cemetery, landmark, architectural, brick, chapel, revival, citys, surviving</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>goalkeeper, midfielder, striker, defender, fc, defensive, footballer, matches, righthanded, loan, forward, soccer</td>
</tr>
<tr>
<td>Yahoo! Answers</td>
<td>1</td>
<td>crying, comfortable, glad, friendship, cheated, boyfriends, anyways, doi, shell, bother, jealous, talked</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>crack, snow, boat, birds, sharing, aim, 98, fox, wood, syndrome, anti, monitor</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>registered, purchased, certificate, fairly, entry, suit, applying, costs, lease, funds, tons, telephone</td>
</tr>
<tr>
<td>20NewsGroups</td>
<td>1</td>
<td>solar, missions, spacecraft, shuttle, planetary, astronomy, orbit, satellites, materials, mars, flight, launch</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>handguns, handgun, gun, violent, batf, firearms, criminals, firearm, sumgait, weapons, guns, mamma</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>car, tires, engine, bike, ford, cars, ride, rear, seat, honda, miles, shop</td>
</tr>
</tbody>
</table>

topic can be recognized as the same class by human. In the second part evaluate the quality of the generated sentence.

In the first part, the human was demonstrated a set of example sentences generated from the same latent topic and categorized the example text into a specific topic class like sports, economy or violence. Then, in each multiple-choice question, there was one sentence from the example class and several sentences from other classes. The human chose which sentence was same as the example class. As shown in Table 4(a), almost all human successfully selected the sentences with the topic same as example class. This result suggested that in the dataset without labeled categorical data, our method was able to discover meaningful latent topics and generate text from the discovered latent topic.

The second part measured the quality of generated text. The quality including the grammar and the rationality of the text. We asked human to select the better one among two sentences generated from different method. In first two rows of Table 4(b), we compared the human preference of topic GAN with and without jointly training. The human preferred the text generated by topic GAN with jointly training to the text generated without jointly training. The last two rows of Table 4(b) showed that human slightly preferred topic GAN than baseline method.

4.3 Qualitative Analysis

Because we used a single matrix as our topic classification model, we were able to select the top few words with higher weights within each latent topic as its topical words. We show some captured latent topics in Table 5 and the generated corresponding texts in Table 6.

From the tables, the captured latent topics are clearly semantically different based on the generated topical words. Similarly, the generated texts are also fluent and topically related to the associated topics.
Table 6: Generated texts for different latent topics.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Topic ID</th>
<th>Generated Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Gigaword</td>
<td>1</td>
<td>kobe bryant scored ## points to ## points as no. ## boston celtics beat the los angeles lakers #### to tie the nba champion</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>tokyo stocks fell tuesday amid fears that consumer prices were cautious as inflation data drove in europe first ahead of a recession</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>three soldiers were killed in a remote village in the north 's deadly suicide attack on tuesday</td>
</tr>
<tr>
<td>DBpedia</td>
<td>1</td>
<td>teeth on the rock is the only release by the japanese rock band ## on 25 march 201</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>the ## temple in portland oregon is located in ## n ## it is listed in the national register of historic places in 1998</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>## ## born march 17 1986 is a lithuanian professional basketball player for the ## national basketball leagu</td>
</tr>
</tbody>
</table>

5 Conclusion

This paper proposes TopicGAN, which can automatically capture topical information and generate the natural language with controlled semantics in an unsupervised manner. The discrete representations show the superior performance on unsupervised classification, demonstrating the capacity of topic modeling in the proposed model. In addition, our model can generate texts with comparable performance with other approaches and additionally enable topical representation for better interpretation.
REFERENCES

