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Abstract001

Extracting structured tables from chart images002
is a challenging task that underpins numer-003
ous downstream document analysis applica-004
tions. While previous studies have demon-005
strated that multimodal large language models006
(MLLMs) and vision-language models (VLMs)007
can convert charts into tables, these models fre-008
quently fail to adhere to strict formatting stan-009
dards, omit fine-grained labels, or introduce010
numerical inaccuracies. In this work, we intro-011
duce ChartAgent, a plug-and-play, agent-based012
framework that augments any off-the-shelf013
VLM through a two-stage agentic pipeline. In014
the first stage, a chart-to-table pretrained VLM015
generates an initial table directly from the chart016
image. In the second stage, a ReAct LLM-017
based agent iteratively corrects the generated018
table by cross-verifying visual regions and tex-019
tual entries. This agent can optionally utilize a020
novel zooming tool designed for detailed and021
precise inspection of complex, densely packed022
chart areas. To evaluate the effectiveness of023
ChartAgent, we benchmarked its performance024
on the ChartQA dataset against state-of-the-art025
methods. Our experiments demonstrate consis-026
tent improvements over both VLM-only and027
single-pass correction baselines across struc-028
tural and numerical metrics. The modular de-029
sign of ChartAgent enables seamless integra-030
tion with any VLM without requiring additional031
fine-tuning. This approach significantly en-032
hances header alignment, numerical fidelity,033
and overall table quality, providing a robust034
and efficient solution for accurate chart-to-table035
extraction.036

1 Introduction037

Charts are everywhere from scientific papers and038

technical reports to financial statements and busi-039

ness presentations and play a key role in sharing040

numbers and trends (Huang et al., 2024).041

These graphical tools transform raw datasets into042

intuitive visual patterns, making complex infor-043

Figure 1: AgentChart performance on various VLM
and compared to VLM + MLLM models for the chart-
to-table extraction on RMS–F1 metric, showing that
AgentChart achieves the highest score.

mation immediately accessible and serving as the 044

foundation for effective communication, strategic 045

decision-making, and scholarly inquiry. 046

Yet the data inside these charts often stays 047

trapped as an image, making it hard to run 048

analyses, write automated reports, or answer 049

questions. Automated extraction of chart images 050

into structured tables is essential for quantitative 051

information embedded in charts. Such chart-to- 052

table extraction enables tasks like data analysis, 053

report generation, and question answering over 054

document collections. Although recent multimodal 055

models can interpret a wide range of chart types, 056

but One-shot generation often presents various 057

shortcomings, such as adhering to precise table 058

schemas and can misread small labels or crowded 059

legends. These limitations hinder reliable data 060

extraction in real-world settings. 061

VLMs (Masry et al., 2023), (Liu et al., 2022), 062

(Zhang et al., 2024a)(Meng et al., 2024) have 063

achieved strong performance on standard bench- 064

marks by converting chart visuals into linearized 065
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table representations. However, their one-shot066

output may contain swapped headers, merged067

cells, or incorrect numerical values when faced068

with diverse chart designs and They often make069

mistakes when addressing numerical calculation070

questions (Meng et al., 2024), which require071

reasoning steps for accurate answers. Single-pass072

correction with a general large language model can073

fix some errors but lacks the granularity needed074

to address fine-grained mistakes under strict075

formatting constraints.076

077

To overcome these challenges, we propose078

ChartAgent, A modular pipeline that integrates an079

agentic correction stage with any existing chart-to-080

table VLM. In the first stage, the VLM produces081

an initial table from the chart image. In the second082

stage, a ReAct LLM-based Agent (Yao et al., 2023)083

iteratively refines both structure and content: it de-084

tects missing rows, swapped headers, and misread085

values through visual-textual cross-checking, and086

applies corrective edits. One major contribution of087

our work is our Zoom tool facilitates this process088

by partitioning the chart into overlapping quadrants089

for high-resolution inspection of complex areas090

or areas with high uncertainty. By combining091

an initial draft extraction with iterative focused092

correction, ChartAgent substantially reduces resid-093

ual errors without retraining the underlying models.094

095

We performed extensive evaluation on the096

ChartQA (Masry et al., 2022) dataset, showing that097

it outperforms the VLM-only and VLM + MLLM098

baselines in three complementary metrics: relative099

number set similarity (RNSS) proposed by (Masry100

et al., 2022) based on the graphIE metric proposed101

in (Luo et al., 2021), Relative Mapping Similarity102

(RMS-F1) proposed by (Liu et al., 2022), and Rel-103

ative Distance (RD-F1) proposed by (Kim et al.,104

2024). An ablation study confirms the importance105

of the agentic workflow and selective zooming, and106

qualitative examples highlight the system’s abil-107

ity to recover missing labels and split merged seg-108

ments. ChartAgent thus offers a robust and extensi-109

ble solution for accurate chart-to-table extraction110

in diverse applications and our main contributions111

are :112

1. We introduce AgentChart, a modular agent-113

based correction pipeline that augments exist-114

ing vision-language models for chart-to-table115

extraction without retraining.116

2. We propose a Zoom Tool that enables fine- 117

grained visual inspection of crowded chart re- 118

gions, significantly improving label and value 119

recovery. 120

3. We validate AgentChart on the ChartQA 121

benchmark, achieving state-of-the-art perfor- 122

mance across three complementary metrics, 123

and demonstrate the effectiveness of agentic 124

correction via ablation and qualitative studies. 125

2 RELATED WORK 126

2.1 General Purpose LLM 127

Multimodal large language models (MLLMs) have 128

demonstrated promising results in initial evalua- 129

tions on chart-to-table tasks. These models either 130

closed or open source can interpret chart images 131

and convert them into structured tabular data with- 132

out the need for task specific fine tuning. Examples 133

of closed sources includes Claude sonnet or Gem- 134

ini and open source like InternLM-XComposer 135

(Zhang et al., 2024b) and LLAMA (Touvron et al., 136

2023) that achieved promising scores on chart re- 137

lated tasks. While these MLLMs provide a scalable 138

and flexible alternative to dedicated chart models, 139

allowing broad application across diverse docu- 140

ment types and reducing the need for extensive 141

fine-tuning on charts However, these models often 142

struggle with chart-to-table tasks that require strict 143

formatting constraints. Despite strong general capa- 144

bilities, they may not reliably follow precise table 145

schemas specified via prompt and not always give 146

precise numerical values. 147

2.2 Multimodal chart understanding models 148

Vision- large language models (VLM) (Du et al., 149

2022) are widely used for chart-related tasks 150

and, more specifically, for chart-to-table extrac- 151

tion. UniChart (Masry et al., 2023) is pretrained 152

on a large corpus of charts covering diverse top- 153

ics and visual styles, leveraging a Donut (Kim 154

et al., 2022) based vision encoder and a chart- 155

grounded text decoder to optimize low-level el- 156

ement extraction and high-level reasoning tasks 157

before fine-tuning on chart-to-table parsing, which 158

yields state-of-the-art performance on multiple ex- 159

traction benchmarks; however, its reliance on a 160

chart-specific pretraining corpus may limit robust- 161

ness to novel chart formats beyond those seen dur- 162

ing pretraining. DePlot (Liu et al., 2022) employs a 163

Pix2Struct (Lee et al., 2023) derived image-to-text 164

Transformer trained end-to-end on a standardized 165
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plot-to-table task, converting chart images into166

linearized markdown tables that can be directly167

prompted to an MLLM, though it has a limited168

performance on highly stylized or unconvention-169

ally formatted charts outside its training distribu-170

tion. ChartAssistant (Meng et al., 2024) intro-171

duces a two-stage training pipeline via ChartSFT’s172

chart-text pairs first pretraining on chart-to-table173

translation to align visual elements with struc-174

tured text, then multitask instruction tuning across175

QA, summarization, and reasoning offering two176

variants (260 M-parameter Donut-based and 13177

B-parameter SPHINX-based (Lin et al., 2023)) that178

outperform UniChart and ChartLlama (Han et al.,179

2023) under zero-shot real-world settings; nonethe-180

less, the 13 B-parameter variant’s inference de-181

mands and potential missing on chart types absent182

from ChartSFT present deployment and generaliza-183

tion challenges. Finally, TinyChart (Zhang et al.,184

2024a) distills efficient chart-to-table capabilities185

into a 3 B-parameter MLLM by integrating Vi-186

sual Token Merging to compress high-resolution in-187

puts and a Program-of-Thoughts learning strategy188

to generate executable Python code for numerical189

calculations, achieving state-of-the-art results on190

ChartQA (Masry et al., 2022), Chart-to-Text, and191

Chart-to-Table benchmarks with two time faster192

inference; however, its PoT synthesis step may193

introduce additional latency and it may struggle194

to strictly adhere to complex table schemas when195

such constraints are prescribed in prompts. While196

these approaches contribute valuable insights into197

chart-to-table extraction, persistent challenges such198

as adhering to strict table formatting, managing199

variability in chart layouts, highlight the need for200

further methodological refinements in chart-related201

vision-language modeling.202

2.3 Agentic Workflows in chart related tasks203

Agentic workflows and AI agents have led to sub-204

stantial gains in the autonomy and adaptability of205

MLLM systems, enabling them to perceive, rea-206

son, and act within complex environments. These207

agents facilitate the development of AI systems208

capable of dynamic decision-making and task209

execution, thereby enhancing the efficiency and210

scalability of LLM-powered systems. In chart-211

related tasks, existing implementations have pre-212

dominantly focused on auxiliary functions, such213

as identifying chart regions or converting data into214

visual formats. For instance, ChartCitor (Goswami215

et al., 2025) employs a multi-agent framework to216

provide fine-grained visual attributions in chart 217

question-answering scenarios, enhancing the ex- 218

plainability of AI-generated responses. Similarly, 219

METAL (Li et al., 2025) utilizes a multi-agent ap- 220

proach for chart generation, decomposing the task 221

into specialized agents that collaboratively produce 222

high-quality charts. Despite these advancements, 223

the deployment of agentic frameworks in chart- 224

to-table extraction tasks remains underexplored. 225

This process involves extracting structured tabu- 226

lar data from complex chart images, a task that 227

poses significant challenges due to the variability 228

in chart designs and the intricacies of visual en- 229

coding. Our approach introduces a plug-and-play 230

agentic framework that actively intervenes in the 231

chart-to-table pipeline. By deploying specialized 232

agents to identify and correct errors made by chart- 233

to-table-specific VLMs, we enhance the accuracy 234

and reliability of the extracted tabular data. This 235

agentic intervention enables dynamic error detec- 236

tion and correction, allowing the system to adapt 237

to diverse chart formats and reduce the propaga- 238

tion of inaccuracies in downstream tasks. Such 239

an approach not only improves the fidelity of data 240

extraction but also contributes to the development 241

of more robust chart understanding AI systems. 242

3 Methodology 243

3.1 ChartAgent Architecture 244

Figure 2 illustrates the summary of our proposed 245

ChartAgent as a plug-and-play pipeline that en- 246

hances any chart-to-table VLM, such as TinyChart 247

(Zhang et al., 2024a) or UniChart (Masry et al., 248

2023), by layering a correction LLM agent on top 249

of its output. The core workflow unfolds in two 250

stages. 251

Stage 1, A pretrained chart-to-table VLM takes 252

the chart image and output an initial structured 253

table. these models are good at reading overall 254

layouts and most numbers and labels, but they can 255

sometimes miss small text or give some numerical 256

errors when charts are crowded. 257

Stage 2, An LLM-based ReAct agent is invoked 258

that both reasons about and acts upon the VLM’s 259

preliminary table. The agent takes as input the orig- 260

inal chart image plus the raw table, then iterate in 261

order to : (i) refines its structure by detecting miss- 262

ing rows, swapped headers, or unintended merged 263

cells through visual and textual cross-checking us- 264

ing the zoom tool; (ii) verifies content by targeting 265

specific chart regions to correct missing or misread 266
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Figure 2: Overview of ChartAgent. The chart image is provided to the VLM, which outputs an initial table. This
table, along with the chart, the ReAct prompt, and the instruction prompt, are given as inputs to the agent. The agent
then iteratively refines the table, optionally using the zoom tool and accessing the message history, until it either
reaches a final output table that it considers correct or hits the iteration limit.

numerical/textual entries by using the zoom tool;267

and (iii) applies edits on the input table by correct-268

ing the textual, numerical values or adding missing269

information if needed. By combining extraction270

with focused correction, ChartAgent overcomes271

residual errors and leverages the strengths of both272

systems without retraining large models.

Algorithm 1 ChartAgent Algorithm

Require: Image I , Prompt P , VLM, MLLM,
Zoom_Tool T

1: T0 ← VLM.generate_table(I)
2: A0 ← MLLM.answer(P, T0)
3: history← [(P,A0)]
4: for k = 1 to MaxSteps do
5: Ek ← MLLM.answer(history)
6: history.append(Ek)
7: if Ek == Correct then
8: return Final Answer Tk−1

9: else if Ek == Zoom then
10: crop← T .execute(I)
11: history.append(crop)
12: continue {Next iteration with refined

view}
13: end if
14: end for
15: Tk ← MLLM.answer(history)
16: return Final Answer Tk

273

3.2 Zoom Tool274

The zoom tool is a tool that we developed to enable275

fine-grained inspection as shown in the Figure 3,276

which transform the chart to a higher resolution by 277

uniformly upscale it by a factor using Lanczos inter- 278

polation and partitions it into four quadrants labeled 279

(upper left, upper right, lower left, and lower right) 280

for selective access. When the agent encounters 281

crowded tick labels or dense legends, it requests 282

the appropriate quadrant rather than processing the 283

entire image, thereby isolating the appropriate re- 284

gion of interest. This targeted zooming leverages 285

the same logic as Multimodal CoT Prompting. By 286

iterating between selective zoom and table refine- 287

ment, ChartAgent ensure that even the smallest 288

chart details are correctly transcribed. Our results 289

show that this tool significantly helps in improving 290

performance by enabling targeted and fine-grained 291

inspection, thus ensuring accurate transcription of 292

even the smallest chart details. 293

4 Experimentation and Results 294

4.1 Implementation Details 295

Our AgentChart system is implemented as a two- 296

stage, plug-and-play pipeline. In the first stage, 297

a vision-language model (VLM) performs initial 298

chart-to-table extraction. In the second stage, a 299

ReAct-based agent powered by a large language 300

model (LLM) iteratively refines the output table 301

through structured reasoning and visual-textual 302

cross-verification. 303

Stage 1: Chart-to-Table Extraction. We evalu- 304

ated three state-of-the-art VLMs DePlot (Liu 305

et al., 2022), UniChart (Masry et al., 2023), 306

and TinyChart (Zhang et al., 2024a) to gen- 307
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Figure 3: Overview of the Zoom Tool.The LLM agent select the zoom tool and provide as an argument in the tool
call which quadrant is needed.

erate initial tables from chart images. Each308

model was used without any modifications to309

its published configuration.310

Stage 2: Agentic Refinement. For the correction311

phase, we built ReAct-style agents using An-312

thropic Claude Sonnet 3.5 MLLM. this agent313

iteratively inspect and edit the initial tables by314

reasoning over both the raw chart image and315

the extracted table.316

Zoom Tool : To support fine-grained inspection of317

densely populated or ambiguous chart regions,318

we developed a custom Zoom Tool. This319

lightweight image-processing module dynam-320

ically crops the chart into four labeled quad-321

rants (upper-left, upper-right, lower-left, and322

lower-right), allowing the agent to selectively323

inspect specific areas without reprocessing the324

full image.325

4.2 Baselines Methods326

ChartAgent’s performance was evaluated against327

two baseline approaches under consistent experi-328

mental settings:329

1. VLM-Only: The chart-to-table models De-330

Plot, UniChart, and TinyChart were run inde-331

pendently, producing raw tables without any332

additional correction or refinement.333

2. Single-Pass MLLM Correction: A general-334

purpose large language model was applied335

once to post-process the VLM output, without336

iterative reasoning or visual cross-checking.337

3. ChartAgent (Ours): Our full pipeline aug- 338

ments the VLM output using a multi-step, 339

agent-driven correction stage that incorporates 340

structured reasoning and targeted visual in- 341

spection via the Zoom Tool. 342

4.3 Benchmark Dataset 343

All evaluations were conducted using the ChartQA 344

dataset (Masry et al., 2022), a widely adopted 345

benchmark for chart-to-table extraction. It includes 346

a diverse collection of real-world bar, line, and 347

pie charts, each paired with a ground-truth table 348

in markdown format. ChartQA is known for its 349

visual diversity and annotation quality, making it a 350

robust and challenging testbed. To ensure fair and 351

reproducible comparisons, all results are reported 352

on the held-out test split of the dataset, following 353

standard practice in prior work. 354

Following prior chart-to-table works, we evalu- 355

ate extracted tables using three scores that capture 356

different aspects of the generated table quality . 357

4.4 Evaluation Metrics 358

Relative Number Set Similarity (RNSS) 359

RNSS measures how well the unordered multiset 360

of numeric entries in the predicted table matches 361

the ground truth. Let 362

P = { pi}Ni=1, T = { tj}Mj=1 363

be the sets of predicted and true values. First define 364

the relative distance 365

D(p, t) = min
(
1,
|p− t|
|t|

)
. (1) 366
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Method #Parameters RMS–F1 RNSS RD–F1

UniChart 260M 91.01 94 88
Deplot 1.3B 87.22 95.57 90.91
TinyChart@768 3B 93.78 96.88 91.1
SimPlot 374M - - 92.32
Claude Sonnet 3.5 - 90.13 96.67 92.02
TinyChart+ChartAgent (ours) 3B 94.05 97.95 94.3

Table 1: Quantitative results on the ChartQA test set across various chart types, evaluated using RD–F1, RMS–F1,
and RNSS metrics for chart-to-table extraction. SimPlot results are directly taken from their original paper and
report only RD–F1.

We then compute an optimal one-to-one matching367

X ∈ {0, 1}N×M between P and T . RNSS is given368

by369

RNSS = 1 −

N∑
i=1

M∑
j=1

Xij D(pi, tj)

max(N,M)
, (2)370

which ranges from 0 (no overlap) to 1 (perfect371

match).372

Relative Mapping Similarity (RMS)373

RMS accounts for both structure and content by374

comparing full table entries as triples (r, c, v). Let375

pi = (pri , p
c
i , p

v
i ) and tj = (trj , t

c
j , t

v
j ) denote the376

row key, column key, and value. We define377

NLτ (a, b) = normalized Levenshtein distance,378

and the relative distance as379

Dθ(vp, vt) = min
(
1,
|vp − vt|
|vt|

)
.380

Then the similarity between entries Dτ,θ(pi, tj) is381 (
1−NLτ (p

r
i ∥pci , trj∥tcj)

) (
1−Dθ(p

v
i , t

v
j )
)
.382

Using the same matching X , we compute precision383

and recall:384

385

RMSprecision = 1 −

N∑
i=1

M∑
j=1

Xij Dτ,θ(pi, tj)

N
,

(3)

386

RMSrecall = 1 −

N∑
i=1

M∑
j=1

Xij Dτ,θ(pi, tj)

M
.

(4)

387

and report the harmonic mean of the precision388

and recall as RMS-F1 .389

Relative Deviation (RD) 390

RD focuses exclusively on numeric fidelity under 391

the established matching X and it is proposed by 392

(Kim et al., 2024). to take into considration the 393

equivalent textual data Using Dθ as above, we 394

define: 395

396

RDprecision = 1 −

N∑
i=1

M∑
j=1

Xij Dθ(p
v
i , t

v
j )

N
,

(5)

397

RDrecall = 1 −

N∑
i=1

M∑
j=1

Xij Dθ(p
v
i , t

v
j )

M
.

(6)

398

and combine them via harmonic mean to obtain 399

RD-F1 . 400

These three metrics RNSS, RMS-F1, and RD-F1 401

and together provide a thorough, quantitative eval- 402

uation of numeric set overlap, full table structure, 403

and raw value accuracy. RNSS measure the overall 404

numeric overlap regardless of position but ignores 405

row/column alignments; RMS-F1 jointly evaluates 406

structural correspondence and value correctness 407

yet may be sensitive to minor string mismatches in 408

row/column keys; RD-F1 isolates pure numerical 409

fidelity but does not account for textual alignment 410

in the table. By employing all three, we capture 411

complementary aspects matching, structural align- 412

ment, and raw deviation to ensure a comprehensive 413

assessment of chart-to-table extraction quality. 414

4.5 Main Results 415

Table 1 reports the quantitative performance of all 416

methods on the ChartQA test set, measured with 417

three key metrics: RNSS, RMS–F1, and RD–F1. 418

Our ChartAgent pipeline consistently outperforms 419
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Year Gabon São Tomé Dominica

1989 14.32 2.38 0.28
1992 4.42 - -
1994 4.42 1.78 14.04
1996 4.62 2.08 14.04
1998 4.25 2.58 14.42
2000 4.32 2.58 16.62
2002 4.72 3.38 7.25
2004 4.42 1.38 6.5
2007 4.42 0.78 0.28

Unichart output (with errors in red)

Year Gabon São Tomé Dominica

1989 14.0 2.0 0.0
1992 10.5 3.0 3.2
1994 14.0 4.0 1.5
1996 14.0 4.0 1.5
1998 14.0 4.0 1.5
2000 16.0 4.5 2.0
2002 8.5 5.0 3.0
2004 7.0 4.0 1.2
2007 4.0 0.5 0.2

Agent-corrected using ChartAgent

Quarter Revenue (US$ bn)

. . . . . .
Q11 11.2
Q1 ’12 9.7
Q4 ’11 10.4
Q3 ’11 10.7
Q2 ’11 9.0
Q11 10.8
Q4 ’10 9.8
Q3 ’10 10.0
Q2 ’10 8.6

Unichart output (with errors in red)

Quarter Revenue (US$ bn)

. . . . . .
Q2 ’12 11.2
Q1 ’12 9.7
Q4 ’11 10.4
Q3 ’11 10.7
Q2 ’11 9.0
Q1 ’11 10.8
Q4 ’10 9.8
Q3 ’10 10.0
Q2 ’10 8.6

Agent-corrected using ChartAgent

Comfort level Share of respondents

Uncomfortable 38%
Moderately comfortable 24%
Comfortable 29%
Missing row: Don’t know | 9%

Unichart output (with errors in red)

Comfort level Share of respondents

Uncomfortable 38%
Moderately comfortable 24%
Comfortable 29%
Don’t know 9%

Agent-corrected using ChartAgent

Year Dissatisfied Satisfied

2002 0 20
2004 0 26
2006 0 36
2008 0 54
2010 59 0
2012 0 46
2014 36 56
2016 0 58
2018 40 0

Tinychart output (with errors in red)

Year Dissatisfied Satisfied

2002 71 20
2004 64 27
2006 69 26
2008 56 32
2010 59 34
2012 60 45
2014 36 57
2016 37 58
2018 40 57

Agent-corrected using ChartAgent

Year Control gun ownership Protect the right of Americans to own guns

1993 0 0
1999 0 0
2003 0 0
2008 58 0
2011 50 49

Tinychart output (with errors in red)

Year Control gun ownership Protect the right of Americans to own guns

1993 57 34
1999 65 30
2003 54 42
2008 58 37
2011 50 46

Agent-corrected using ChartAgent

Entity Not at all likely Not very likely Somewhat likely Very likely NET likely

Dem/Lean Dem nan 27 42 20.0 62
Rep/Lean Rep nan 9 32 nan 85
Total 819.0 19 37 35.0 72

Tinychart output (with errors in red)

Entity Not at all likely Not very likely Somewhat likely Very likely NET likely

Dem/Lean Dem 9 27 42 20 62
Rep/Lean Rep 4 9 32 54 85
Total 7 19 37 35 72

Agent-corrected using ChartAgent

Figure 4: Examples of chart-to-table extraction and correction using AgentChart on Tinychart@768 (Zhang et al.,
2024a) and Unichart (Masry et al., 2023)

both the standalone VLMs and the single-pass420

VLM+MLLM setup. It also outperforms single421

MLLM highlighting the effectiveness of the agen-422

tic correction stage in enhancing chart-to-table ex-423

traction accuracy.424

ChartAgent achieves the highest performance425

across all three evaluation metrics RNSS, RMS–F1,426

and RD–F1, demonstrating superior structural427

alignment and numerical fidelity compared to both428

VLM-only and VLM+MLLM baselines. Notably, 429

the agentic correction stage contributes signifi- 430

cantly to improvements in header matching (as re- 431

flected in RNSS) and raw value accuracy (captured 432

by RD–F1). 433

4.5.1 Ablation Study 434

To isolate the contributions of each component, we 435

conducted ablations by first removing the Zoom 436
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Method RMS-F1 RNSS
Unichart 91.01 94
Unichart + (Claude) 90.05 95.2
Unichart + Agent (Claude) 91.21 96
Deplot 87.22 95.57
Deplot + (Claude) 90.1 97.1
Deplot + Agent (Claude) 90.54 97.4
Tinychart 93.78 96.88
Tinychart + (Claude) 93.1 96.91
Tinychart + Agent (Claude) 94.05 97.95

Table 2: Ablation study. We tested the MLLM based
and agent based correction on different VLMs.

Tool by using only chart to table model and MLLM437

and Using diffrant MLLM for the Agent. As we438

can see in the table 2 Skipping the agentic stage re-439

duces all three metrics substantially, underscoring440

the value of iterative, tool-enabled corrections.441

4.5.2 Qualitative Analysis442

Figure 4 presents representative examples where443

ChartAgent corrects errors made by the base VLM.444

In a dense bar chart, the agent identifies and re-445

stores missing small-value labels; in a pie chart446

with merged slices, it accurately splits and relabels447

adjacent segments. These case studies illustrate448

how targeted zooming and structured reasoning449

combine to enhance table extraction.450

5 Conclusion451

In this work, we presented ChartAgent, a flexible,452

plug-and-play framework that layers an agentic453

correction stage on top of existing chart-to-table454

vision-language models. By combining a strong455

initial extractor (e.g., TinyChart or UniChart) with456

a React LLM-based agent that iteratively refines457

both structure and content and by introducing a458

Zoom Tool for high-resolution inspection ChartA-459

gent achieves significant gains on the ChartQA460

benchmark. Our experiments that have been con-461

ducted on different VLMs and metrics demonstrate462

consistent improvements in header alignment, nu-463

merical fidelity, and overall table quality compared464

to VLM-only and single-pass correction baselines.465

Importantly, these gains are obtained without any466

retraining of large models, making ChartAgent an467

efficient and extensible solution for accurate chart-468

to-table extraction.469

6 Limitations 470

Despite its strengths, AgentChart has some lim- 471

itations. First, the iterative nature of the ReAct 472

LLM-based agent, combined with the Zoom Tool 473

and the two-stage pipeline, introduces additional 474

processing steps that may increase computational 475

cost and latency. This can be a limitation for real- 476

time applications. However, it does not negatively 477

impact offline scenarios such as the ingestion stage 478

in retrieval-augmented generation (RAG), where 479

the system still benefits from iterative refinement. 480

Besides, we also observed that the performance of 481

ChartAgent can be influenced by the initial table 482

extraction from the vision-language model (VLM). 483

In cases where the VLM output suffers from severe 484

misreads or layout issues, the refinement process 485

may be less effective. In future work, we aim to 486

reduce this dependence and enhance the robustness 487

of the iterative correction process. 488

Finally, our method shows strong potential for the 489

chart-to-table extraction task, which is the primary 490

focus of this study. Nevertheless, we believe the ap- 491

proach can be extended to other chart-related tasks 492

such as chart question answering, chart-to-text gen- 493

eration, and open-ended chart understanding. 494
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