
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

KINETIX: INVESTIGATING THE TRAINING OF GEN-
ERAL AGENTS THROUGH OPEN-ENDED PHYSICS-
BASED CONTROL TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

While large models trained with self-supervised learning on offline datasets have
shown remarkable capabilities in text and image domains, achieving the same
generalisation for agents that act in sequential decision problems remains an open
challenge. In this work, we take a step towards this goal by procedurally generat-
ing tens of millions of 2D physics-based tasks and using these to train a general
reinforcement learning (RL) agent for physical control. To this end, we intro-
duce Kinetix: an open-ended space of physics-based RL environments that
can represent tasks ranging from robotic locomotion and grasping to video games
and classic RL environments, all within a unified framework. Kinetix makes
use of our novel hardware-accelerated physics engine Jax2D that allows us to
cheaply simulate billions of environment steps during training. Our trained agent
exhibits strong physical reasoning capabilities in 2D space, being able to zero-
shot solve unseen human-designed environments. Furthermore, fine-tuning this
general agent on tasks of interest shows significantly stronger performance than
training an RL agent tabula rasa. This includes solving some environments that
standard RL training completely fails at. We believe this demonstrates the feasi-
bility of large scale, mixed-quality pre-training for online RL and we hope that
Kinetix will serve as a useful framework to investigate this further. We open-
source Jax2D, Kinetix, and our final model weights.1

1 INTRODUCTION

The development of a general agent, capable of performing competently in unseen domains, has
been a long-standing goal in machine learning (Newell et al., 1959; Minsky, 1961; Lake et al.,
2017). One perspective is that large transformers, trained on vast amounts of offline text and video
data, will ultimately achieve this goal (Bubeck et al., 2023). However, applying these techniques in
a reinforcement learning (RL) setting often constrains agent capabilities to those found within the
dataset (Levine et al., 2020; Kumar et al., 2020). An alternative approach is to use online RL, where
the agent gathers its own data through interaction with an environment. However, with some notable
exceptions (Team et al., 2021; 2023), most RL environments represent a narrow and homogeneous
set of scenarios (Todorov et al., 2012; Bellemare et al., 2013; Brockman et al., 2016; Cobbe et al.,
2019), limiting the generalisation ability of the trained agents (Kirk et al., 2023).

In this paper, we aim to address this limitation by introducing Kinetix: a framework for repre-
senting the vast, open-ended space of 2D physics-based environments, and using it to train a general
agent. Kinetix is broad enough to represent robotics tasks like grasping and locomotion, classic
RL environments like Cartpole, Acrobot and Lunar Lander, as well as video games like Pinball,
along with the multitude of tasks that lie in the intervening space. To run the backend of Kinetix
we developed Jax2D, a hardware-accelerated physics engine that allows us to efficiently simulate
the billions of environment interactions required to train this agent.

Through sampling random Kinetix environments from the space of representable 2D physics
problems, we can produce a virtually unlimited supply of tasks for training. Since these levels

1https://anonymous.4open.science/r/Kinetix-7CBB/

1

https://anonymous.4open.science/r/Kinetix-7CBB/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: We train a general agent on randomly generated physics tasks and assess its transfer
performance on hand-designed environments. In every environment the goal is to make the green
shape touch the blue shape, without touching the red shape. The agent exerts control over every
motor and thruster on each task.

are programmatically sampled, many are not useful for learning—indeed most are either trivial or
unsolvable. Training on this large, diverse set of mixed-quality levels mirrors the pretraining stage
of a language model (Devlin et al., 2019; Brown et al., 2020; Dubey et al., 2024).

We find that, by employing methods to filter both trivial and unsolvable levels, training an RL agent
on these environments obtains an agent that exhibits understanding of general mechanical properties,
with the ability to zero-shot solve unseen handmade environments (Section 5). We further analyse
the benefits of fine-tuning this general agent on specific hard environments and find that it greatly
reduces the number of samples required to learn a particular task, when comparing against a tabula
rasa agent. Fine-tuning also provides new capabilities, including solving tasks for which an agent
specifically trained does not make progress (Section 6).

In summary, our contributions are:

1. We introduce Jax2D, a fast hardware-accelerated 2D physics engine.

2. We introduce Kinetix, an open-ended space of RL environments within a unified frame-
work. We provide the capability to sample random levels from the vast space of possible
physics tasks, as well as providing a large set of interpretable handmade levels.

3. We demonstrate the zero-shot generalisation ability of an agent trained on Kinetix.

4. We show that fine-tuning this general agent on difficult tasks leads to significantly improved
sample efficiency and new capabilities.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

We model the decision-making process as a Markov Decision Process (MDP), which is defined as
a tuple ⟨S,A,R, T ⟩, where S is the set of states; A is the set of actions; T : S × A → ∆S is
the transition function, defining the distribution over next states T (s, a) given a current state s and
action a; andR : S → R is the reward function. We consider finite-horizon MDPs, with a maximum

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

number of timesteps T . The goal of an agent in RL is to maximise its discounted sum of rewards,
Gt=̇

∑T
t=0 γ

tRt, where Rt=̇R(st) is the reward at timestep t and γ is the discount factor.

2.2 UNSUPERVISED ENVIRONMENT DESIGN

Unsupervised Environment Design (UED) is a paradigm where learning is phrased as a two-player
game between a teacher and a student. The student maximises its expected discounted return as
in the standard RL formulation, while the teacher chooses levels to maximise some utility func-
tion, effectively inducing a curriculum of levels through training (Oudeyer et al., 2007; Florensa
et al., 2018; Matiisen et al., 2020; Narvekar et al., 2020; Dennis et al., 2020; Parker-Holder et al.,
2022). In this paper, these tasks (we also refer to these as levels or environments) are particular
initial states, s0 ∈ S . One common approach sets a level’s utility as the negative of the agent’s
return (Pinto et al., 2017), and another class of approaches instead uses regret (Dennis et al., 2020).
Domain Randomisation (Jakobi, 1997; Tobin et al., 2017, DR), where levels are sampled from an
uninformed distribution, can be considered a degenerate form of this paradigm, where a constant
utility is assigned to each level. More recently, Tzannetos et al. (2023) and Rutherford et al. (2024)
sample levels in binary-outcome domains using learnability, defined as p(1 − p), with p being the
success rate of the agent on the particular level. In this way, learnability disincentivises the teacher
from sampling levels that the agent cannot solve at all (where p = 0) or where the agent can already
perfectly solve them (p = 1), meaning that the agent trains on levels with a high learning potential.

2.3 RL IN JAX

JAX (Bradbury et al., 2018) is a Python library for writing parallelisable code for hardware ac-
celerators. While Deep RL has traditionally been divided between environments on the CPU and
models on the GPU (Mnih et al., 2015; Espeholt et al., 2018), JAX has facilitated the development
of GPU-based environments (Lange, 2022; Rutherford et al., 2023; Nikulin et al., 2023; Matthews
et al., 2024; Kazemkhani et al., 2024), allowing the entire RL pipeline to run on a hardware accelera-
tor (Hessel et al., 2021). Through massive parallelisation and elimination of CPU-GPU transfer, this
gives tremendous speed benefits (Lu et al., 2022). While UED has also followed this trend (Jiang
et al., 2023; Coward et al., 2024), experiments have largely been confined to simple gridworlds, due
to the lack of any suitable alternative (Garcin et al., 2024; Rutherford et al., 2024).

2.4 TRANSFORMERS AND PERMUTATION INVARIANT REPRESENTATIONS

Transformers and Attention Transformers (Vaswani et al., 2017) use the attention mecha-
nism (Bahdanau et al., 2015) to model interactions within a set. Given N embeddings, xi

N
1 ∈ Rn,

self-attention computes queries qi, keys ki, and values vi for each element through linear projec-
tions. Weights for each element i relative to element j are calculated as wi,j=̇qi · kj and nor-
malised via softmax to get w̃i,j . The new embedding for element i is a weighted sum of the values:
xnew
i =̇

∑N
j=1 w̃i,jvj , allowing each element to attend to others. The common practice of adding

positional embeddings to encode sequence order (Vaswani et al., 2017) may obfuscate the fact that
transformers are permutation invariant and naturally operate on sets.

Transformers in RL While recurrent policies have been long popular in deep RL to help deal
with partial observability, sequence models like transformers are gaining traction as an alternate
solution (Lu et al., 2023; Bousmalis et al., 2023; Team et al., 2023; Raparthy et al., 2024). A less
common use of transformers in RL is for processing inherently permutation-invariant observations,
such as entities in Starcraft II (Vinyals et al., 2019). Although graphs are traditionally processed
with graph neural networks (Wang et al., 2018; Battaglia et al., 2018), transformers are also now
being applied to this domain (Sferrazza et al., 2024; Buterez et al., 2024), with attention masks set
to a graph’s adjacency matrix to restrict attention to neighboring nodes (Sferrazza et al., 2024).

3 KINETIX

In this section, we introduce Kinetix, a large and open-ended environment for RL, implemented
entirely in JAX. We describe our underlying physics engine (Section 3.1), the RL environment (Sec-
tion 3.2), and finally propose Kinetix as a novel challenge for open-endedness (Section 3.3).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 JAX2D

Jax2D is our deterministic, impulse-based, 2D rigid-body physics engine, written entirely in JAX,
that forms the foundation of the Kinetix benchmark. We designed Jax2D to be as expressive as
possible through simulation of only a few fundamental components. To this end, a Jax2D scene
contains only 4 unique entities: circles, (convex) polygons, joints and thrusters. From these simple
building blocks, a huge diversity of different physical tasks can be represented.

Jax2D simulates discrete Euler steps for rotational and positional velocities and then applies in-
stantaneous impulses and higher order corrections to solve constraints. The notion of a constraint
encompasses collisions (two objects cannot be inside each other) and joint constraints (two objects
connected by a joint cannot separate at the point of connection). Constraints are pairwise, meaning
that it may be necessary to apply multiple steps of constraint solving for a stable simulation, espe-
cially when simulating systems of many interacting bodies. The number of solver steps therefore
serves as a tradeoff between accuracy and speed. An agent (human or artificial) can act on the scene
by applying torque through motors attached to revolute joints or by applying force through thrusters.

Jax2D is based on Box2D (Catto, 2007) and can be thought of as a minimalist rewrite of the C li-
brary in JAX. Appendix B shows the benefit of this reimplementation, with hardware acceleration al-
lowing Jax2D to easily scale to thousands of parallel environments on a single GPU, outperforming
Box2D by a factor of 4× when comparing just the engines and 30× when training an RL agent (this
difference is due to Jax2D natively integrating with RL pipelines that exist entirely on the GPU).

The key differentiator of Jax2D from other JAX-based physics simulators such as Brax (Freeman
et al., 2021), is that Jax2D scenes are almost entirely dynamically specified, meaning that the same
underlying computation graphs are run for every simulation. For example, this means that running
Half-Cheetah, Pinball and Grasper (Figure 1) involves executing the exact same instructions. This
allows us to parallelise across different tasks with the JAX vmap operation—a crucial component
of harnessing the power of hardware acceleration in a multi-task RL setting. Brax, by contrast, is
almost entirely statically specified meaning it is impossible to vmap across, for instance, different
morphologies. Further Jax2D implementation details are discussed in Appendix A.

3.2 KINETIX : RL ENVIRONMENT SPECIFICATION

Kinetix builds on Jax2D to create an environment for RL, which we now briefly outline. See
Appendix C for further information.

Action Space Kinetix supports both multi-discrete and continuous action spaces. In the multi-
discrete action space, each motor and thruster can either be inactive, or activated at maximum power
each timestep, with motors being able to be run either forwards or backwards. In the continuous
action space, motors can be powered in the range [−1, 1] and thrusters in the range [0, 1].

Observation Space We use a symbolic observation where each entity (shape, joint or thruster) is
defined by an array of values of physical properties including position, rotation and velocity. The
observation is then defined as the set of these entities, allowing the use of permutation-invariant
network architectures such as transformers. This observation space makes the environment fully
observable, removing the need for a policy with memory. We also provide the option for pixel-based
observations and a symbolic observation that simply concatenates and flattens the entity information.

Reward To facilitate our goal of a general agent, we choose a simple yet highly expressive reward
function that remains fixed across all environments. Each scene must contain a green shape and a
blue shape—the goal is simply to make these two shapes collide, upon which the episode terminates
with a reward of +1. Scenes can also contain red shapes, which, if they collide with the green
shape, will terminate the episode with −1 reward. As demonstrated in Figure 1, these simple and
interpretable rules allow for a large number of semantically diverse environments to be represented.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

To improve learning, we augment this sparse reward with an auxiliary dense reward signal, defined
as Rd

t = κ (dt − dt+1), where dt is the distance between the green and blue objects at timestep t and
κ is a coefficient that we tune to ensure the dense signal does not dominate. We note that Kinetix
could be run with many other reward formulations (Andrychowicz et al., 2017; Frans et al., 2024),
which we leave to future work.

3.3 KINETIX : A BENCHMARK FOR INVESTIGATING OPEN-ENDEDNESS

The expressivity, diversity, and speed of Kinetixmakes it an ideal environment for studying open-
endedness, including generalist agents, UED, and lifelong learning. In order to make it maximally
effective for agent training and evaluation, we provide a heuristic environment generator, a set of
hand-designed levels, and an environment taxonomy describing the complexity of environments.

Environment Generator The strength of Kinetix lies in the diversity of environments it can
represent. However, this environment set contains many degenerate cases, which can dominate the
distribution if sampled from naı̈vely. For this reason, we provide a random level generator that is
designed to be maximally expressive, while minimising the number of degenerate levels. We ensure
that every level has exactly one green and blue shape, and at least one controllable aspect (either a
motor or a thruster). Furthermore, we follow Team et al. (2021) and perform rejection sampling on
levels solved with a no-op policy (defined as the policy that activates no motors or thrusters), thus
eliminating trivial levels. The remaining pathology is unsolvable levels, which are largely intractable
to determine and for which we will rely on automatic curriculum methods to filter out.

Each level is built up iteratively from an empty base by adding shapes either freely or connected to
an already existing shape. We perform rejection sampling on proposed shape additions to try and
ensure that no collisions are active in the initial level state. These methods to add shapes (along with
analogous methods for editing and removing) can also serve as mutators for automatic level editing
algorithms like ACCEL (Parker-Holder et al., 2022). We also provide functionality to generate levels
using RL (Dennis et al., 2020) and generative models (Garcin et al., 2024).

Hand-Designed Levels Along with the capability to sample random levels, Kinetix contains
a suite of 66 hand designed levels (Appendix E), as well as a powerful graphical editor to
facilitate the creation of new levels. Some of these levels are inspired by other RL bench-
marks, such as L-MuJoCo-Walker, L-MuJoCo-Hopper, L-MuJoCo-Half-Cheetah,
L-MuJoCo-Swimmer (Todorov et al., 2012) and L-Lunar-Lander, L-Swing-Up,
L-Cartpole-Wheels-Hard (Brockman et al., 2016). We made other levels, like L-Pinball,
L-Lorry and L-Catapult, specifically for Kinetix. These levels tests agent capabilities in-
cluding fine-grained motor control, navigation, planning and physical reasoning.

Environment Taxonomy Kinetix has the useful characteristic of containing a controllable and
interpretable axis of complexity—the number of each type of entity in a scene. While not a strict
rule, scenes with less entities tend to represent simpler problems. We therefore quantise our exper-
iments and handmade levels into one of three distinct sizes: small (S), medium (M), and large (L).
A convenient feature of the entity-based observation space is that an agent trained on one level size
can also meaningfully operate in other sizes, just as a language model can condition on a variable
number of tokens, allowing us to interoperate between the sizes.

4 EXPERIMENTAL SETUP

We train on programatically generated Kinetix levels drawn from the statically defined distri-
bution. We refer to training on sampled levels from this distribution as DR. Our main metric of
assessment is the solve rate on the set of handmade holdout levels. The agent does not train on these
levels but they do exist inside the support of the training distribution. Since all levels follow the
same underlying structure and are fully observable, it is theoretically possible to learn a policy that
can perform optimally on all levels inside the distribution.

To select levels to train on, we use SFL (Rutherford et al., 2024), a state-of-the-art UED algorithm
that regularly performs a large number of rollouts on randomly generated levels. It then selects a
subset of these with high learnability and trains on them for a fixed duration before again selecting
new levels. SFL filters out all unsolvable levels, as the success rate (and therefore also learnability)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

is zero. The main limitation of SFL, that it is only applicable to settings with deterministic transition
dynamics and binary rewards, does not constrain us, as Kinetix satisfies both of these assump-
tions. We ran preliminary experiments using PLR (Jiang et al., 2021a;b) and ACCEL (Parker-Holder
et al., 2022), but found that these approaches provided no improvements over DR (see Appendix L).

For all experiments, we use PPO (Schulman et al., 2017) with multi-discrete actions. We allot each
method 5 billion environment interactions and periodically evaluate performance on the holdout
levels. Hyperparameters are detailed in Appendix H.

4.1 ARCHITECTURE

Figure 2: The transformer-based architecture used for training. The scene is decomposed into its
constituent entities and then passed through the network, consisting of L layers of self-attention and
message passing, followed by K fully connected layers.

The architecture we use is summarised in Figure 2. To process the observation in a permutation-
invariant way, we represent each entity as a vector v, containing information about its physical prop-
erties, such as friction, mass and rotation. We separately encode (using a set of small feedforward
networks) polygons, circles, joints and thrusters into initial embeddings xT

i , where T ∈ {p, c, j, t}.
We perform self-attention (Bahdanau et al., 2015; Vaswani et al., 2017) over the set of shapes (i.e.,
polygons and circles) without positional embeddings to obtain new shape embeddings x̃S

i . To incor-
porate joint information, we take each joint feature xj

i , and its two connected shapes x̃T
from and x̃S

to,
and pass the concatenation through a feedforward network f , and add it to the embedding for x̃S

from.
We have two feature vectors for each joint, with the from and to shape swapped. This layer is rem-
iniscent of message passing in graph neural networks (Gilmer et al., 2017; Bronstein et al., 2021).
Similarly, for each thruster xt

i and associated shape x̃S
o , we process these using a message-passing

layer and add the result back to x̃S
o . This entire process constitutes one transformer layer, which we

apply multiple times. We use multi-headed attention, with a different attention mask for each head.
The first mask represents a fully-connected graph and contains all shapes; the second allows shapes
to attend to those that are connected by a joint (Sferrazza et al., 2024; Buterez et al., 2024); the third
allows attention to shapes that are joined by any n-step connection; and the final mask allows shapes
to attend to those that they are currently colliding with. Finally, following Parisotto et al. (2020), we
use a gated transformer, and perform layernorm (Lei Ba et al., 2016) before the attention block.

5 ZERO-SHOT RESULTS

In Figure 3, we run SFL on the S, M and L environment sizes, respectively (see Appendix J for a per-
level breakdown). In each case, we train on randomly-generated environments of the corresponding
size, and we use the corresponding holdout set (see Appendix E for a full listing) to evaluate the
agent’s generalisation capabilities. We see that, in every case, the agent’s performance increases
throughout training, indicating that it is learning a general policy that it can apply to unseen envi-
ronments. For S, the agent very quickly learns a policy superior to the random policy, and is able

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 1B 2B 3B 4B 5B

0.2

0.4

0.6

0.8

So
lv

e
Ra

te

S

0 1B 2B 3B 4B 5B

M

0 1B 2B 3B 4B 5B

L
Zero-Shot
Random

Environment Interactions

Figure 3: Zero-shot results on the holdout levels throughout training. In each pane, the training
levels are sampled from the SFL distribution of the corresponding size, and the y-axis measures the
solve rate on the evaluation set of that size. The shaded area shows the standard error over 3 seeds.

to solve most of the hold out levels zero-shot. While the solve rate is lower on M, the agent can still
zero-shot a number of unseen hand-designed environments. On the L environments, in which the
agent is assessed on the most challenging holdout tasks, we see a very slow, and non-monotonic,
performance increase. As well as being trained and tested on more complex levels, it seems that
as the complexity increases, randomly generated levels are more likely to be unsolvable, reducing
the proportion of useful data the agent can learn on. Overall, this result demonstrates that training
an agent on a large set of mixed-quality levels can lead to general behaviour on unseen tasks. See
Appendix K for more detailed results.

5.1 ANALYSIS: ZERO-SHOT LOCOMOTION OF AN ARBITRARY MORPHOLOGY

Car

E
xa

m
p

le
L

ev
el

Snake Thrust Morphology-Random

G
en

er
al

A
ge

n
t

R
an

d
om

A
ge

n
t

Target x

B
o

dy
x

Figure 4: Heatmaps of goal x position and morphology x position. An ideal agent that can perfectly
maneuver a morphology to under the goal position would manifest itself as a diagonal line.

In this section, we take a closer look at the zero-shot capabilities of the learned general agent by prob-
ing its behaviour in a constrained goal-following setup. Specifically, we create levels with a single
morphology (a set of shapes connected with motors and containing the green shape) in the centre of
the level, with a goal (the blue shape) fixed at the top of the level with a random x position. Since the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

goal is made to be unreachable, the optimal behaviour of the agent is to maximise the dense auxil-
iary reward and move as close as possible to the goal (i.e., directly underneath it). We evaluate three
hand-designed morphologies: Car, Snake and Thruster, as well as Morphology-Random,
which selects from one of 2000 randomly generated 3-shape morphologies (Appendix F).

We measure how the x position of the goal correlates with the x position of the controllable mor-
phology (Figure 4). The behaviour of an optimal agent would manifest itself as a high correlation
and would therefore show high incidence along the diagonal. We evaluate both a random agent and
a general agent trained on random M levels for 5 billion timesteps. Each plot is aggregated over 2000
randomly sampled levels, each of which is run for 64 timesteps to allow the agent to maneuver into
position and then run for a further 64 timesteps for data collection.

As would be expected, the random agent shows no correlation between the position of the control-
lable morphology and the goal. By contrast, the trained agent shows positive correlation, indicating
it is able to maneuver the morphology towards the goal location. We see a variety of outcomes
across the different morphologies, with the agent showing very strong results on Car and Thrust,
with a slightly weaker performance on Snake. When evaluating on Morphology-Random, we
do see some positive correlation, although not as strong as the hand-designed levels.

The positive results on these constrained ‘goal-conditioned’ environments show that the agent has
indeed learned a general policy that encompasses purposeful locomotion of an arbitrary morphology.

6 FINE-TUNING RESULTS

In this section we leave the zero-shot paradigm and investigate the performance of the general agent
when given a limited number of samples to fine-tune on the holdout tasks. In particular, in Figure 5
we train a separate specialist agent for each level in the L holdout set, and compare this to fine-tuning
a general agent (the same one used for Section 5.1, trained for 5B timesteps on random M levels.).
We plot the learning curves for four selected environments, as well as the aggregate performance
over the entire holdout set. On three of these levels, fine-tuning the agent drastically outperforms
training from scratch. In particular, for Mujoco-Hopper-Hard and Mujoco-Walker-Hard,
the fine-tuned agent is able to competently complete these levels, whereas the tabula rasa agent
cannot do so consistently. Notably, this is despite the fact that the pre-trained agent cannot solve
these environments zero-shot. While the general trend is that fine-tuning beats training from scratch,
we do see one case: Thruster-Large-Obstacles, where fine-tuning learns slower.

0 100M
0.0

0.5

1.0

So
lv

e
Ra

te

All L tasks

Tabula Rasa
Fine-Tuned

0.0

0.5

1.0 MuJoCo-Half-Cheetah-Hard MuJoCo-Hopper-Hard

0 100M
0.0

0.5

1.0 MuJoCo-Walker-Hard

0 100M

Thruster-Large-Obstacles

Environment Interactions

Figure 5: The performance of fine-tuned and tabula rasa agents (left) aggregated over the entire L
holdout set, and (right) for four selected levels. We train a separate agent for each environment and
plot mean and standard error over five seeds. We stress that the MuJoCo levels are reimplementa-
tions of the classic environments in Kinetix.

6.1 ANALYSIS: GENERAL PRETRAINING CAN BEAT TRAINING ON THE TARGET TASK

We now further investigate the case of Car-Ramp (Figure 6a) where RL, even with a large sample
budget, fails to solve but that our fine-tuned general agent can complete (note that this behaviour is
also shown in MuJoCo-Walker-Hard). Car-Ramp is an example of a deceptive problem (Gold-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

berg, 1987; Liepins & Vose, 1991; Lehman & Stanley, 2011) that requires the agent to first move
away from the goal (and incur a negative reward) to obtain enough momentum to jump the gap.

An agent trained tabula rasa with PPO for 1 billion fails to reach the target a single time. By
contrast, our general agent (which has never seen the task before) solves it zero-shot around 5%
of the time. This proves to be enough traction that, with a small amount of fine-tuning, the agent
can reliably solve this task (Figure 6b). We do stress that, while impressive, this behaviour is
the exception rather than the rule, only occurring on 2 of 66 handmade levels. We see this as a
promising sign for a trained general agent in Kinetix to serve as a strong base model.

(a) Initial State

From Scratch (1B) Pretrained (5B) Finetune (1M) Finetune (5M)
0.0

0.2

0.4

0.6

0.8

So
lv

e
Ra

te

(b) Performance

Figure 6: The Car-Ramp Environment. We use a single seed for the pre-trained agent (trained on
L for 5B timesteps), while averaging over 5 seeds for the others. Error bars indicate standard error.

7 RELATED WORK

Hardware-Accelerated Physics Engines Jax2D joins a thriving ecosystem of hardware-
accelerated physics engines used in RL tasks. Brax (Freeman et al., 2021), MJX (Todorov et al.,
2012) and Isaac-Gym (Makoviychuk et al., 2021) have all been been widely used in the RL commu-
nity, particularly for robotics tasks. While superficially similar, we believe Jax2D is useful for an
entirely different set of problems. Firstly, Jax2D only operates in two dimensions, so training on
robotics tasks for transfer to the real world is not a goal of the engine. Jax2D instead aims to be able
to represent a hugely diverse range of physics problems and, most crucially, can do so with the same
computation graph, allowing work across multiple heterogeneous environments to be parallelised.

Physical Reasoning PHYRE (Bakhtin et al., 2019) also uses 2D rigid-body physics by tasking
agents with placing a ball to achieve some goal state. Li et al. (2024a) extend this bandit-like
problem, allowing the agent to take actions throughout the episode. A crucial difference is that we
train on a large automatically generated set of tasks rather than a small set of handmade ones.

Hardware-Accelerated RL Our work follows the recent trend of using hardware-accelerated RL
environments to run significantly larger-scale experiments than would be possible with CPU-based
environments (Lu et al., 2022; Jackson et al., 2023; 2024; Goldie et al., 2024; Rutherford et al.,
2024; Nikulin et al., 2024; Kazemkhani et al., 2024). By leveraging Kinetix’s speed, we can train
for billions of timesteps and, as we show, general capability does only emerge after such a long time.

Generalist Robotics Agents Recent work has strived to learn a generalist foundation model for
robotics (Reed et al., 2022; Bousmalis et al., 2023; Team et al., 2024; Nasiriany et al., 2024; O’Neill
et al., 2024). While most of these approaches perform behaviour cloning on a large dataset from a
variety of robot morphologies and tasks, Nasiriany et al. (2024) develop a large-scale simulation en-
vironment, with an initial focus on kitchen environments. By contrast, Kinetix aims to train an on-
line agent tabula rasa, without using external data, and further has a large variety of different tasks.

Open-Ended Learning Kinetix also ties into the paradigm of open-ended learning (Soros &
Stanley, 2014; Stanley, 2019; Sigaud et al., 2023; Hughes et al., 2024), in which a system continually
generates new and novel artifacts. In the context of RL, this often means training inside a large,
diverse distribution and having some method to adapt this distribution over time, with fields such as
UED specifically focusing on the latter. While these methods hold the promise of generating novel
and useful levels in an open-ended manner, the environments used in their experiments are often
very constrained in what they can represent (Wang et al., 2019; Dennis et al., 2020; Wang et al.,
2020; Jiang et al., 2021b;a; Parker-Holder et al., 2022). As we have shown, in a significantly more
diverse task space, these methods tend to fail.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

A recent work with a similar vision to Kinetix is Autoverse (Earle & Togelius, 2024), where an
agent acts inside a cellular automata (CA) based gridworld. By changing the underlying rules of
the CA, a large diversity of different levels can be represented in this system. Relatedly, Sun et al.
(2024) use prior knowledge in the form of Large Language Models to generate code for video games
and robotic simulations, to train RL agents on. Powderworld (Frans & Isola, 2023) instead creates
a expressive environment based on different types of elements interacting in a sandbox environ-
ment. Other notable work that aims to use open-ended discovery to train generalist agents include
Voyager (Wang et al., 2024), Jarvis-1 (Wang et al., 2023) and Optimus-1 (Li et al., 2024b). These
are more focused on long-horizon planning, the self discovery of new tasks to perform, and use
Minecraft as their domain with prior knowledge in the form of a large language model.

Perhaps the works most similar to ours is the highly impactful XLand line of research (Team et al.,
2021; 2023). XLand defines a large and diverse distribution of levels inside a 3D physics simulation,
with an embodied agent (or set of agents) required to fulfill some specified goal in the environment.
Similar to us, XLand agents train on a procedurally generated set of levels and are then assessed
on human-designed holdout levels. We see the main differences to Kinetix being the expressiv-
ity of the tasks and the public state of the work. In particular, we would subjectively claim that
Kinetix, through representation of almost any conceivable 2D rigid-body physics problem, has
a more expressive universe of tasks. While XLand also employs a physics engine, all the tasks are
constrained to homogeneous agents acting in the world, potentially limiting the scope of tasks—it
is not clear, for instance, how one would represent any of the holdout environments in Figure 1 in
XLand. Lastly, we note that the XLand environment has not been made open-source, limiting its
use for future research. XLand-Minigrid (Nikulin et al., 2023) provides a fast, open-source version
of XLand, however in doing so it simplifies the environment into a gridworld.

8 DISCUSSION AND FUTURE WORK

We believe Kinetix is a uniquely diverse, fast and open-ended environment, placing it well as a
foundation to study open-ended RL, including large-scale online pre-training for general RL agents.
In stark contrast to many other benchmarks used for open-ended learning (Wang et al., 2019; 2020;
Parker-Holder et al., 2022; Chevalier-Boisvert et al., 2023; Rutherford et al., 2024), Kinetix
represents a large space of semantically diverse tasks, instead of just variations on a single task.
This presents a challenge for future environment design research that can intelligently generate lev-
els (Dennis et al., 2020), rather than just filtering from a predefined distribution. Aside from the level
distribution, the learning capacity of the agent is also an important aspect to consider. We believe
Kinetix also serves as an excellent framework for investigating issues like capacity (Obando-
Ceron et al., 2024), plasticity loss (Igl et al., 2020; Berariu et al., 2021; Dohare et al., 2021; Sokar
et al., 2023), lifelong learning (Kirkpatrick et al., 2017) and multi-task learning (Sodhani et al.,
2021; Hafner, 2021; Benjamins et al., 2023).

Requiring billions of online environment interactions is impractical for real-world applications.
However, we see three primary ways to leverage the cheap samples of simulations for sample-
constrained tasks. One approach is to meta-learn an RL algorithm (Oh et al., 2020; Lu et al., 2022;
Jackson et al., 2023), optimiser (Goldie et al., 2024) or loss function (Bechtle et al., 2021). Alterna-
tively, the emerging capabilities of large world models (Bruce et al., 2024; Valevski et al., 2024) hint
at a new paradigm of online training entirely in imagination (Hafner et al., 2021; 2023), where the
only bottleneck to environment samples is compute. Finally, we may find that, with enough scale,
we can fine-tune an agent trained in simulation on real world tasks.

9 CONCLUSION

In this work, we first introduce Jax2D, a hardware-accelerated 2D physics engine. Using Jax2D,
we build Kinetix, a vast and open-ended physics-based RL environment. We illustrate the diver-
sity of Kinetix by hand-designing a comprehensive holdout set of environments that test various
skills, such as navigation, planning and physical reasoning. We train an agent on billions of envi-
ronment interactions from randomly generated tasks, and show that it can zero-shot generalise to
many human-designed tasks, as well as function as a strong base model for fine-tuning. We hope

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

that this work can serve as a foundation for future research in open-endedness, large-scale online
pre-training of general RL agents and unsupervised environment design.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In 3rd International Conference on Learning Representations,
2015. URL http://arxiv.org/abs/1409.0473.

Anton Bakhtin, Laurens van der Maaten, Justin Johnson, Laura Gustafson, and Ross B. Girshick.
PHYRE: A new benchmark for physical reasoning. In Advances in Neural Information Process-
ing Systems, pp. 5083–5094, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/4191ef5f6c1576762869ac49281130c9-Abstract.html.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinı́cius Flores
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
Çaglar Gülçehre, H. Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl, Ashish
Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan
Wierstra, Pushmeet Kohli, Matthew M. Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu.
Relational inductive biases, deep learning, and graph networks. CoRR, abs/1806.01261, 2018.
URL http://arxiv.org/abs/1806.01261.

Sarah Bechtle, Artem Molchanov, Yevgen Chebotar, Edward Grefenstette, Ludovic Righetti, Gaurav
Sukhatme, and Franziska Meier. Meta learning via learned loss. In 2020 25th International
Conference on Pattern Recognition (ICPR), pp. 4161–4168. IEEE, 2021.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Carolin Benjamins, Theresa Eimer, Frederik Schubert, Aditya Mohan, Sebastian Döhler, André
Biedenkapp, Bodo Rosenhahn, Frank Hutter, and Marius Lindauer. Contextualize me – the case
for context in reinforcement learning. Transactions on Machine Learning Research, 2023. ISSN
2835-8856. URL https://openreview.net/forum?id=Y42xVBQusn.

Tudor Berariu, Wojciech Czarnecki, Soham De, Jorg Bornschein, Samuel Smith, Razvan Pas-
canu, and Claudia Clopath. A study on the plasticity of neural networks. arXiv preprint
arXiv:2106.00042, 2021.

Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Devin, Alex X. Lee, Maria Bauzá,
Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju, Antoine Laurens, Claudio Fantacci,
Valentin Dalibard, Martina Zambelli, Murilo F. Martins, Rugile Pevceviciute, Michiel Blokzijl,
Misha Denil, Nathan Batchelor, Thomas Lampe, Emilio Parisotto, Konrad Zolna, Scott E. Reed,
Sergio Gómez Colmenarejo, Jon Scholz, Abbas Abdolmaleki, Oliver Groth, Jean-Baptiste Regli,
Oleg Sushkov, Thomas Rothörl, Jose Enrique Chen, Yusuf Aytar, Dave Barker, Joy Ortiz, Mar-
tin A. Riedmiller, Jost Tobias Springenberg, Raia Hadsell, Francesco Nori, and Nicolas Heess.
Robocat: A self-improving foundation agent for robotic manipulation. CoRR, abs/2306.11706,
2023. doi: 10.48550/arXiv.2306.11706. URL https://doi.org/10.48550/arXiv.
2306.11706.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/
abs/1606.01540.

11

http://arxiv.org/abs/1409.0473
https://proceedings.neurips.cc/paper/2019/hash/4191ef5f6c1576762869ac49281130c9-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4191ef5f6c1576762869ac49281130c9-Abstract.html
http://arxiv.org/abs/1806.01261
https://openreview.net/forum?id=Y42xVBQusn
https://doi.org/10.48550/arXiv.2306.11706
https://doi.org/10.48550/arXiv.2306.11706
http://github.com/google/jax
http://github.com/google/jax
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. CoRR, abs/2104.13478, 2021. URL https:
//arxiv.org/abs/2104.13478.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in Neu-
ral Information Processing Systems, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative inter-
active environments. In Forty-first International Conference on Machine Learning, 2024.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg, Harsha Nori, Hamid Palangi,
Marco Túlio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experi-
ments with GPT-4. CoRR, abs/2303.12712, 2023. doi: 10.48550/ARXIV.2303.12712. URL
https://doi.org/10.48550/arXiv.2303.12712.

David Buterez, Jon Paul Janet, Dino Oglic, and Pietro Lio. Masked attention is all you need for
graphs. CoRR, abs/2402.10793, 2024. doi: 10.48550/ARXIV.2402.10793. URL https://
doi.org/10.48550/arXiv.2402.10793.

Erin Catto. Box2d. https://github.com/erincatto/box2d, 2007.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023. doi: 10.48550/ARXIV.2306.13831. URL https://doi.org/10.
48550/arXiv.2306.13831.

Karl Cobbe, Oleg Klimov, Christopher Hesse, Taehoon Kim, and John Schulman. Quantifying
generalization in reinforcement learning. In Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 1282–1289.
PMLR, 2019. URL http://proceedings.mlr.press/v97/cobbe19a.html.

Samuel Coward, Michael Beukman, and Jakob Foerster. Jaxued: A simple and useable ued library
in jax. arXiv preprint, 2024.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre M. Bayen, Stuart Rus-
sell, Andrew Critch, and Sergey Levine. Emergent complexity and zero-shot trans-
fer via unsupervised environment design. In Advances in Neural Information Process-
ing Systems, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
985e9a46e10005356bbaf194249f6856-Abstract.html.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 4171–4186. Association for Computational Linguistics, 2019. doi: 10.18653/
v1/n19-1423. URL https://doi.org/10.18653/v1/n19-1423.

Shibhansh Dohare, Richard S Sutton, and A Rupam Mahmood. Continual backprop: Stochastic
gradient descent with persistent randomness. arXiv preprint arXiv:2108.06325, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Archi Mitra, et al. The llama 3 herd of models. CoRR,
abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL https://doi.org/10.
48550/arXiv.2407.21783.

12

https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.48550/arXiv.2402.10793
https://doi.org/10.48550/arXiv.2402.10793
https://github.com/erincatto/box2d
https://doi.org/10.48550/arXiv.2306.13831
https://doi.org/10.48550/arXiv.2306.13831
http://proceedings.mlr.press/v97/cobbe19a.html
https://proceedings.neurips.cc/paper/2020/hash/ 985e9a46e10005356bbaf194249f6856-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ 985e9a46e10005356bbaf194249f6856-Abstract.html
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sam Earle and Julian Togelius. Autoverse: An evolvable game language for learning robust embod-
ied agents. CoRR, 2024. URL https://doi.org/10.48550/arXiv.2407.04221.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:
scalable distributed deep-rl with importance weighted actor-learner architectures. In Proceed-
ings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Re-
search, pp. 1406–1415. PMLR, 2018. URL http://proceedings.mlr.press/v80/
espeholt18a.html.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In Proceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, vol-
ume 80 of Proceedings of Machine Learning Research, pp. 1514–1523. PMLR, 2018. URL
http://proceedings.mlr.press/v80/florensa18a.html.

Kevin Frans and Phillip Isola. Powderworld: A platform for understanding generalization via rich
task distributions. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.
net/forum?id=AWZgXGmsbA.

Kevin Frans, Seohong Park, Pieter Abbeel, and Sergey Levine. Unsupervised zero-shot reinforce-
ment learning via functional reward encodings. arXiv preprint arXiv:2402.17135, 2024.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax - a differentiable physics engine for large scale rigid body simulation, 2021. URL http:
//github.com/google/brax.

Samuel Garcin, James Doran, Shangmin Guo, Christopher G. Lucas, and Stefano V. Albrecht. Dred:
Zero-shot transfer in reinforcement learning via data-regularised environment design. 2024. URL
https://doi.org/10.48550/arXiv.2402.03479.

Randy Gaul. Impulse engine, 2013. URL https://github.com/RandyGaul/
ImpulseEngine.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

David E Goldberg. Simple genetic algorithms and the minimal, deceptive problem. Genetic algo-
rithms and simulated annealing, pp. 74–88, 1987.

Alexander David Goldie, Chris Lu, Matthew Thomas Jackson, Shimon Whiteson, and Jakob Nico-
laus Foerster. Can learned optimization make reinforcement learning less difficult? arXiv preprint
arXiv:2407.07082, 2024.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780,
2021.

Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In 9th International Conference on Learning Representations. OpenRe-
view.net, 2021. URL https://openreview.net/forum?id=0oabwyZbOu.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy P. Lillicrap. Mastering diverse domains
through world models. CoRR, abs/2301.04104, 2023. doi: 10.48550/ARXIV.2301.04104. URL
https://doi.org/10.48550/arXiv.2301.04104.

Matteo Hessel, Manuel Kroiss, Aidan Clark, Iurii Kemaev, John Quan, Thomas Keck, Fabio Vi-
ola, and Hado van Hasselt. Podracer architectures for scalable reinforcement learning. CoRR,
abs/2104.06272, 2021. URL https://arxiv.org/abs/2104.06272.

13

https://doi.org/10.48550/arXiv.2407.04221
http://proceedings.mlr.press/v80/espeholt18a.html
http://proceedings.mlr.press/v80/espeholt18a.html
http://proceedings.mlr.press/v80/florensa18a.html
https://openreview.net/forum?id=AWZgXGmsbA
https://openreview.net/forum?id=AWZgXGmsbA
http://github.com/google/brax
http://github.com/google/brax
https://doi.org/10.48550/arXiv.2402.03479
https://github.com/RandyGaul/ImpulseEngine
https://github.com/RandyGaul/ImpulseEngine
https://openreview.net/forum?id=0oabwyZbOu
https://doi.org/10.48550/arXiv.2301.04104
https://arxiv.org/abs/2104.06272

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Edward Hughes, Michael D Dennis, Jack Parker-Holder, Feryal Behbahani, Aditi Mavalankar, Yuge
Shi, Tom Schaul, and Tim Rocktäschel. Position: Open-endedness is essential for artificial su-
perhuman intelligence. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=Bc4vZ2CX7E.

Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson.
Transient non-stationarity and generalisation in deep reinforcement learning. arXiv preprint
arXiv:2006.05826, 2020.

Matthew Jackson, Chris Lu, Louis Kirsch, Robert Lange, Shimon Whiteson, and Jakob Foerster.
Discovering temporally-aware reinforcement learning algorithms. In International Conference
on Learning Representations, 2024.

Matthew T Jackson, Minqi Jiang, Jack Parker-Holder, Risto Vuorio, Chris Lu, Greg
Farquhar, Shimon Whiteson, and Jakob Foerster. Discovering general reinforcement
learning algorithms with adversarial environment design. In Advances in Neural In-
formation Processing Systems, volume 36, pp. 79980–79998. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/fce2d8a485746f76aac7b5650db2679d-Paper-Conference.pdf.

Nick Jakobi. Evolutionary robotics and the radical envelope-of-noise hypothesis. Adaptive behavior,
6(2):325–368, 1997.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob N. Foerster, Edward Grefenstette, and Tim
Rocktäschel. Replay-guided adversarial environment design. In Advances in Neural Information
Processing Systems, pp. 1884–1897, 2021a. URL https://proceedings.neurips.cc/
paper/2021/hash/0e915db6326b6fb6a3c56546980a8c93-Abstract.html.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In Proceedings
of the 38th International Conference on Machine Learning, volume 139, pp. 4940–4950. PMLR,
2021b. URL http://proceedings.mlr.press/v139/jiang21b.html.

Minqi Jiang, Michael Dennis, Edward Grefenstette, and Tim Rocktäschel. minimax: Efficient base-
lines for autocurricula in jax. In Agent Learning in Open-Endedness Workshop at NeurIPS, 2023.

Saman Kazemkhani, Aarav Pandya, Daphne Cornelisse, Brennan Shacklett, and Eugene Vinitsky.
Gpudrive: Data-driven, multi-agent driving simulation at 1 million FPS. CoRR, abs/2408.01584,
2024. doi: 10.48550/ARXIV.2408.01584. URL https://doi.org/10.48550/arXiv.
2408.01584.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of zero-shot
generalisation in deep reinforcement learning. J. Artif. Intell. Res., 76:201–264, 2023. doi:
10.1613/jair.1.14174. URL https://doi.org/10.1613/jair.1.14174.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building
machines that learn and think like people. Behavioral and Brain Sciences, 40:e253, 2017. doi:
10.1017/S0140525X16001837.

Robert Tjarko Lange. gymnax: A JAX-based reinforcement learning environment library, 2022.
URL http://github.com/RobertTLange/gymnax.

Joel Lehman and Kenneth Stanley. Abandoning objectives: Evolution through the search for novelty
alone. Evolutionary computation, 19:189–223, 06 2011. doi: 10.1162/EVCO a 00025.

14

https://openreview.net/forum?id=Bc4vZ2CX7E
https://proceedings.neurips.cc/paper_files/paper/2023/file/fce2d8a485746f76aac7b5650db2679d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/fce2d8a485746f76aac7b5650db2679d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper/2021/hash/ 0e915db6326b6fb6a3c56546980a8c93-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ 0e915db6326b6fb6a3c56546980a8c93-Abstract.html
http://proceedings.mlr.press/v139/jiang21b.html
https://doi.org/10.48550/arXiv.2408.01584
https://doi.org/10.48550/arXiv.2408.01584
https://doi.org/10.1613/jair.1.14174
http://github.com/RobertTLange/gymnax

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. ArXiv e-prints, pp.
arXiv–1607, 2016.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. CoRR, abs/2005.01643, 2020. URL
https://arxiv.org/abs/2005.01643.

Shiqian Li, Kewen Wu, Chi Zhang, and Yixin Zhu. I-PHYRE: Interactive physical reasoning. In
The Twelfth International Conference on Learning Representations, 2024a. URL https://
openreview.net/forum?id=1bbPQShCT2.

Zaijing Li, Yuquan Xie, Rui Shao, Gongwei Chen, Dongmei Jiang, and Liqiang Nie. Optimus-
1: Hybrid multimodal memory empowered agents excel in long-horizon tasks. 2024b. URL
https://doi.org/10.48550/arXiv.2408.03615.

Gunar E Liepins and Michael D Vose. Deceptiveness and genetic algorithm dynamics. In Founda-
tions of genetic algorithms, volume 1, pp. 36–50. Elsevier, 1991.

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob Foerster.
Discovered policy optimisation. Advances in Neural Information Processing Systems, 35:16455–
16468, 2022.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob N. Foerster, Satinder Singh,
and Feryal M. P. Behbahani. Structured state space models for in-context reinforcement learn-
ing. In Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
92d3d2a9801211ca3693ccb2faa1316f-Abstract-Conference.html.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles
Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State.
Isaac gym: High performance GPU based physics simulation for robot learning. In
Proceedings of the Neural Information Processing Systems Track on Datasets and Bench-
marks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/28dd2c7955ce926456240b2ff0100bde-Abstract-round2.html.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum
learning. volume 31, pp. 3732–3740, 2020. doi: 10.1109/TNNLS.2019.2934906. URL
https://doi.org/10.1109/TNNLS.2019.2934906.

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson,
Samuel Coward, and Jakob Foerster. Craftax: A lightning-fast benchmark for open-ended re-
inforcement learning. In ICML, 2024.

Marvin Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30, 1961.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. J. Mach.
Learn. Res., 21:181:1–181:50, 2020. URL http://jmlr.org/papers/v21/20-212.
html.

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for
generalist robots. CoRR, abs/2406.02523, 2024. doi: 10.48550/ARXIV.2406.02523. URL
https://doi.org/10.48550/arXiv.2406.02523.

Allen Newell, John C Shaw, and Herbert A Simon. Report on a general problem solving program.
In IFIP congress, volume 256, pp. 64. Pittsburgh, PA, 1959.

15

https://arxiv.org/abs/2005.01643
https://openreview.net/forum?id=1bbPQShCT2
https://openreview.net/forum?id=1bbPQShCT2
https://doi.org/10.48550/arXiv.2408.03615
http://papers.nips.cc/paper_files/paper/2023/hash/92d3d2a9801211ca3693ccb2faa1316f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/92d3d2a9801211ca3693ccb2faa1316f-Abstract-Conference.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/28dd2c7955ce926456240b2ff0100bde-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/28dd2c7955ce926456240b2ff0100bde-Abstract-round2.html
https://doi.org/10.1109/TNNLS.2019.2934906
http://jmlr.org/papers/v21/20-212.html
http://jmlr.org/papers/v21/20-212.html
https://doi.org/10.48550/arXiv.2406.02523

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, Viacheslav Sinii, Artem Agarkov, and Sergey
Kolesnikov. XLand-minigrid: Scalable meta-reinforcement learning environments in JAX.
In Intrinsically-Motivated and Open-Ended Learning Workshop, NeurIPS2023, 2023. URL
https://openreview.net/forum?id=xALDC4aHGz.

Alexander Nikulin, Ilya Zisman, Alexey Zemtsov, Viacheslav Sinii, Vladislav Kurenkov, and Sergey
Kolesnikov. Xland-100b: A large-scale multi-task dataset for in-context reinforcement learning.
CoRR, abs/2406.08973, 2024. doi: 10.48550/ARXIV.2406.08973. URL https://doi.org/
10.48550/arXiv.2406.08973.

Johan Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob Foerster,
Gintare Karolina Dziugaite, Doina Precup, and Pablo Samuel Castro. Mixtures of experts unlock
parameter scaling for deep rl. arXiv preprint arXiv:2402.08609, 2024.

Junhyuk Oh, Matteo Hessel, Wojciech M Czarnecki, Zhongwen Xu, Hado P van Hasselt, Satinder
Singh, and David Silver. Discovering reinforcement learning algorithms. Advances in Neural
Information Processing Systems, 33:1060–1070, 2020.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abra-
ham Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, et al. Open x-embodiment: Robotic
learning datasets and RT-X models : Open x-embodiment collaboration. In IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2024, Yokohama, Japan, May 13-17,
2024, pp. 6892–6903. IEEE, 2024. doi: 10.1109/ICRA57147.2024.10611477. URL https:
//doi.org/10.1109/ICRA57147.2024.10611477.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–286,
2007.

Emilio Parisotto, H. Francis Song, Jack W. Rae, Razvan Pascanu, Çaglar Gülçehre, Siddhant M.
Jayakumar, Max Jaderberg, Raphaël Lopez Kaufman, Aidan Clark, Seb Noury, Matthew M.
Botvinick, Nicolas Heess, and Raia Hadsell. Stabilizing transformers for reinforcement learning.
In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 7487–
7498. PMLR, 2020. URL http://proceedings.mlr.press/v119/parisotto20a.
html.

Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design. In
Proceedings of the International Conference on Machine Learning, pp. 17473–17498. PMLR,
2022. URL https://proceedings.mlr.press/v162/parker-holder22a.html.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial rein-
forcement learning. In Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 2817–2826. PMLR, 06–11 Aug
2017. URL https://proceedings.mlr.press/v70/pinto17a.html.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Sharath Chandra Raparthy, Eric Hambro, Robert Kirk, Mikael Henaff, and Roberta Raileanu. Gen-
eralization to new sequential decision making tasks with in-context learning. In Forty-first In-
ternational Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=lVQ4FUZ6dp.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander Novikov,
Gabriel Barth-maron, Mai Giménez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Ec-
cles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol
Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent. Transactions on Machine
Learning Research, 2022. ISSN 2835-8856. URL https://openreview.net/forum?
id=1ikK0kHjvj.

16

https://openreview.net/forum?id=xALDC4aHGz
https://doi.org/10.48550/arXiv.2406.08973
https://doi.org/10.48550/arXiv.2406.08973
https://doi.org/10.1109/ICRA57147.2024.10611477
https://doi.org/10.1109/ICRA57147.2024.10611477
http://proceedings.mlr.press/v119/parisotto20a.html
http://proceedings.mlr.press/v119/parisotto20a.html
https://proceedings.mlr.press/v162/parker-holder22a.html
https://proceedings.mlr.press/v70/pinto17a.html
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://openreview.net/forum?id=lVQ4FUZ6dp
https://openreview.net/forum?id=1ikK0kHjvj
https://openreview.net/forum?id=1ikK0kHjvj

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Gardar Ing-
varsson, Timon Willi, Akbir Khan, Christian Schroeder de Witt, Alexandra Souly, et al. Jaxmarl:
Multi-agent rl environments in jax. arXiv preprint arXiv:2311.10090, 2023.

Alexander Rutherford, Michael Beukman, Timon Willi, Bruno Lacerda, Nick Hawes, and Jakob
Foerster. No regrets: Investigating and improving regret approximations for curriculum discovery.
arXiv, 2024. URL https://arxiv.org/abs/2408.15099.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Carmelo Sferrazza, Dun-Ming Huang, Fangchen Liu, Jongmin Lee, and Pieter Abbeel. Body trans-
former: Leveraging robot embodiment for policy learning. 2024. URL https://doi.org/
10.48550/arXiv.2408.06316.

Olivier Sigaud, Gianluca Baldassarre, Cédric Colas, Stéphane Doncieux, Richard J. Duro, Nicolas
Perrin-Gilbert, and Vieri Giuliano Santucci. A definition of open-ended learning problems for
goal-conditioned agents. CoRR, abs/2311.00344, 2023. doi: 10.48550/ARXIV.2311.00344. URL
https://doi.org/10.48550/arXiv.2311.00344.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
based representations. In International Conference on Machine Learning, pp. 9767–9779. PMLR,
2021.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. In International Conference on Machine Learning, pp.
32145–32168. PMLR, 2023.

Lisa Soros and Kenneth Stanley. Identifying necessary conditions for open-ended evolution through
the artificial life world of chromaria. In Artificial Life Conference Proceedings, pp. 793–800. MIT
Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info . . . , 2014.

Kenneth O Stanley. Why open-endedness matters. Artificial life, 25(3):232–235, 2019.

Fan-Yun Sun, S. I. Harini, Angela Yi, Yihan Zhou, Alex Zook, Jonathan Tremblay, Logan Cross,
Jiajun Wu, and Nick Haber. Factorsim: Generative simulation via factorized representation. 2024.
URL https://doi.org/10.48550/arXiv.2409.17652.

Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal M. P. Behbahani,
Avishkar Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Col-
lister, Vibhavari Dasagi, Lucy Gonzalez, Karol Gregor, Edward Hughes, Sheleem Kashem,
Maria Loks-Thompson, Hannah Openshaw, Jack Parker-Holder, Shreya Pathak, Nicolas Perez
Nieves, Nemanja Rakicevic, Tim Rocktäschel, Yannick Schroecker, Jakub Sygnowski, Karl
Tuyls, Sarah York, Alexander Zacherl, and Lei Zhang. Human-timescale adaptation in an
open-ended task space. CoRR, abs/2301.07608, 2023. doi: 10.48550/arXiv.2301.07608. URL
https://doi.org/10.48550/arXiv.2301.07608.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, Jianlan Luo, You Liang Tan, Lawrence Yunliang
Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
Octo: An open-source generalist robot policy. CoRR, abs/2405.12213, 2024. doi: 10.48550/
ARXIV.2405.12213. URL https://doi.org/10.48550/arXiv.2405.12213.

Open Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck, Jakob
Bauer, Jakub Sygnowski, Maja Trebacz, Max Jaderberg, Michaël Mathieu, Nat McAleese,
Nathalie Bradley-Schmieg, Nathaniel Wong, Nicolas Porcel, Roberta Raileanu, Steph Hughes-
Fitt, Valentin Dalibard, and Wojciech Marian Czarnecki. Open-ended learning leads to generally
capable agents. CoRR, abs/2107.12808, 2021. URL https://arxiv.org/abs/2107.
12808.

17

https://arxiv.org/abs/2408.15099
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.48550/arXiv.2408.06316
https://doi.org/10.48550/arXiv.2408.06316
https://doi.org/10.48550/arXiv.2311.00344
https://doi.org/10.48550/arXiv.2409.17652
https://doi.org/10.48550/arXiv.2301.07608
https://doi.org/10.48550/arXiv.2405.12213
https://arxiv.org/abs/2107.12808
https://arxiv.org/abs/2107.12808

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
International Conference on Intelligent Robots and Systems, pp. 23–30. IEEE, 2017. doi: 10.
1109/IROS.2017.8202133. URL https://doi.org/10.1109/IROS.2017.8202133.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based con-
trol. In International Conference on Intelligent Robots and Systems, pp. 5026–5033. IEEE,
2012. doi: 10.1109/IROS.2012.6386109. URL https://doi.org/10.1109/IROS.
2012.6386109.

Georgios Tzannetos, Bárbara Gomes Ribeiro, Parameswaran Kamalaruban, and Adish Singla. Prox-
imal curriculum for reinforcement learning agents. Trans. Mach. Learn. Res., 2023, 2023. URL
https://openreview.net/forum?id=8WUyeeMxMH.

Dani Valevski, Yaniv Leviathan, Moab Arar, and Shlomi Fruchter. Diffusion models are real-time
game engines, 2024. URL https://arxiv.org/abs/2408.14837.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017. URL https://proceedings.neurips.cc/
paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language mod-
els. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL https:
//openreview.net/forum?id=ehfRiF0R3a.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O. Stanley. Paired Open-Ended Trailblazer
(POET): Endlessly generating increasingly complex and diverse learning environments and their
solutions. CoRR, abs/1901.01753, 2019. URL http://arxiv.org/abs/1901.01753.

Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune, and Kenneth O. Stanley.
Enhanced POET: open-ended reinforcement learning through unbounded invention of learning
challenges and their solutions. In Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 9940–9951. PMLR,
2020. URL http://proceedings.mlr.press/v119/wang20l.html.

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy with
graph neural networks. In 6th International Conference on Learning Representations. OpenRe-
view.net, 2018. URL https://openreview.net/forum?id=S1sqHMZCb.

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. JARVIS-1: Open-world multi-
task agents with memory-augmented multimodal language models. In Second Agent Learn-
ing in Open-Endedness Workshop, 2023. URL https://openreview.net/forum?id=
xzPkZyHlOW.

18

https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
https://openreview.net/forum?id=8WUyeeMxMH
https://arxiv.org/abs/2408.14837
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a
http://arxiv.org/abs/1901.01753
http://proceedings.mlr.press/v119/wang20l.html
https://openreview.net/forum?id=S1sqHMZCb
https://openreview.net/forum?id=xzPkZyHlOW
https://openreview.net/forum?id=xzPkZyHlOW

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

APPENDIX

Appendix A describes the mathematical and computational logic behind Jax2D and Appendix B
performs speed tests on it.

Appendix C provides further details of the Kinetix RL environment, while Appendix D shows
examples of randomly generated levels. Appendix E lists the hand-designed holdout levels and
Appendix F shows example morphologies used in Figure 4.

Appendix G describes the different network architectures in further detail and Appendix H lists the
associated hyperparameters used.

Appendix I investigates training agents directly on the holdout levels. Appendix J provides a de-
aggregated view of the main generalist agent results, split out by every environment. Appendix K
provides additional generalist agent results, while Appendix L compares UED methods. Finally,
Appendix M performs a small ablations study where we try removing aspects of our general agent
training pipeline.

A JAX2D

This section provides an in-depth look into the logic behind Jax2D. Jax2D largely owes its heritage
to Box2D (Catto, 2007) and ImpulseEngine (Gaul, 2013), with most of the underlying framework
being lifted from these engines and adapted for JAX. For a more thorough account of some of the
concepts behind rigid-body physics, we recommend Erin Catto’s talks.2

A.1 CORE ENGINE

The main loop of Jax2D is summarised in Algorithm 1. Each part of the engine is subsequently
explained as referenced.

Algorithm 1 Jax2D main engine loop.
1: while true do
2: Apply gravity
3: Calculate collision manifolds (Appendices A.3.1, A.3.2, A.3.3 and A.3.4)
4: Apply motors (Appendix A.5)
5: Apply thrusters (Appendix A.6)
6: if warm starting then
7: Apply warm starting collision impulses (Appendix A.7)
8: Apply warm starting joint impulses (Appendix A.7)
9: end if

10: for i = 1 to num solver steps do
11: Apply joint constraints (Appendices A.2 and A.4)
12: Apply collision constraints (Appendices A.2 and A.3.5)
13: end for
14: Euler step position and rotation
15: end while

A.2 IMPULSE RESOLUTION AND CONSTRAINT SOLVING

The core of Jax2D is impulse resolution, in which an equal and opposite impulse is applied to a
pair of shapes in order to satisfy some constraint. For a given impulse j, the positional and angular
velocities of a shape are affected as follows.

v ← v +
j

m
(1)

ω ← ω +
r × j

I
(2)

2https://box2d.org/publications/

19

https://box2d.org/publications/

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where v is positional velocity, m is mass, ω is angular velocity, r is the displacement from the centre
of mass of the shape to the position the impulse is being applied at and I is the rotational inertia.

We use × to represent either the scalar-vector or the vector-vector cross product (the choice should
be inferable from the operands).

A.3 COLLISIONS

The first type of constraint we consider is the collision constraint, which prevents objects from
moving inside of each other.

A.3.1 COLLISION MANIFOLDS

The notion of a collision between to shapes is reduced to the concept of a collision manifold, con-
taining the information shown in Table 1.

Table 1: Collision Manifold Specification

Attribute Symbol Data Type Description
Position p [float, float] Global position of the collision.
Normal n̂ [float, float] Normalised vector along which the collision occurs.
Penetration p float Positive penetration indicates an active collision.

The resolution of a collision takes place in two steps. First a collision manifold is generated. This
is dependent on the exact shapes that are colliding (e.g. the logic for deriving a collision manifold
between two circles is different than for two polygons). Once the collision manifold is generated, the
exact nature of the colliding shapes are no longer relevant and only their common attributes (mass,
inertia, etc.) are used for the subsequent collision resolution. In this way, while the generation of the
collision manifolds is heterogeneous, the resolution of these occurs homogeneously.

A.3.2 CIRCLE-CIRCLE COLLISION MANIFOLDS

Generating a collision manifold between two circles is relatively simple, and is calculated as follows:

p← pa + ra · n̂ (3)

n̂← pb − pa

|pb − pa|
(4)

p← ra + rb − |pb − pa| (5)

A.3.3 POLYGON-CIRCLE COLLISION MANIFOLDS

The collision between a polygon a and a circle b is calculated by first determining the closest point
on any edge to the circle. For each edge, the centre of the circle is clipped to perpendicular lines
extending from both corners, before being projected onto the edge to find the closest point for that
particular edge. The clipping ensures that the point doesn’t end up off the end of an edge - it will
instead be clipped to a corner. Once this closest point p has been found, the collision manifold can
be calculated.

n̂← pb − p

|pb − p|
(6)

p← rb − |p| (7)

A.3.4 POLYGON-POLYGON COLLISION MANIFOLDS

Collisions between two convex polygons are the most complex. The underlying stratgey is defined
by the separating axis theorem: any two convex polygons that are not colliding will have an axis upon
which, when the vertices of both shapes are projected onto, there will be no overlap. Furthermore,
it can be shown that if this axis exists, it must run perpendicular to one of the edges of one of the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

polygons. Intuitively, one can imagine drawing a straight line (perpendicular to the separating axis
and thus parallel with an edge) that separates the two convex polygons.

If there is no separating axis then the two polygons are colliding. Finding the point of collision
involves pinpointing the axis of least penetration, that is the axis that when projected upon causes
the least amount of overlap. The face that the axis of least penetration is derived from is termed the
reference face, and the face (on the other shape) of which the corners have the least penetration is
termed the incident face. Similar to the polygon-circle collision, the incident face is then clipped
to the boundaries of the reference face. Each of the (clipped) vertices of the incident face can then
produce their own collision manifolds (if they are indeed penetrating the reference face). The normal
of the collision is that of the reference face and the penetration can be easily calculated by projecting
the clipped incident face onto this normal.

The decision to (sometimes) produce two collision manifolds for polygon-polygon collisions is one
of stability. When two edges rest on each other a single collision manifold will cause the polygon to
oscillate as the collision manifold flips from side to side.

A.3.5 COLLISION RESOLUTION

Once a collision manifold has been created, it is then turned into an impulse that affects the two
shapes. When two objects are deemed to have collided (i.e. a collision manifold with positive
penetration is found), the collision constraint specifies that the new relative velocity at the point of
collision should be equal to −evr, where e is the restitution of the collision and vr is the relative
velocity at the point of collision. If e = 0 we see an inelastic collision where the collision points on
both shapes should have zero relative velocity. Conversely, if e = 1 we would see a perfectly elastic
collision and the conservation of kinetic energy.

We first note that the velocity of a point on an object can be calculated by

vr = v + ω × r (8)

where v is the velocity of the objects centre of mass, ω is the angular velocity and r is the point on
the object relative to the centre of mass. Given this, we can derive the required impulse to resolve a
collision between objects a and b is

jn =
−(1 + e)(n̂ · (va + (ωa × ra)− vb − (ωb × rb)))

m−1
a +m−1

b + (ra×n̂)2

Ia
+ (rb×n̂)2

Ib

· n̂ (9)

where e is the restitution, n̂ is the collision normal, va and vb are the respective positional velocities,
ωa and ωb are the respective angular velocities, ra and rb are the respective relative positions of the
collision from the centre of masses, ma and mb are the respective masses and Ia and Ib are the
respective rotational inertias.

Intuitively, the numerator represents the change in speed we wish to occur between the collision
points along the axis of the collision normal. The denominator then scales this value by the mass
and inertia of the colliding objects so that the resultant impulse will cause this change in speed.

In Jax2D every shape has an associated restitution, with the restitution of a collision defined as the
minimum of the restitutions of the colliding shapes e = min(ea, eb).

A.3.6 FRICTION IN COLLISIONS

As well as the collision impulse which acts along the collision normal, we calculate a friction im-
pulse which acts perpendicular to it against the relative movement. This follows Couloumb’s Law:

|jf | ≤ µ|jn| (10)

where jf is the friction impulse, jn is the normal impulse and µ is the coefficient of friction. jf is
therefore defined, similarly to Equation (12), as

jf = clip

−(t̂ · (va + (ωa × ra)− vb − (ωb × rb)))

m−1
a +m−1

b + (ra×t̂)2

Ia
+ (rb×t̂)2

Ib

,−µ|jn|, µ|jn|

 · t̂ (11)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where t̂ is the normalised vector perpendicular to the normal of the collision.

Similar to restitution, every shape has its own coefficient of friction, with the coefficient for a colli-
sion defined as µ =

√
µ2
a + µ2

b .

A.3.7 POSITIONAL AND VELOCITY CORRECTIONS

In a simulation of infinite temporal granularity, impulses would be enough to guarantee reliable
behaviour. However, since in practice we must quantise our simulation into discrete timesteps, only
using impulses to solve constraints causes compounding errors to emerge in the simulation. In the
case of collision constraints, this manifests itself as resting objects slowly sinking into each other.

To deal with this, we first introduce a velocity correction. Decomposing Equation (12) we can see
that the numerator defines the change in speed that will occur along the collision normal between
the two collision points. Since our velocity correction will also operate along the collision normal,
we can simply add the desired speed bias to the numerator. We calculate this bias as αp where p
is the penetration and α is a coefficient in units of inverse time. Since this bias a function of the
penetration, it will prevent bodies from sinking into each other, even if they have low velocity. It
should be noted that this practice introduces some ‘bounce’ into the simulation, which can in effect
slightly increase the restitution of collisions.

We also introduce a positional correction, which directly moves colliding shapes when they overlap.
We similarly define this as βp, where β is a unitless coefficient.

A.4 JOINTS

As well as collision constraints, Jax2D also represents the concept of joint constraints. These in
their most basic form fix two relative points on two separate objects together such that they must
always occupy the same global position. It should be noted that (assuming the relative positions are
inside the shapes), this is directly at odds with the collision constraint. Therefore, when we connect
two shapes with a joint, we disable their respective collision constraint.

A.4.1 REVOLUTE JOINTS

The most basic type of joint constraint is the revolute joint. This simply specifies that the two
positions on each of the shape occupy the same position and have zero relative velocity to each
other. Note that they are allowed to have non-zero relative angular velocity, which allows the shapes
to spin around the joint (hence revolute).

This is achieved in effect by applying a constant collision with no restitution at the point of joining,
with the collision normal pushing the joined positions back towards each other. As with collisions,
we also apply velocity and positional corrections.

A.4.2 FIXED JOINTS

Jax2D also faciliates a ‘fixed’ joint, in which an additional rotational constraint enforces that the
relative angle between two shapes remains constant, fixing them together effectively into a single
rigid body.

The rotational constraint applies an angular impulse around the fixed joint, defined as

jr =
ωa − ωb

I−1
a + I−1

b

(12)

This will cause the relative angular velocity of the two shapes to become zero.

We also apply corrections directly to the angular velocities defined as γ(θa−θb−θf), where θa and
θb are the respective rotations of the two shapes, θf is the target rotation at which they have been
fixed at and γ is a coefficient in units of inverse time. This is analogous to the velocity correction,
with the angular difference from the target taking the place of the penetration.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.4.3 JOINT LIMITS

In order to allow for Jax2D to represent environments like the MuJoCo inspired tasks, revolute
joints can have rotational limits applied to them, meaning they can only rotate within a given range.
When the relative rotation between two shapes connected with a limited revoloute joint exceeds
either the minimum or maximum rotation, an angular impulse is applied to correct this. This is
applied similarly to that for a fixed joint, except that the angular velocity correction is not applied if
the relative angular velocity of the two shapes is already bringing them back into within their limits.
This is to allow motors to push joints back within limits potentially faster than the angular velocity
correction would do.

A.5 MOTORS

A revolute joint can have a motor attached to it, which can apply a torque around the joint. Each
motor has a target angular velocity and a strength to which it will apply a torque to achieve it. For
stability, as the angular velocity approaches the target, the motor applies less torque. If the angular
velocity exceeds the motors target then it will apply a torque in the opposite direction. The applied
angular impulse is calculated as

jr = p · tanh ((ωa − ωb − s ·A) · ρ) (13)

where s is the target speed of the motor, A is the action being applied on the motor (by a human
or artificial agent), p is the motor power and ρ is a coefficient to control to what degree the power
wanes as it approaches the target angular velocity.

It should be noted that the angular impulse applied by a motor is not a constraint to be solved but a
true impulse being applied to the scene, similar to gravity. For this reason it is applied once, before
the main constraint solving loop.

A.6 THRUSTERS

Thrusters can be attached to shapes and can apply a force in the direction they are facing. The force
applied is defined as p · A, where p is the power of the thruster and A is the action taken on the
thruster. As with motors, the thruster impulse is applied before constraint solving begins.

A.7 IMPULSE ACCUMULATION AND WARM STARTING

For a stable simulation, we simulate multiple solver steps for every simulation timestep. This is
because solving one pairwise constraint can often affect other constraints. For instance, imagine
a stack of rectangles resting on top of each other – solving the collision constraint of the bottom
rectangle with the floor might push this rectangle further into the one above it (especially with
the velocity and positional corrections). This same problem would then propagate its way up the
entire stack (and back down again), necessitating multiple solver steps for stability (each solver step
iteratively solves each constraint).

One interesting observation to make is that solver steps from previous timesteps can provide useful
information for the current timestep. In particular, the aggregate impulse applied at each manifold
last timestep serves as good ‘first guess’ for the impulse to apply at the current timestep, especially
when bodies are mostly static. In this way, we can effectively solve constraints not only over multiple
solver steps but also over multiple timesteps, with little extra cost. This technique is referred to as
‘warm starting’.

Warm starting requires us to record accumulated impulses throughout the solver steps and also to
match collision manifolds across timesteps. Jax2D takes the simple approach of naı̈vely matching
collision manifolds across adjacent timesteps – if a collision does not occur between two bodies on
a timestep then all accumulated impulses are wiped. Jax2D by default warm starts collisions, joint
positional constraints and fixed joint rotational constraints. Efforts to apply warm starting to the
joint limits of revolute joints caused instability.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A.8 PARALLELISED COMPUTATION AND BATCHED IMPULSE RESOLUTION

As well as being able to easily parallelise multiple Jax2D environments with the Jax vmap oper-
ation, we also parallelise many of the calculations within a single environment, providing further
speed increases. The calculation of collision manifolds is easily parallelised, as they have no side
effects. The application of motors and thrusters is also parallelised. A more nuanced parallelisation
is the constraint solving.

As discussed in Appendix A.7, solving one constraint can affect (and even unsolve) other constraints.
For this reason, solving constraints sequentially provides a greater efficiency in terms of solver steps,
as each constraint can in effect take into account the effects of already solved constraints. In testing,
we found that fully parallelising constraint solving did indeed noticeably reduce the stability of the
simulation.

Due to the way the vmap operation works, everything in the parallelised function must run the same
compute graph – there can be no branching. For us, this means that every collision constraint be-
tween every pair of shapes must be solved every solver step, as we can’t know a priori which shapes
will collide. This means that, in most cases, the vast majority of computed collision resolutions are
inactive.

We want to parallelise collision constraints for speed reasons, but it makes the solution unstable,
however we also find that the majority of collision constraints are actually inactive. This naturally
leads to the solution of partially parallelising the collision constraints by solving them in batches,
which we vmap across. By spreading out the active collision manifolds across as many batches as
possible, we gain the speed advantages of parallelisation without the negative effects on stability
(except in the cases where many shapes are colliding with each other). The solver batch size there-
fore also arises as a tuneable parameter that trades off between simulation speed and accuracy. We
use a value of 16 by default.

We do not parallelise joint constraint solving, as there are far less joints than possible collisions (as
collisions grows quadratically with the number of shapes), so the potential for speed improvements
is significantly less.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

B JAX2D SPEED RESULTS

Here we investigate the runtime speed of both Jax2D and Kinetix. For all comparisons we use a
single NVIDIA L40S GPU, on a server with two AMD EPYC 9554 64-Core CPUs. We first compare
Jax2D against Box2D (Catto, 2007). We implement environments in Box2D and Jax2D that are
comparable in size (notably, the Box2D environment has three polygons and two joints, whereas
the Jax2D environment uses the M size, with 6 polygons, 3 circles, 2 joints and 2 thrusters). We
then use two different approaches of comparing speed: The first is by simply running the engines,
and applying fixed actions, giving us a raw speed measure of each engine. In the second approach,
we compare speed when running the RL training loop, to have a more realistic estimate for speed
during training. We use PureJaxRL-style training for Jax2D (Lu et al., 2022) and Stable Baselines
3 (Raffin et al., 2021) for Box2D. We use the flattened symbolic representation for Jax2D and use
comparably-sized networks for both Box2D and Jax2D.

The results are presented in Figure 7 and Table 2. First, inside an RL loop, Jax2D always outper-
forms Box2D, and shows improved scaling once the number of parallel processes greatly exceeds
the number of physical CPU cores. When comparing just the engine, Box2D outperforms Jax2D
when using fewer than 1024 environments, at which point Jax2D overtakes Box2D.

100 101 102 103 104 105

103

105

107

St
ep

s p
er

 se
co

nd

RL

100 101 102 103 104 105

Engine Only

Box2D
Jax2D

Number of parallel environments

Figure 7: Comparing Box2D vs Jax2D’s speed in two scenarios. The first, on the left, includes RL
training, whereas the rightmost plot corresponds to raw engine performance.

Table 2: The best-case steps per second for both Jax2D and Box2D, in an RL loop and outside. In
raw performance, Jax2D’s best case is approximately 4.5× faster than Box2D, and this increases
to more than 30× inside an RL training pipeline.

Approach Steps Per Second (Best case) Environment Workers (Best Case)

Jax2D (RL) 824K 32768
Jax2D (Engine Only) 9049K 16384
Box2D (RL) 24K 32768
Box2D (Engine Only) 1982K 8192

In Figure 8, we compare the three different level sizes in Kinetix (S, M and L), as well as the dif-
ferent observation spaces. Speed predictably decreases as we increase the environment size. Using
the pixel-based observation requires more memory, so we cannot run as many parallel environments
as with the other observation spaces. Symbolic-Entity does not scale as well as Symbolic-Flat, likely
due to saturating memory bandwidth.

For actual runtimes, training the generalist agent for 1 billion timesteps on a single L40S took around
7 hours for S, 9 hours for M and 14 hours for L. Training on such a large number of timesteps is
indeed nontrivial, but JAX and our Jax2D engine makes it feasible. This could further be sped up by
using multiple GPUs in parallel.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

100 101 102 103 104 105

102

103

104

105

106

107

St
ep

s p
er

 se
co

nd

S

RL-Pixels
RL-Symbolic-Flat
RL-Symbolic-Entity
Engine Only

100 101 102 103 104 105

M

100 101 102 103 104 105

L

Number of parallel environments

Figure 8: The number of steps per second (SPS) in Kinetix for a variety of observation spaces.
Symbolic-Entity is what we use in our experiments, while Symbolic-Flat is a flattened (and therefore
not permutation invariant) representation.

C KINETIX : FURTHER DETAILS

C.1 ENVIRONMENT CLASS SIZES

The environment sizes we use are detailed in Table 3. Note that every level in Kinetix contains 4
large fixated polygons (floor, ceiling, left wall, right wall).

Table 3: The size of each environment class.

Entity Small Medium Large

Polygons 5 6 12
Circles 2 3 4
Joints 1 2 6
Thrusters 1 2 2
Thruster Joint 4 4 4
Thruster Bindings 2 2 2

C.2 OBSERVATION SPACES

Kinetix allows for three observation spaces: Symbolic-Entity, Symbolic-Flat and
Pixels. Both the symbolic observations use a common representation for shapes Table 4, joints
Table 6 and thrusters Table 5

For use in Symbolic-Entity, we construct 2 entities per joint: a to and from version of each
joint. Given two shapes, we first set one as the from shape and the second as the to shape to construct
the first feature vector for this joint. The second feature vector is obtained by the same process, just
with from and to swapped. This allows each joint to affect both its attached shapes in the message
passing layer.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 4: Information provided for shapes

Name Dimensions
Position 2
Velocity 2
Inverse Mass 1
Inverse Inertia 1
Density 1
tanh(Angular Velocity/10) 1
OneHot(Role) nroles
sin(Rotation) 1
cos(Rotation) 1
Friction 1
Restitution 1
OneHot(ShapeType) ntypes
Radius (only for circle) 1
Vertices (only for polygons) 8
TriangleOrRectangle (only for polygons) 2

Table 5: Information provided for thrusters

Name Dimensions
Active 1
Relative Position 2
Power 1
sin(Rotation) 1
cos(Rotation) 1

Table 6: Information provided for joints

Name Dimensions
Active 1
IsFixed 1
Relative Position w.r.t. from 2
Relative Position w.r.t. to 2
Motor Power 1
Motor Speed 1
Motor Permanently On 1
OneHot(Joint Colour) ncolours
sin(Rotation) 1
cos(Rotation) 1

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

D RANDOMLY GENERATED LEVELS

We show 24 example random levels for size S (Figure 9), M (Figure 10) and L (Figure 11).

Figure 9: Randomly generated filtered levels from the DR distribution (S).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 10: Randomly generated filtered levels from the DR distribution (M).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 11: Randomly generated filtered levels from the DR distribution (L).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

E HAND-DESIGNED LEVELS LISTING

In this section we provide plots of the handmade levels. Figures 12 to 14 contain the full holdout
sets for each environment size, respectively. We note that a darker colour indicates that a shape is
fixated, i.e., that it cannot move, as it has an infinite mass.

S-Car-One-Wheel S-Spin-Fall S-Thruster-Aim S-Thruster-Over S-Thruster-Point

S-Thruster-Up S-Thruster-Wait S-Unicycle-Balance S-Unicycle-Left S-Unicycle-Right

Figure 12: levels

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

M-Arm-Hard M-Arm-Left M-Arm-Right M-Arm-Up

M-Car-Flip M-Car-Left-Easy M-Car-Right-Easy M-Car-Thrust

M-Catapult M-Contraption-Move M-Flinger M-Thrust-Circle-Over

M-Thrust-Control M-Thruster-Block M-Thruster-Control-Left M-Thruster-Control-Right

M-Thruster-Fall-Left M-Thruster-Fall-Right M-Thruster-Shoot M-Thruster-Top-Left

M-Thruster-Top-Left-Easy M-Thruster-Top-Right M-Thruster-Top-Right-Easy M-Unicycle

Figure 13: M levels

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

L-Beam-Balance L-Car-Left-Easy L-Car-One-Wheel-Left L-Car-Ramp

L-Car-Right-Easy L-Cartpole-Target L-Cartpole-Thrust-Hard L-Cartpole-Wheels-Hard

L-Catapult L-Grasper L-Grasper-Hard L-Lorry

L-Lunar-Lander L-MuJoCo-Half-Cheetah L-MuJoCo-Half-Cheetah-Hard L-MuJoCo-Hopper

L-MuJoCo-Hopper-Hard L-MuJoCo-Swimmer L-MuJoCo-Walker L-MuJoCo-Walker-Hard

L-Pedestal-Fall-Left L-Pinball L-Platformer-1 L-Platformer-2

L-Simple-Path L-Swing-Up L-Thruster-Goal L-Thruster-Large-Obstacles

L-Thruster-Simple L-Thruster-Small-Obstacles-Left L-Thruster-Small-Obstacles-Right L-Unicycle-Goal

Figure 14: L levels

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

F RANDOMLY GENERATED 3-SHAPE MORPHOLOGIES

Figure 15 shows a sample of the randomly-generated morphologies used for the analysis in Sec-
tion 5.1.

Figure 15: Randomly generated 3-shape morphologies.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

G FURTHER NETWORK ARCHITECTURE DETAILS

We use the same actor-critic architecture for each observation space, consisting of five fully con-
nected layers, of width 128, and a tanh activation. However, how the input to this network is
obtained differs for each observation space. Since the environment is fully observable (except in the
case of Pixels), we do not use a recurrent network.

Pixels Inspired by the IMPALA architecture (Espeholt et al., 2018), we use two convolutional layers
to process the 125× 125 observation. The first has 16 channels, a size of 8× 8 and a stride of 4× 4
while the second has 32 channels, a size of 4× 4 and a stride of 2× 2. The result of these layers is
flattened before being passed to the main actor-critic network.

Symbolic-Flat The Symbolic-Flat encoder is simply a feed forward network with width of 512.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

H HYPERPARAMETERS

Table 7 contains a listing of the hyperparameters we use for experimentation.

Table 7: Learning Hyperparameters.

Parameter Value

Env
Frame Skip 2
PPO
γ 0.995
λGAE 0.9
PPO number of steps 256
PPO epochs 8
PPO minibatches per epoch 32
PPO clip range 0.02
PPO # parallel environments 2048
Adam learning rate 5e-5
Anneal LR no
PPO max gradient norm 0.5
PPO value clipping yes
return normalisation no
value loss coefficient 0.5
entropy coefficient 0.01
Model
Fully-connected dimension size 128
Fully-connected layers 5
Transformer layers 2
Transformer Encoder Size 128
Transformer Size 16
Number of heads 8
SFL
Batch Size N 12288
Rollout Length L 512
Update Period T 128
Buffer Size K 1024
Sample Ratio ρ 0.5

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

I SPECIALIST RESULTS

In this section, we investigate the performance of agents directly trained on the holdout levels. We
consider two paradigms here: An agent trained on tabula rasa, and one fine-tuned from a general
agent. The results in this section are a different way to present the findings in Section 6, as well as
including results for S and M. In Figures 16 to 18, we plot the performance of the agents trained for
Figure 5 on each individual holdout level. We note that the fine-tuning base model is one trained on
M for 5B timesteps. For S and M, we opt to only fine-tune for 20M timesteps, to emphasise that a
competent agent can be learned quickly.

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

S-Car-One-Wheel

Tabula Rasa
Fine-Tuned

S-Spin-Fall S-Thruster-Aim S-Thruster-Over S-Thruster-Point

0 100M
0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

S-Thruster-Up

0 100M

S-Thruster-Wait

0 100M

S-Unicycle-Balance

0 100M

S-Unicycle-Left

0 100M

S-Unicycle-Right

Environment Interactions

Figure 16: Specialist Agents on S.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

M-Arm-Hard

Tabula Rasa
Fine-Tuned

M-Arm-Left M-Arm-Right M-Arm-Up

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

M-Car-Flip M-Car-Left-Easy M-Car-Right-Easy M-Car-Thrust

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

M-Catapult M-Contraption-Move M-Flinger M-Thrust-Circle-Over

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

M-Thrust-Control M-Thruster-Block M-Thruster-Control-Left M-Thruster-Control-Right

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

M-Thruster-Fall-Left M-Thruster-Fall-Right M-Thruster-Shoot M-Thruster-Top-Left

0 100M
0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

M-Thruster-Top-Left-Easy

0 100M

M-Thruster-Top-Right

0 100M

M-Thruster-Top-Right-Easy

0 100M

M-Unicycle

Environment Interactions

Figure 17: Specialist Agents on M.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

L-Beam-Balance

Tabula Rasa
Fine-Tuned

L-Car-Left-Easy L-Car-One-Wheel-Left L-Car-Ramp

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

L-Car-Right-Easy L-Cartpole-Target L-Cartpole-Thrust-Hard L-Cartpole-Wheels-Hard

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

L-Catapult L-Grasper L-Grasper-Hard L-Lorry

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

L-Lunar-Lander L-MuJoCo-Half-Cheetah L-MuJoCo-Half-Cheetah-Hard L-MuJoCo-Hopper

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

L-MuJoCo-Hopper-Hard L-MuJoCo-Swimmer L-MuJoCo-Walker L-MuJoCo-Walker-Hard

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

L-Pedestal-Fall-Left L-Pinball L-Platformer-1 L-Platformer-2

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

L-Simple-Path L-Swing-Up L-Thruster-Goal L-Thruster-Large-Obstacles

0 100M
0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

L-Thruster-Simple

0 100M

L-Thruster-Small-Obstacles-Left

0 100M

L-Thruster-Small-Obstacles-Right

0 100M

L-Unicycle-Goal

Environment Interactions

Figure 18: Specialist Agents on L.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

J GENERAL AGENT RESULTS BY HOLDOUT LEVEL

Next, we plot the performance of SFL and DR on individual levels, with results in Figures 19 to 21.
We see that, generally, there is an upwards trend in the performance on most levels, but this is not
monotonic. Additionally, on some levels (e.g. M-Thrust-Control), performance decreases
over training, potentially indicating a bias in the levels trained on.

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

S-Car-One-Wheel

SFL
DR
Random

S-Spin-Fall S-Thruster-Aim S-Thruster-Over S-Thruster-Point

0 1B 2B 3B 4B 5B

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

S-Thruster-Up

0 1B 2B 3B 4B 5B

S-Thruster-Wait

0 1B 2B 3B 4B 5B

S-Unicycle-Balance

0 1B 2B 3B 4B 5B

S-Unicycle-Left

0 1B 2B 3B 4B 5B

S-Unicycle-Right

Environment Interactions

Figure 19: DR vs SFL on the full set of S levels.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

M-Arm-Hard
SFL
DR
Random

M-Arm-Left M-Arm-Right M-Arm-Up

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

M-Car-Flip M-Car-Left-Easy M-Car-Right-Easy M-Car-Thrust

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

M-Catapult M-Contraption-Move M-Flinger M-Thrust-Circle-Over

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

M-Thrust-Control M-Thruster-Block M-Thruster-Control-Left M-Thruster-Control-Right

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

M-Thruster-Fall-Left M-Thruster-Fall-Right M-Thruster-Shoot M-Thruster-Top-Left

0 1B 2B 3B 4B 5B

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

M-Thruster-Top-Left-Easy

0 1B 2B 3B 4B 5B

M-Thruster-Top-Right

0 1B 2B 3B 4B 5B

M-Thruster-Top-Right-Easy

0 1B 2B 3B 4B 5B

M-Unicycle

Environment Interactions

Figure 20: DR vs SFL on the full set of M levels.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

L-Beam-Balance
SFL
DR
Random

L-Car-Left-Easy L-Car-One-Wheel-Left L-Car-Ramp

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

L-Car-Right-Easy L-Cartpole-Target L-Cartpole-Thrust-Hard L-Cartpole-Wheels-Hard

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

L-Catapult L-Grasper L-Grasper-Hard L-Lorry

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

L-Lunar-Lander L-MuJoCo-Half-Cheetah L-MuJoCo-Half-Cheetah-Hard L-MuJoCo-Hopper

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

L-MuJoCo-Hopper-Hard L-MuJoCo-Swimmer L-MuJoCo-Walker L-MuJoCo-Walker-Hard

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

L-Pedestal-Fall-Left L-Pinball L-Platformer-1 L-Platformer-2

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

L-Simple-Path L-Swing-Up L-Thruster-Goal L-Thruster-Large-Obstacles

0 1B 2B 3B 4B 5B
0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
Ra

te

L-Thruster-Simple

0 1B 2B 3B 4B 5B

L-Thruster-Small-Obstacles-Left

0 1B 2B 3B 4B 5B

L-Thruster-Small-Obstacles-Right

0 1B 2B 3B 4B 5B

L-Unicycle-Goal

Environment Interactions

Figure 21: DR vs SFL on the full set of L levels.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

K FURTHER GENERAL AGENT RESULTS

Figure 22 contains the performance of DR and SFL on each environment size. We can see that,
in every case, the agent’s performance increases throughout training, indicating that it is learning a
general policy that it can apply to unseen environments. In all cases, SFL is superior to DR, but the
performance of both methods deteriorates as the environment size increases. Interestingly, DR on
L, which trains on random levels, performs worse than a random policy.

In Figure 23, we plot the performance of the models trained for Figure 3 on the other holdout sets.
Here, we can see that when training on M and L, the agent is still able to zero-shot a number of the
S levels.

Next, in Figure 24, we evaluate on a fixed set of randomly-generated levels of the appropriate
size. This is to evaluate whether the agents are indeed learning useful behaviour on tasks that are
in-distribution. Despite selecting potentially impossible levels, we find that the solve rate steadily
increases over time.

Figures 25 and 26 show the performance of an agent trained on the L distribution for a longer time
than the main results. Performance on random levels steadily increases, and there is also an upward
trend in the solve rate on the holdout sets, indicating that we could expect further improvements by
training this agent for longer.

0 1B 2B 3B 4B 5B

0.25

0.50

0.75

So
lv

e
Ra

te

S

0 1B 2B 3B 4B 5B

M

0 1B 2B 3B 4B 5B

L

Environment Interactions

SFL
DR
Random

Figure 22: Results for DR and SFL for S, M and L, respectively. In each pane, the training levels
are sampled from the DR distribution of the corresponding size, and the y-axis measures the solve
rate on the evaluation set of that same size. SFL outperforms DR, but both methods suffer as the
environment size increases.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

0 1B 2B 3B 4B 5B

0.2

0.4

0.6

0.8

So
lv

e
Ra

te

Train(S)|Eval(S)

0 1B 2B 3B 4B 5B

So
lv

e
Ra

te

Train(S)|Eval(M)

0 1B 2B 3B 4B 5B

So
lv

e
Ra

te

Train(S)|Eval(L)

0 1B 2B 3B 4B 5B

0.2

0.4

0.6

0.8
Train(M)|Eval(S)

0 1B 2B 3B 4B 5B

Train(M)|Eval(M)

0 1B 2B 3B 4B 5B

Train(M)|Eval(L)

0 1B 2B 3B 4B 5B

0.2

0.4

0.6

0.8
Train(L)|Eval(S)

0 1B 2B 3B 4B 5B

Train(L)|Eval(M)

0 1B 2B 3B 4B 5B

Train(L)|Eval(L)

Environment Interactions

SFL
DR
Random

Figure 23: Each row corresponds to the same agents, evaluated on each holdout set.

0 1B 2B 3B 4B 5B

0.2

0.4

So
lv

e
Ra

te

S

0 1B 2B 3B 4B 5B

M

0 1B 2B 3B 4B 5B

L

Environment Interactions

SFL
DR
Random

Figure 24: Performance of the agents trained for Figure 3 on fixed sets of 1000 randomly-generated
levels for each size.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

0 3B 6B 9B 12B
0.250

0.275

0.300

0.325
So

lv
e

Ra
te

S

0 3B 6B 9B 12B

0.15

0.20

M

0 3B 6B 9B 12B

0.10

0.12

0.14

L

Environment Interactions

Figure 25: Performance of a single seed, trained on L, on random levels.

0 3B 6B 9B 12B
0.1

0.2

0.3

0.4

So
lv

e
Ra

te

S

0 3B 6B 9B 12B

0.2

0.3

M

0 3B 6B 9B 12B

0.075

0.100

0.125

L

Environment Interactions

Figure 26: Performance of a single seed, trained on L, on the holdout set of levels.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

L UED RESULTS

In Figure 27, we present results for two popular UED methods, PLR (Jiang et al., 2021b;a) and
ACCEL (Parker-Holder et al., 2022), with the hyperparamters listed in Table 8. These results show
neither method significantly outperformed DR, leading us to focus solely on SFL in the main text.

0 1B 2B

0.2

0.3

So
lv

e
Ra

te

M

0 1B 2B

0.050

0.075

0.100

0.125
L

Environment Interactions

PLR
ACCEL
DR
SFL

Figure 27: Solve rate on (left) M and (right) L evaluation sets for PLR, ACCEL and DR.

Table 8: UED Hyperparameters.

Parameter Value

PLR
Replay rate, p 0.5
Buffer size, K 8000
Scoring function MaxMC
Prioritisation Rank
Temperature, β 1.0
staleness coefficient 0.3
Duplicate check no
ACCEL
Number of Edits 3

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

M ABLATIONS

0 1B 2B 3B 4B 5B
Environment Interactions

0.15

0.20

0.25

0.30

0.35

0.40
So

lv
e

Ra
te

SFL
DR
SFL (No Filter)
SFL (Symbolic-Flat)

Figure 28: The solve rate on M for different ablations. SFL denotes the training regime we used in
the main text.

We perform ablations to investigate which factors played into the success of training the agent
(Figure 28). All of these experiments are on the size M environments. We first consider re-
moving the filtering, and find that there is no large difference in performance for SFL. Secondly,
we run DR instead of SFL: as before, we find that DR performs significantly worse than SFL,
indicating that prioritising levels based on learnability is important. Finally, we consider using
the Symbolic-Flat representation, and find that the performance of this method is signifi-
cantly worse than Symbolic-Entity, likely due to the large number of symmetries inher-
ent in the environment. Despite this, SFL with Symbolic-Flat does outperform DR with
Symbolic-Entity.

N LEARNABILITY OVER TRAINING

In Figure 29, we plot the learnability of the training levels, and the larger set of random levels these
are sampled from. Overall, we find that random levels tend to have a low learnability, whereas the
top 1024 levels consistently has high learnability throughout training.

0 1B 2B 3B 4B 5B

0.25

0.50

0.75

1.00

So
lv

e
Le

ar
na

bi
lit

y

S

Training Levels
Random Levels

0 1B 2B 3B 4B 5B

M

0 1B 2B 3B 4B 5B

L

Environment Interactions

Figure 29: The learnability (scaled to between 0 and 1) over training for each of the environment
sizes. We compute learnability for 12288 randomly-generated levels (shown in orange), and select
the top 1024 of these (the learnability of this top subset is shown in blue).

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

O ALTERNATE OBSERVATION AND ACTION SPACES

In Figure 30, we consider a multi-task setting, where we train agents on the holdout tasks
with each combination of MultiDiscrete/Continuous action space and Pixels/Symbolic-Entity
observation space. We find that MultiDiscrete actions outperform Continuous actions, and
that Entity slightly outperforms Pixels (in addition to being significantly faster to run). This
experiment validates our decision to use Entity observations and MultiDiscrete actions for
our main experiments.

0 100M 200M

0.4

0.5

0.6

0.7

So
lv

e
Ra

te

Entity-MultiDiscrete
Entity-Continuous
Pixels-MultiDiscrete
Pixels-Continuous

Figure 30: We compare the different observation and action spaces on a multi-task setting. Here we
trained agents on all 66 holdout tasks, and show aggregate performance on this set of tasks. We plot
mean and standard deviation over five seeds.

P CROSS-EMBODIMENT LEARNING

In Figure 31, we consider cross-embodiment learning, where we train a single agent to control
all 7 of the Mujoco recreations. We compare this against agents trained individually for each
task. For fairness, we allocate more samples to the single agent (500M vs 100M). We find that
the single agent is able to competently control all morphologies, although it is less sample
efficient when considering only a single task. On some tasks (e.g. MuJoCo-Walker) we see
improved learning from co-training with other morphologies.

0 250M 500M
0.00

0.25

0.50

0.75

1.00

So
lv

e
Ra

te

MuJoCo-Half-Cheetah-Hard

Individual
Combined

0 250M 500M

MuJoCo-Half-Cheetah

0 250M 500M

MuJoCo-Hopper-Hard

0 250M 500M

MuJoCo-Hopper

0 250M 500M

MuJoCo-Swimmer

0 250M 500M

MuJoCo-Walker-Hard

0 250M 500M

MuJoCo-Walker

Environment Interactions

Figure 31: Comparing the performance of agents individually trained against one jointly trained on
the recreations of Mujoco tasks. Combined indicates the agent trained jointly, and all plots show
mean and shade standard deviation over 5 seeds. We note that the x-axis measures the total number
of timesteps, i.e., for the Combined line, this includes all morphologies.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Q LIFELONG LEARNING

In Figure 32, we plot a single training run where we first train an agent on random levels
from the S distribution for 5B timesteps. We then change this and train the agent on random
M levels for 1B timesteps and finally train it again on random S levels for 1B timesteps.
We plot the performance of the agent on the heldout set of levels for both the S and M size
separately. As expected, training on S initially slightly improves performance on the M set
of holdout levels. Then, training for 1B timesteps on M improves performance by a larger
margin. Going back to training on random S levels reduces the performance on the M holdout
set. This indicates a level of forgetting or plasticity loss in the agent.

0 1B 2B 3B 4B 5B 6B 7B
0.0

0.5

1.0 S M S
M

Environment Interactions
Figure 32: A single run’s training, where we first train the agent on S for 5B timesteps, then transition
to M for 1B and finally train on S again for 1B. We plot the aggregate evaluation performance on the
S set of holdout levels on the left and the M holdout levels on the right.

49

	Introduction
	Background
	Reinforcement Learning
	Unsupervised Environment Design
	RL in JAX
	Transformers and Permutation Invariant Representations

	Kinetix
	Jax2D
	Kinetix: RL Environment Specification
	Kinetix: A Benchmark for Investigating Open-Endedness

	Experimental Setup
	Architecture

	Zero-Shot Results
	Analysis: Zero-shot Locomotion of an Arbitrary Morphology

	Fine-Tuning Results
	Analysis: General Pretraining can beat Training on the Target Task

	Related Work
	Discussion and Future Work
	Conclusion
	Jax2D
	Core Engine
	Impulse Resolution and Constraint Solving
	Collisions
	Collision Manifolds
	Circle-Circle Collision Manifolds
	Polygon-Circle Collision Manifolds
	Polygon-Polygon Collision Manifolds
	Collision Resolution
	Friction in Collisions
	Positional and Velocity Corrections

	Joints
	Revolute Joints
	Fixed Joints
	Joint Limits

	Motors
	Thrusters
	Impulse Accumulation and Warm Starting
	Parallelised Computation and Batched Impulse Resolution

	Jax2D Speed Results
	Kinetix: Further Details
	Environment Class Sizes
	Observation Spaces

	Randomly Generated Levels
	Hand-Designed Levels Listing
	Randomly Generated 3-Shape Morphologies
	Further Network Architecture Details
	Hyperparameters
	Specialist Results
	General Agent Results by Holdout Level
	Further General Agent Results
	UED Results
	Ablations
	Learnability Over Training
	Alternate Observation and Action Spaces
	Cross-Embodiment Learning
	Lifelong Learning

