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1 Introduction

(Neural) Word Embeddings (WEs) (Bengio et al., 2003; Mnih & Hinton, 2009; Turian et al., 2010;
Mikolov et al., 2013) have received wide-spread attention for their ability to capture surprisingly
detailed semantic information without supervision. However, despite their success, WEs still have
deficiencies. One potential flaw is that the vectors, since their dimensionality is fixed across the
vocabulary, do not accurately reflect each word’s semantic complexity. For instance, the meaning of
the word race varies with context (ex: competition vs anthropological classification), but the meaning
of regatta is rather specific and invariant. It seems unlikely that race and regatta’s representations
could contain the same number of parameters without one overfitting or underfitting.

To better capture the semantic variability of words, we propose a novel extension to the popular
Skip-Gram and Continuous Bag-of-Words models (Mikolov et al., 2013) that allows vectors to have
stochastic, data-dependent dimensionality. By employing the same mathematical tools that allow
the definition of an Infinite Restricted Boltzmann Machine (Côté & Larochelle, 2016), we define
two log-bilinear energy-based models named Infinite Skip-Gram (iSG) and Infinite Continuous
Bag-of-Words (iCBOW) after their fixed dimensional counterparts. During training, iSG and iCBOW
allow word representations to grow naturally based on how well they can predict their context. This
behavior, among other things, enables the vectors of specific words to use few dimensions (since their
context is reliably predictable) and the vectors of vague or polysemous words to elongate to capture
as wide a semantic range as needed. As far as we are aware, this is the first word embedding method
that allows each vector’s dimensionality to be learned. We demonstrate the usefulness of iSG and
iCBOW qualitatively and qualitatively in the experiments.

2 Infinite Skip-Gram

We begin by describing the Infinite Skip-Gram (iSG) model, which, when given a word, predicts one
of its neighboring words within a fixed context window. Let word vectors wi ∈ R

∞ and context vectors
ck ∈ R∞ be infinite dimensional, and define the iSG model to be the following joint Gibbs distribution
over wi , ck , and a random positive integer z ∈ Z+ denoting the maximum index over which to compute
the vector inner product: p(wi, ck, z) = 1

Z e−E (wi,ck ,z) where Z =
∑

w
∑

c
∑

z e−E (w,c,z) , also known
as the partition function. Define the energy function as E(wi, ck, z) = z log a −

∑z
j=1 wi, jck, j −

λw2
i, j − λc2

k, j
where 1 < a < ∞, a ∈ R and λ is a weight on the L2 penalty. The log a term, the same

as used in (Côté & Larochelle, 2016)’s iRBM, is essential because it defines the infinite sum over
dimensions to be a convergent geometric series. See the Appendix for the assumptions underlying
and derivation of the partition function.

Learning. For iSG’s learning objective, ideally, we would like to integrate out z:

log p(ck |wi ) = log
∞∑
z=1

p(ck, z |wi ) = log


l∑
z=1

p(ck, z |wi ) +
a

a − 1
p(ck, l |wi )


. (1)

The problem is that this quantity is computable only if l is known. It must exist under the
sparsity/optimization assumption that makes the partition function finite (see Appendix), but that
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assumption gives no information about l’s value. One work-around is to set l to some static value, but
that would subvert the motivation for using an infinite dimensional model.

A better option is to sample z values and rely on the randomness to make learning dynamic yet
tractable. This way l can grow arbitrarily (i.e. its the observed maximum sample) while the vectors
have a finite number of dimensions. Thus we write the loss in terms of an expectation

LiSG = log p(ck |wi ) = Ez |ck ,wi

[
log p(ck, z |wi ) − log p(z |ck,wi )

]
. (2)

Notice that this is the evidence bound widely used for variational inference except here there is
equality, not a bound, because we have set the variational distribution q(z) to the posterior p(z |w, c),
which is tractable. The sampling we desire then comes about via a score function estimate of the
gradient:

∂

∂wi
LiSG ≈

1
S

S∑
s=1

∂

∂wi
log p(ck, ẑs |wi ) +

[
log p(ck |wi ) − 1

] ∂

∂wi
log p( ẑs |ck,wi ) (3)

where S samples are drawn from ẑs ∼ p(z |ck,wi ). Note the presence of the p(ck |wi ) term—the very
term that we said was problematic in Equation 1 since l was not known. We can compute this term in
the Monte Carlo objective by setting l to be the largest ẑ value sampled up to that point in training.
The presence of p(ck |wi ) is a boon because, since it does not depend ẑ, there is no need for control
variates to stabilize the typically high variance term ∂

∂wi
log p( ẑs |ck,wi ).

Yet there’s still a problem in that ẑ ∈ [1,∞) and therefore a very large dimensionality (say, a few
thousand or more) could be sampled, resulting in the gradient incurring painful computational costs.
To remedy this situation, if a ẑ value greater than the current value of l is sampled, we set ẑ = l + 1,
restricting the model to grow only one dimension at a time (just as done for the iRBM). Constraining
growth in this way is computationally efficient since ẑ can be drawn from a (l + 1)-dimensional
multinoulli distribution with parameters Θ = {θ1 = p(z = 1|w, c), . . . , θl+1 =

a
a−1 p(z = l |w, c)}. The

intuition is the model can sample a dimension less than or equal to l if l is already sufficiently large or
draw the (l + 1)th option if not, choosing to increase the model’s capacity. The hyperparameter a
controls this growing behavior: as a approaches one (from the right), P(z > l |w) approaches infinity.

3 Infinite Continuous Bag-of-Words

We next describe the Infinite Continuous Bag-of-Words (iCBOW) model, which predicts a word
given multiple surrounding context words. Let word vectors w and context vectors c be defined just
as for iSG. The iCBOW is a conditional Gibbs distribution over a center word wi and a random
positive integer z ∈ Z+ denoting the maximum index as before, given multiple context words ck :
p(wi, z |ci−K , . . . , ci+K ) = 1

Zw,z
e−

1
2K−1

∑
j E (wi,c j ,z) where Zw,c =

∑
w
∑

z e−
1

2K−1
∑

j E (w,c j ,z) . The
energy function is defined just as for the iSG and admits a finite partition function using the same
arguments. The primary difference between the iSG and iCBOW is that the latter assumes all words
appearing together in a window have the same vector dimensionality. The iSG, on the other hand,
assumes just word-context pairs share dimensionality.

Learning. Like with iSG, learning iCBOW’s parameters is done via a Monte Carlo objective. Define
the iCBOW objective LiCBOW as

LiCBOW = log p(wi |ci−K . . . ci+K ) = Ez [log p(wi, z |ci−K . . . ci+K ) − log p(z |wi, ci−K . . . ci+K )].
(4)

Again we use a score function estimate of the gradient to produce dynamic vector growth:

∂

∂wi
LiCBOW ≈

1
S

S∑
s=1

∂

∂wi
log p(wi, ẑs |ci−K , . . . , ci+K )

+
[
log p(wi |ci−K , . . .) − 1

] ∂

∂wi
log p( ẑs |wi, ci−K , . . .)

(5)

where S samples are drawn from ẑs ∼ p(z |wi, ci−K , . . . , ci+K ). Vectors are constrained to grow only
one dimension at a time as done for the iSG by sampling from a l + 1th dimensional multinoulli with
θl+1 =

a
a−1 p(z = l |wi, ci−K , . . . , ci+K ).
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WordSim-353 MEN
SG-50 0.607 0.650
CBOW-50 0.609 0.659
iCBOW 0.614 0.660
iSG 0.620 0.674
CBOW-200 0.643 0.712
SG-200 0.696 0.736

(a) Semantic similarity (Spearman’s rank correlation) (b) Histogram of the expected dimensionalities.

(c) p(z |w = ‘race’) (d) p(z |w = ‘player’)

Figure 1: Subfigure (a) shows results for semantic similarity tasks. The Spearman’s rank correlation
between model and human scores are calculated for the WordSim-353 and MEN datasets. Subfigure
(b) shows a histogram of the expected vector dimensionalities after training iCBOW. Subfigures (c)
and (d) show the distribution over dimensionalities iSG learned for the words race and player.

4 Evaluation

We evaluate iSG and iCBOW quantitatively and qualitatively against original Skip-Gram (SG) and
Continuous Bag-of-Words (CBOW). For all experiments, models were trained on a one billion word
subset of Wikipedia (6/29/08 snapshot). The same learning rate (α = 0.05 for CBOW, α = 0.025 for
SG), number of negative samples (5), context window size (6), and number of training epochs (1)
were used for all models. iSG and iCBOW were initialized to ten dimensions.

Quantitative Evaluation. We test each model’s ability to rank word pairs according to their semantic
similarity, a task commonly used to gauge the quality of WEs. We evaluate our embeddings on two
standard test sets: WordSim353 (Finkelstein et al., 2001) and MEN (Bruni et al., 2014). As is typical
for evaluation, we measure the Spearman’s rank correlation between the similarity scores produced by
the model and those produced by the humans. The correlations for the proposed infinite dimensional
models and for their finite dimensional analogs are reported in Subtable (a) of Figure 1. We see that
the iSG and iCBOW perform better than their 50 dimensional counterparts but worse than their 200
dimensional counterparts. All scores are relatively competitive though, separated by no more than
0.1.

Qualitative Evaluation. Observing that the iSG and iCBOW models perform comparatively to finite
versions somewhere between 50 and 200 dimensions, we qualitatively examine their distributions over
vector dimensionalities. Subfigure (b) of Figure 1 shows a histogram of the expected dimensionality—
i.e. Ez |w,c [z]—of each vector after training the iCBOW model. As expected, the distribution is
long-tailed, and vague words occupy the tail while specific words are found in the head. As shown by
the annotations, the word photon has an expected dimensionality of 19 while the homograph race
has 150. Note that expected dimensionality correlates with word frequency—due to the fact that
multi-sense words, by definition, can be used more frequently—but does not follow it strictly. For
instance, the word william is the 482nd most frequently occurring word in the corpus but has an
expected length of 62, which is closer to the lengths of much rarer words (around 20-40 dimensions)
than to similarly frequent words.

In subfigures (c) and (d) of Figure 1, we plot the quantity p(z |w) for two homographs, race (c) and
player (d), as learned by iSG, in order to examine if their multiple meanings are conspicuous in their
distribution over dimensionalities. For race, we see that the distribution does indeed have at least two
modes: the first at around 70 dimensions represents car racing, as determined by computing nearest
neighbors with that dimension at a cutoff, while the second at around 100 dimensions encodes the
anthropological meaning.
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Appendix

A Finite Partition Function

iSG’s partition function, containing a sum over all countably infinite values of z, would seem to be
divergent and thus incomputable. However, it is not, due to two key properties first proposed by Côté
& Larochelle (2016) to define a Restricted Boltzmann Machine with an infinite number of hidden
units (iRBM). They are:

1. Sparsity penalty: The L2 penalty in E(wi, ck, z) (i.e. the w2
i, j and c2

k, j
terms) ensures

the word and context vectors must have a finite two-norm under iterative gradient-based
optimization with a finite initial condition. In other words, no proper optimization method
could converge to the infinite solution if all w and c vectors are initialized to have a finite
number of non-zero elements (Côté & Larochelle, 2016).

2. Per-dimension constant penalty: The energy function’s z log a term results in dimensions
greater than l becoming a convergent geometric series. This is discussed further below.

With those two properties in mind, consider the conditional distribution of z given an input and
context word:

p(z |w, c) =
e−E (w,c,z)∑∞

z′=1 e−E (w,c,z′) . (6)

Again, the denominator looks problematic due to the infinite sum, but notice the following:

Zz =

l∑
z′=1

e−E (w,c,z′) +

∞∑
z′=l+1

e−E (w,c,z′)

=

l∑
z′=1

e−E (w,c,z′) + e−E (w,c,l )
∞∑

z′=0

1
az′

=

l∑
z′=1

e−E (w,c,z′) +
a

a − 1
e−E (w,c,l ) .

(7)

The sparsity penalty allows the sum to be split as it is in step #2 into a finite term (
∑l

z′=1 e−E (w,c,z′))
and an infinite sum (

∑∞
z′=l+1 e−E (w,c,z′)) at an index l such that wi, j = ck, j = 0 ∀ j > l. After

e−E (w,c,l ) is factored out of the second term, all remaining wi, j and ck, j terms are zero. A few steps
of algebra then reveal the presence of a convergent geometric series. Intuitively, we can think of the
second term, a

a−1 e−E (w,c,l ) , as quantifying the data’s need to expand the model’s capacity given w
and c.
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