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Abstract

We consider random instances of non-convex perceptron problems in the high-
dimensional limit of a large number of examples M and weights N, with finite
load o = M /N. We develop a formalism based on replica theory to predict the
fundamental limits of efficiently sampling the solution space using generative diffu-
sion algorithms, conjectured to be saturated when the score function is provided by
Approximate Message Passing. For the spherical perceptron with negative margin
k, we find that the uniform distribution over solutions can be efficiently sampled
in most of the Replica Symmetric region of the a—« plane. In contrast, for binary
weights, sampling from the uniform distribution remains intractable. A theoretical
analysis of this obstruction leads us to identify a potential U (s) = —log(s), under
which the corresponding tilted distribution becomes efficiently samplable via diffu-
sion. Moreover, we show numerically that an annealing procedure over the shape
of this potential yields a fast and robust Markov Chain Monte Carlo algorithm for
sampling the solution space of the binary perceptron.

1 Introduction

A fundamental challenge in modern machine learning is the ability to efficiently sample from complex
probability distributions. This problem is central to many areas, from generative modeling, where
methods such as variational autoencoders and autoregressive transformers aim to approximate real-
world data distributions, to Bayesian inference, where the goal is to explore posterior distributions
over model parameters.

Diffusion models [Sohl-Dickstein et al., 2015, Ho et al., 2020] have recently emerged as a prominent
class of generative models, capable of capturing very complex distributions across various domains,
with high sample efficiency. These models simulate a stochastic diffusion process in reverse, starting
from a simple distribution and arriving at a complex target distribution p(w) via a stochastic
differential equation, a process called denoising (the corresponding noising process being the forward
diffusion process). All dependence on p(w) is encoded in a drift term determined by a time-dependent
score function. In many applications, p(w) is not explicitly known, but samples from it are available.
A neural approximation to the score function driving the generative process is then learned using the
denoising score matching objective [Vincent, 2011].
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Here instead we consider settings in which the target probability density is known, but only up to an
intractable normalization factor:
P(w)

— ey

This formulation is ubiquitous in probabilistic modeling, encompassing energy-based models and
posterior inference in Bayesian statistics [LeCun et al., 2007, Neal, 2011]. It arises whenever
probabilities are defined through unnormalized potentials, such as in Bayesian inference where
the posterior is proportional to the product of likelihood and prior, as well as in physical systems,
graphical models, and deep energy-based representations. Typical sampling algorithms in this setting
belong to the Markov Chain Monte Carlo (MCMC) family Brooks et al. [2011]. These can suffer
from slow mixing times, and their theoretical analysis is generally challenging. In contrast, for
generative diffusion, the continuous stochastic process can be well approximated by a small number
of discrete steps, and the Bayesian structure induced by the noising/denoising process facilitates
theoretical analysis. Recent efforts have explored hybrid approaches combining generative diffusion
with MCMC methods [Grenioux et al., 2024, Noble et al., 2025, Vargas et al., 2023, 2025].

A fundamental question is whether the score function can be computed (at all times ¢) by a polynomial-
time algorithm with access to the unnormalized density 1 (w ), enabling efficient sampling from p(w)
via generative diffusion. An answer to this question would, in turn, naturally bound the performance
attainable in settings where only samples from the target distribution are available. Moreover, as we
will show, an analysis capable of providing insights into the failure modes of generative diffusion can
also suggest modifications and inform algorithmic design, even beyond the original scope.

p(w) =

In this work, we develop a theoretical framework to address this problem precisely in the high-
dimensional limit, considering random instances of the distribution p itself (i.e., assuming quenched
disorder, in statistical physics terminology). Our framework relies on the non-rigorous but extensively
validated replica method from spin glass theory [Mézard et al., 1987, Charbonneau et al., 2023].
The sampling algorithm associated with the replica analysis employs Approximate Message Passing
(AMP) [Donoho et al., 2009, Barbier et al., 2019] as the score approximator within the diffusion
process. AMP is conjectured to be optimal among polynomial-time algorithms for the denoising task
involved in computing the score function.

Diffusion and AMP The diffusion flavor that we use is that of Stochastic Localization (SL) [Eldan,
2013], which can be mapped to a standard denoising diffusion process through time and space
transformations [Montanari, 2023, El Alaoui and Montanari, 2022]. We call Algorithmic Stochastic
Localization (ASL) the algorithmic implementation of SL on a given target distribution where AMP
is used to approximate the score function. ASL was introduced in El Alaoui et al. [2022] and
proven to produce fair samples from the Sherrington-Kirkpatrick spin glass model for high enough
temperature. ASL has also been applied in statistical inference settings, namely spiked matrix models
and high-dimensional regression models [Montanari and Wu, 2023, Cui et al., 2024]. Closest to our
work is Ghio et al. [2024], where the authors analyze the analogous of ASL within the stochastic
interpolant framework [Albergo and Vanden-Eijnden, 2023] using the replica and cavity methods.
They provide asymptotic thresholds for sampling by diffusion in several settings spanning statistical
physics, statistics, and combinatorial optimization. Their formalism, however, is limited to so-called
“planted” ensembles,' which allows to avoid dealing with hard-to-compute normalizing factors Z
in the denominator. We overcome this limitation by a double application of the replica trick, which
significantly broadens the applicability of the approach. It is worth also mentioning Ricci-Tersenghi
and Semerjian [2009] for carrying out a similar analysis on the Belief Propagation-guided decimation
scheme for random SAT problems.

Perceptron Problems As applications of our formalism, we investigate the performance of sam-
pling through ASL the solution space of random instances of two non-convex perceptron problems:
the spherical perceptron with negative margin and the binary weight perceptron. These are arguably
the simplest neural network models whose solution space is non-convex and can therefore provide
insights into the behavior of more complex multilayer models. The spherical perceptron with negative
margin is a non-convex constraint satisfaction problem introduced in [Franz and Parisi, 2016] as a
simple model of glassy behavior. The solution space has a complex star-shaped geometry, recently

"This includes particular non-planted problems that exhibit the “quiet planting” phenomenon and can be
analyzed in the planted regime.



investigated in Annesi et al. [2023]. In the binary weights case instead, the analysis of random
instances of the problem has a long tradition in statistical physics [Krauth and Mézard, 1989, Engel
and Van den Broeck, 2001]. Most solutions under the uniform distribution are conjecturally algo-
rithmically unreachable by a large class of polynomial algorithms due to the overlap gap property
[Gamarnik, 2021, Gamarnik et al., 2022], since typical (according to the uniform distribution) solu-
tions are isolated [Huang and Kabashima, 2014, Baldassi et al., 2023]. Hardness of sampling has
been rigorously proven in the symmetric binary perceptron case [El Alaoui and Gamarnik, 2025].
Nonetheless, efficient algorithms for finding solutions do exist [Braunstein and Zecchina, 2006,
Baldassi et al., 2016a, Abbe et al., 2022], thanks to the presence of a subdominant but algorithmically
accessible dense cluster of solutions [Baldassi et al., 2015]. See Barbier et al. [2024] and Barbier
[2025] for further explorations of the geometry of the solution space.

The main contributions of this paper are the following:

» We introduce a formalism, based on the analysis of time-dependent potential, ¢ (q) obtained
through the replica method, that gives exact thresholds in the high-dimensionality limit for
efficient sampling through generative diffusion. Our method extends the one presented in
Ghio et al. [2024] beyond planted models by handling unnormalized target densities.

* We show that in the non-convex spherical perceptron model, the uniform distribution can be
efficiently sampled by ASL in a large region of the parameters that define the model (the
load « and the margin ), roughly corresponding to the Replica Symmetric region from
replica theory.

* In the case of binary weights perceptron, we show that the uniform distribution cannot
be efficiently sampled, consistent with previous analyses. However, our analysis allows
us to discover that ASL can sample efficiently from a distribution tilted by a potential
U(s) = —log(s). This provides the first controlled sampler for the solution space of this
problem, with an algorithmic threshold of ae = 0.65 for k£ = 0, rather close to the sat/unsat
transition at o, ~ 0.83.

* We adapt the newfound potential inside a simple MCMC annealing procedure that provides
fast and robust sampling from the tilted target distribution.

The remainder of this paper is structured as follows: Section 2 introduces the Stochastic Localization
process. Section 3 presents an asymptotic analysis of SL using the replica formalism. Section 4
discusses the application of ASL to perceptron problems. In Section 5, we provide conclusions and
perspectives.

2 Preliminaries on Stochastic Localization

In this Section, we introduce the key components of the sampling algorithm based on the Stochastic
Localization (SL) process. Given a probability density p(w ), with w € RY, referred to as the target
distribution, our goal is to generate samples from p. We assume p to be known, possibly up to a
hard-to-compute normalization factor, and write it as p(w) = ¥ (w)/Z, where we call partition
function the normalization Z = [ dw v(w) and we call ¢)(w) unnormalized density.

Given the target density p, SL can be defined as a stochastic differential equation (SDE) that goes
from time ¢ = 0 to ¢ = +oo for a vector h, ¢ R"V, which we call the time-dependent field. The SL’s
SDE is the analogous of the reverse process SDE in denoising diffusion [Montanari, 2023]. The
initial condition is hy = 0, and for ¢ > 0 the SDE reads:

dht = mt(ht) dt + dbt, (2)

where (by )0 is the standard Wiener process in N dimensions. The drift term m, (h;) is computed
as the expectation

my(h) = ]Ew~ph,t ['w] ) (3)

over what we call the tilted distribution py (w), obtained by convolving the target distribution with
Gaussian noise:
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The key feature of the SL process is that as t - +oo the field diverges and p; := py, + peaks around
a single configuration w* that is statistically distributed (over the realizations of the process) as a
sample from the target distribution p, that is we have

t—+o0

Pt — Owr, W ~D. ©)

Therefore, a sample from the target distribution p can be obtained as the value of m,(h;) at large
times.

Bayesian interpretation It can be shown [Montanari, 2023] that at any time ¢ > 0, the solution h;
of eq. 2 has the same distribution as

h, = tw* +Vg. (6)

where w* ~ p and g ~ A/ (0, Iy). This is similar to the forward process of denoising diffusion. The
distribution py, + can then be interpreted as the posterior over w* given the noisy observation hy.
The function m; (h;) corresponds to the Bayesian denoiser.

The ASL algorithm The Algorithmic Stochastic Localization (ASL) method we use for a given
sampling task consists of discretizing time in the SDE eq. 2, running it up to a large but finite
final time ¢, and decoding the solution from h;, or m;, (h;,). The denoiser m; (h;) is obtained
using Approximate Message Passing (AMP) [Donoho and Tanner, 2009], an iterative algorithm that
updates the estimated marginal m until convergence. Therefore, we have a double-loop algorithm in
which, at each step of the discretized SDE, the inner AMP loop must be iterated until convergence.
While AMP has limited applicability to real-world tasks and datasets due to its failure in handling
correlated or low-dimensional data, in the synthetic settings addressed in this paper it provides a
fast and efficient algorithm for Bayesian denoising tasks, conjecturally outperforming any other
polynomial-time algorithm for large system sizes. Moreover, the fixed points of AMP are in one-
to-one correspondence with the stationary points of the replica free entropy discussed in the next
section, making the behavior of AMP amenable to simple asymptotic theoretical analysis [Zdeborova
and Krzakala, 2016].

3 Asymptotic Analysis of ASL with the Replica Formalism

We devise a formalism to investigate the asymptotic behavior of the ASL sampling process in the
large system size limit N — +oo. The formalism relies on the non-rigorous but well-established
[Mézard et al., 1987] replica method. The main outcome will be a criterion for the feasibility of fair
sampling involving the evaluation of a time-dependent free entropy. What follows is a generalization
of the scheme in Ghio et al. [2024] that allows for handling unnormalized densities, such as the ones
we will deal with in the next sections.

Given the target distribution p, which we assume to be stochastic and drawn from an ensemble
of distributions (quenched disorder), the solution h; of the SDE eq. 2 (assuming the drift term is
correctly estimated) is distributed as h, = tw* + \/tg, where w* is a sample from p—referred to
as the reference sample—and g is a standard Gaussian noise (see eq. 6). A relevant parameter for
tracking the dynamics is the overlap

1
q(t) = N(w*,wﬁ. (7

We argue that this quantity, while fluctuating over the realization of p and of the SDE path, concen-
trates for large N to a deterministic quantity. This quantity emerges naturally as an order parameter
in the replica computation that we now describe.

In statistical physics, the free entropy is a central quantity because it gives access to key observables
and characterizes the typical behavior of the system. In our case, for a given time ¢, we define the
asymptotic average free entropy (or just free entropy) as

. 1
O = NliI-Ii-loo NElog I, it ()

where the expectation is computed over the realization of the target unnormalized density 1) over
the reference sample w* (i.e., over the quenched disorder) and over the Gaussian noise g of eq. 6.



To handle both the (usually) intractable expectation of a logarithm and the sampling from an un-
normalized distribution, we employ the replica method twice: we introduce s replicas of the target
distribution to account for the normalization (using Z~! = lim,_o Z*~!) and n replicas for the tilted
distribution to linearize the logarithm (using log Z = lim,,_,¢ 8,,Z™), and obtain:

N-+oo [N s-0n—0

1 5 n R
é; = lim —limlimo”!nEd,,g/Hw(dw;)Hw(dwa)e<h"w“>"§”w““, )
a=1 a=1

where h; = tw} ++/tg is computed from w?, the first (o = 1) of the s replicas w, associated to the
target distribution, which thus has a special role. The n replicas w,, on the other hand, have symmetric
roles. The structure of this computation is closely related to the one presented in the seminal work
of Franz and Parisi [1995]. In the dense systems considered here, the resulting expression depends
on all pairwise overlaps among the n + s replicas, determined in the large IV limit by a saddle point
computation. To perform the n — 0 and s — 0 limits, we assume the Replica Symmetric (RS) ansatz
[Mézard et al., 1987, Mézard and Montanari, 2009], that is, we restrict the saddle point evaluation
to the most symmetric overlap structure under replica exchanges compatible with the symmetries
of eq. 9.> Moreover, thanks to the Bayesian structure of the problem, the Nishimori conditions
[Nishimori, 1980, Iba, 1999, Ghio et al., 2024] can be applied to further simplify the overlap structure
by enforcing additional symmetries (see Appendix B.3). Under these hypotheses, the overlap ¢(t) of
eq. 7 can be computed from the overlaps of replicas involved in eq. 9 as

1 1
q(t) = N(w{,wa) = N(wa,wb), Va,be[n]and b # a. (10)

At time ¢ = 0, all the n + s replicas are equivalent, therefore ¢(¢t = 0) = r, where r is the overlap
between two distinct samples of the target distribution: r = (w}, w;)/N for o, B € [s] and a # 3.
We further mention that while the Nishimori conditions found for the planted distributions analyzed
in Ghio et al. [2024] guarantee the correctness of the RS ansatz, in our more general setting they
guarantee only that the analysis of the tilted system doesn’t involve further replica symmetry breaking
(RSB) compared to the standard replica analysis of the reference systems. Therefore, our RS analysis
is exact only in the RS region of p.

In general, the replica computation will arrive at an expression in which the free entropy ¢ is
expressed as the saddle point of a function of several order parameters, one of which is g:

¢t = I’Ilan ¢t(q)a ¢t(Q) = e}étl‘ ¢t(q7 9)) (] 1)

where we denoted with 6 all the remaining order parameters except q. The value g,.x that maximizes
¢+(q) represents the typical value of ¢(t).

Success and Failure of ASL As shown in Ghio et al. [2024], the study of ¢;(g) can reveal
whether the ASL sampling scheme can recover samples from the target distribution, in the large
N limit. More specifically, the success of ASL hinges on the unimodality of ¢;(q) as a function
of g. If it has a single maximum at all times ¢, moving smoothly from low g to ¢ = 1 (assuming
|w|? = N), then the AMP messages correctly recover (with high probability in the limit of large V')
the value q(t) = argmax, ¢;(q) and the algorithm successfully samples from the target distribution.
Conversely, if ¢+(q) becomes multimodal, it could be the case that AMP doesn’t return the correct
estimate of m,(h;) and the SDE integration fails. The mechanism is as follows: at ¢ = 0, there is
always a maximum located at low ¢, which is the one found by AMP. As ¢ increases, this maximum
will in general move toward higher ¢, and AMP will follow it; however, if at any ¢ there is a second,
higher maximum and at higher ¢, it should be the correct one that solves the saddle point equations,
but AMP will miss it. As we show below, this can happen both if the global maximum exists from
the outset or if it develops over time. See Fig. 1 (Left) for a setting in which a high ¢ maximum first
appears and then becomes the global one.

>This may limit the exactness of our results to certain regions of parameter space, but the methodology can
be straightforwardly—if laboriously—extended to replica-symmetry-broken regimes.



4 Applications on Perceptron Models

4.1 Definitions

The perceptron [Rosenblatt, 1958] is the simplest neural network model, used for binary classification
tasks. Instead of the usual optimization perspective, we adopt a constraint satisfaction one [Engel
and Van den Broeck, 2001], and define a family of probability distributions over the solution space.
The problem is defined by a dataset X, containing M examples x* € RY, and a scalar & that we call
margin. For simplicity, we assume all labels are equal to 1. A given weight configuration w € RY is

called a solution if all the corresponding stabilities, defined as s = (x“}:,u)’ satisfy s > k Vu. We
define a family of distributions over the solution space by the unnormalized density (from eq. 1):

{z, w)
VN

Here O(s) is the Heaviside step function, © (s) = 1 if s > 0 and 0 otherwise. The parameter
T > 0 is called temperature, and we call potential the function U (s). Notice that for U(s) = 0 (or
any constant) or for T — +oo, the distribution p(w) = ¢»(w)/Z becomes the uniform distribution
over the solution space. The distribution P(w) is a prior on the weights, possibly unnormalized.
In the paper, we consider two different priors, corresponding to the spherical weights perceptron,
P(w) = 6(|Jw|? - N), and to the binary weights perceptron, P(w) = [1; P(w;) and P(w;) =
§(w; = 1) +6(w; +

The perceptron problems are generated by considering i.i.d. examples " ~ N(0,Iy) or =" ~
Unif({-1,+1}"). The two settings are equivalent for our asymptotic analysis. The high-dimensional
limit is obtained for N — +oc0 and M — +oo with fixed finite load o = M /N. This statistical setting
has been extensively studied in the statistical physics literature, see Engel and Van den Broeck [2001]
and Gabrié et al. [2023] for broad reviews.

M
P(w) = P(w) [[ O (s" - k) e V"0 with ¢ = (12)
=1

4.2 TImplementation of ASL

In order to adapt the ASL sampling scheme, discussed in Section 2, to the target distributions of the
perceptron family as defined in eq. 12, we have to implement the corresponding AMP algorithm. The
AMP fixed point provides an approximation to the Bayesian denoiser my(h;) to be used to solve the
Stochastic Localization SDE. Since eq. 12 can be seen as a specific type of generalized linear model,
we can adapt the GAMP algorithm from Rangan [2011] for our purposes. The message passing
scheme is reported as Algorithm 1 and discussed in Appendix A.

4.3 Spherical Non-Convex Perceptron

In this section, we present the asymptotic analysis of ASL, considering the spherical case ||w|? =
and uniform distribution, i.e. U(s) = 0 in eq. 12. In particular, we’re interested in the case x < 0,
since in that case the space of the solutions (if non-empty, i.e. for small enough «) is non-convex on
the sphere [Franz and Parisi, 2016, Annesi et al., 2023]. As discussed in Section 3, we characterize
the sampling behavior by studying the free entropy ¢, as a function of q. The replica calculation
yields a decomposition of the free entropy in terms of an energetic and an entropic components (full
derivation in Appendix B):

1 1
0u(0,4) = =5 (Fa+ d0) + 7 + Sta+ Gs(d) + aGr(a), (13

gs@):—llog(q—fdh(;)(qwr(q‘) T +1)), (14)

(F=7q) (F=7Tq) \F—7q

logﬁl,q ('y\/F+ z\/q—r). (15)

Hl q 'y\/;+z\/q_?")

The function H is defined in the Appendix, eq. 21. The overlaps ¢ and r have the interpretation
discussed in Section 3, with ¢ in particular being the overlap between the denoiser prediction at time
t and the clean configuration. The parameters ¢ and 7 are their Lagrange conjugates, and 7, is the
conjugate for the norm constraint of the reference.



The parameters for the reference system, r, 7 and 74, are independent of ¢, ¢ and §. They are
determined upfront, using the saddle point equation obtained from the reference system free entropy
(see Appendix B.4.5). Therefore, they play the role of external parameters in the above expressions.

The above expressions allow us to derive ¢;(q) = extr; ¢:(g, ) and gain direct insight into whether
the SL sampling scheme can recover samples from the target distribution asymptotically. The left
panel of Fig. 1 shows ¢;(q) as a function of ¢ for different values of ¢, with parameters o = 278 and
k = —2.5. Initially, ¢;(q) exhibits a single global maximum. However, a second local maximum
emerges as t increases, eventually becoming the global optimizer of ¢;. As discussed in Section 3,
this transition marks the onset of multimodality in the free entropy landscape. The central panel of
Fig. 1 presents the phase diagram for the ASL scheme for a fixed margin «, delineating the different
sampling regimes. For each point in the t-« plane, we test for the presence or absence of distinct
local maxima by initializing the optimization of ¢;(q, ) in eq. 13 at two different values of ¢, low
and high, and checking whether the results coincide.
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Figure 1: Asymptotic analysis of ASL sampling for the Spherical Perceptron with uniform distribution.
Left: Free entropy function ¢, (q) for different values of ¢ and for o = 278, k = —2.5. Initially, ¢;(q)
has a single maximum, but as ¢ increases, a second maximum appears, eventually becoming the
global one. Center: Phase diagram of ASL in the ¢-vs-« plane for k = —2.5. Green region: ¢;(q)
has a single optimizer, meaning the AMP succeeds at denoising. Yellow region: ¢¢(q) has two
optimizers, but the global maximum corresponds to the smaller overlap q. AMP still succeeds. Red
region: ¢¢(q) has two optimizers, but the global maximum corresponds to a larger overlap ¢. In
this case, AMP fails the denoising task. In order for ASL to succeed at sampling, a vertical line
at the corresponding « should lie entirely in the green region. Right: Phase diagram delineating
the samplable and non-samplable regions for ASL in a-vs-x plane. Transition lines predicted from
replica theory are taken from Baldassi et al. [2023]. The green region can be sampled by ASL. The
zoom in the inset shows the failure of ASL at reaching the d1RSB line.

The right panel of Fig. 1 shows the region in the a-x plane where ASL succeeds. The figure also
shows replica symmetry-breaking transition lines and the 1RSB prediction for the sat/unsat transition
line reported in Baldassi et al. [2023]. Notably, the samplability frontier of ASL coincides with the
De Almeida-Thouless (DAT) line and comes slightly short of the dynamical 1-step Replica Symmetry
Breaking (1RSB) transition. This result highlights a fundamental limitation: the SL algorithm fails to
sample from the target distribution when Replica Symmetry Breaking (RSB) occurs, which signals
the fragmentation of the solution space into disconnected clusters. In other words, ASL ceases to
function as soon as ergodicity is broken. In the case of the DAT transition, ergodicity is continuously
broken and ASL reaches the transition line. In presence of a discontinuous (d1RSB) transition, failure
of ASL happens earlier. See Ghio et al. [2024] for more details of phase transitions in similar contexts
and Mézard et al. [1987], Mézard and Montanari [2009] for the generic RSB picture.

To validate numerically the uniformity of the ASL sampling, we compare the empirical distribution
of stabilities s* obtained via sampling to the asymptotic theoretical prediction, which can also be
obtained by the replica method. The derivation and the results are reported in Appendix C. The
empirical results match perfectly with the predictions, in the whole region where ASL successfully
samples a solution to the constraint satisfaction problem. This strongly suggests that the obtained
samples are distributed according to the target distribution, i.e., uniformly over the solution space in
this case, as expected.
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Figure 2: ASL sampling for the Binary Perceptron with U(s) = —log(s) potential. Left: Phase
diagram of ASL in the ¢-vs-a plane for k = 0 and T' = 0.5. The color scheme is the same as for
the central panel of Figure 1. Right: Empirical distribution of the stabilities s* for a configuration
obtained by ASL in the case of binary perceptron with the log-potential, N = 5000, x = 0,7 = 0.5,
and o = 0.3. The black line is the asymptotic theoretical prediction. The excellent agreement shows
that ASL produces fair samples from the target distribution.

4.4 Binary Perceptron

In this section, we analyze the samplability of the binary perceptron measure. We focus on the zero
margin case, x = 0. The replica analysis is reported in Appendix E; the final expression for the free
entropy ¢:(q, ) at time ¢ is the same as eq. 13, except for the entropic term, which becomes

\/; *
-3(4-7a) /5 _ & Ay (G — At
QS(Q)—WZH/ 2cosh(’y\/_) g(Ze q cosh(z q r+7\/;+(q 7w ))
(16)

4.4.1 Selecting a samplable potential

Sampling fails for non-diverging potentials As stated in Section 3, ASL fails in the presence of
a second peak in the free entropy ¢;(¢) that becomes the global maximum at some time. For the
binary perceptron under the uniform distribution, i.e. with U(s) = 0, ¢;(q) exhibits a permanent
peak at ¢ = 1 with an infinite derivative, for all & > 0 and all £ > 0. This observation is related to
the frozen-1RSB nature of the binary perceptron [Krauth and Mézard, 1989], implying that most
solutions are isolated, and it is consistent with the known hardness of sampling from the uniform
distribution [Huang and Kabashima, 2014, El Alaoui and Gamarnik, 2025]. More surprisingly, this
difficulty cannot be removed even by tilting with a potential, unless it diverges at the origin, as we
will now discuss.

To understand the origin of the peak at ¢ = 1, we compute d‘btéq) for ¢ = 1—¢, with € «< 1 [Huang and

Kabashima, 2014]. The computations are reported in Appendix F. For the binary case, the expression
of the free entropy derivative takes the form:

d¢t(q)
dq

_ %log(e)+aC(6)e_% +0(1) (17)

g=1l-¢

where C (¢) is a function whose scaling with e depends on the explicit form of the potential U (s).
As it turns out, unless U (s) diverges at 0, C' (¢) = O(1) and is always positive, and as a consequence
the free entropy unavoidably exhibits a peak at ¢ = 1 at all £ > 0 and all « > 0. The second peak
becomes dominant at large enough time, before the first peak disappears, leading to the failure of
ASL sampling.

Diffusion with Log-potential The only way to avoid the peak at g = 1 is to let the potential U (s)
diverge at the origin. The choice U(s) = —log(s) is particularly simple to analyze: in that case,

C(e) = O(eﬁ) and therefore the corresponding term C'(€) €2 in eq. 17 becomes negligible for
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Figure 3: Results for the Binary Perceptron problem, showing the probability of finding a solution
as a function of constraint density « and for different system sizes N, after 100 sweeps of MCMC.
Simulated Annealing on temperature 7" (left) is compared to our proposed and much more effective
T-annealing scheme.

small e when T < 1. The derivative of the free entropy at ¢ = 1 becomes dominated by the logarithmic
term and thus ¢;(q) always has a local minimum at ¢ = 1.

In this case, the phenomenology becomes similar to the one observed for the spherical perceptron
case, as shown in Figure 2 (Left): with the choice T' = 0.5, there is a whole range of « up to
about ae ~ 0.65 that is samplable. The transition is close to, although slightly lower than, the best
known algorithmic thresholds from heuristic solvers [Braunstein and Zecchina, 2006, Baldassi and
Braunstein, 2015, Baldassi et al., 2016a,b], which are known to find solutions from sub-dominant
dense clusters. In our case, we sample from the dense cluster as well, but contrary to all solvers
we are aware of, the solutions found are fair samples from a target distribution which is fully under
control analytically. This is corroborated by the comparison between the empirical stabilities from
the ASL sampler and the theoretical predictions, shown in Fig. 2 (Right).

4.4.2 T7-annealed MCMC

Using the ASL algorithm in combination with the potential U(s) = —log(s), we are able to sample
solutions of random instances of the binary perceptron problem. ASL, however, inherits the well-
known limitations of AMP, generally failing to converge in the presence of structured data, and
therefore ASL should not be considered a practical sampling algorithm for generic perceptron
problems. On the other hand, direct use of the log-potential in an MCMC algorithm is infeasible,
since the potential is not defined on negative stabilities s, which means that one should initialize the
MC chain from a solution. As a workaround, we propose a reshaping of the potential inspired by the
replica trick, which, given a parameter 7 > 0, is defined by

1
_ ;(1—87-) S>O7
UT(S)‘{1(1—5) 5 <0. (18)

Notice that lim, o U, (s) = —log(s) for s > 0 and +oo for s < 0. We set p,(w) oc e~ 7 Zu Ur(s") gg
the moving target density of a Metropolis-Hasting algorithm, where at each MC sweep we decrease
linearly 7, starting with initial value 1 and down to 0. Keeping 7" fixed and with a sufficiently slow
annealing, we should be able to sample from the solution space weighted by the log-potential. We
call this procedure T-annealing. In Figure 3, we compare it with a standard Simulated Annealing
(SA) on the potential U(s) = —s©(—s), where the temperature T is decreased linearly at each MC
sweep from 1 down to 0, so that final samples at 7' = 0 should be distributed according to the
uniform measure for a slow enough annealing. While SA fails quickly when increasing N, the
T-annealing scheme remains very effective at finding solutions. In the Appendix E.3, we present
further experiments showing that, by scaling the number of sweeps as Ngyeeps = IV, we solve up
to a ~ 0.55 using T-annealing, while temperature annealing keeps struggling at large system sizes.
We also note that, with 7-annealing, the MCMC dynamics is able to diffuse far in solution space,
supporting the hypothesis that the algorithm targets a large, dense cluster of solutions. Experiments
on real-world datasets reported in E.4, also show improved performance of the 7-annealing scheme
compared to other MCMC algorithms.



5 Conclusion

In this work, we investigated the feasibility of sampling solutions to perceptron problems via
the diffusion scheme based on Approximate Message Passing, known as Algorithmic Stochastic
Localization (ASL). For the spherical perceptron, we showed that ASL can sample from the target
distribution as long as the free entropy landscape remains unimodal along the trajectory, which holds
for constraint density « = M /N below a threshold depending on the margin . In contrast, in the
binary case, the uniform distribution is always unsamplable. An investigation of the origin of the
issue that prevents ASL from working led us to introduce a potential U(s) = —log(s) to bias the
distribution. This enables efficient sampling over a broad range of « values. This potential also leads
to a robust MCMC scheme, T-annealing, that overcomes ASL’s limitations (inherited from AMP) on
structured instances of the problem. Looking forward, similar analyses and tailored potentials could
enhance sampling and solving in other hard constraint satisfaction problems, especially with isolated
solutions. For instance, Budzynski et al. [2019] propose a different reweighting scheme favoring
more stable solutions in the context of the k-NAESAT problem. Finally, a promising direction is
to rigorously establish our results, particularly for the mathematically simpler binary symmetric
perceptron Aubin et al. [2019].
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A Approximate Message Passing for the Perceptron

In this Section, we present the Approximate Message Passing (AMP) algorithm used to estimate the
drift term m, (h;) in the Stochastic Localization SDE eq. 2. The AMP algorithm has to be derived
for the perceptron target distribution eq. 12, tilted by the observation of hy, as described in eq. 4. The
resulting p;(w) corresponds to a specific case of the Generalized Linear Model family, therefore, the
AMP variant we use is adapted from the GAMP algorithm proposed in Rangan [2011].

The AMP framework relies on the definition of two key functions (¢;, and ¢,t), commonly referred
to as the input- and output-channel free entropies, given by:

¢in(A, B) =log f P(dw) e¥B 3w A (19)
UGS
Dout(w, V') :log/ds O(s-k) Vo =log Hy (-w), (20)
where
H,(b) = f DzO(-b-k+ Jaz)e TUbmr/az) (21)

with the shorthand notation Dz = ;2%6’22/ 2. For the case U(s) = 0, H simplifies to H,(b) =

H(—””TZ), with H(x) = %erfc(%). In the binary weights case [ P(dw) = ¥,,_,;. For the
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spherical case, the |w]|*> = N norm constraint has to be relaxed to a factorized Gaussian prior,

P(w) = e‘%“"Q, with ~y tuned adaptively during the AMP iterations. The relaxed prior is equivalent
to the hard one in the limit of large N, but AMP can handle only factorized priors. As a consequence,
the integral in ¢j,, can always be computed in closed form. Furthermore, for some choices of the
potential U(s), notably U(s) = 0 and U(s) = —log(s), the integration in ¢,y can also be carried
out analytically. Therefore, the AMP used in the settings discussed in the main text is quite fast since
it does not contain any integrals.

The full set of the AMP equations is given in Algorithm 1.

Algorithm 1 AMP for ASL on the Perceptron model

Input: Data X = {@"},,—1, . ar € RN ASL time ¢ > 0 and field h; € RY, € > 0, K > 0.
Set m?, A% V0, W%, dout, din, A%, B®, Ajer,and k < 0
while not converged on m!and A (number of iters == K or Ajter < €) do

Update mean and variance estimates w,, V,:

vroy @ e @)
H 7 N N
k 1’5 k-1 k k-1
Wy ‘_Z \/Nmi -V, @3
Update estimates A;, B;, g,:
9k < Oudbous (wh, VE) @
) 2
A’: « = %: (71\1/) df,¢out (Wﬁv ‘/:) 25
BF ey z oF +mb Ak (26)
i m \/N ® z B

Only for spherical case: enforce norm constraint solving eq. 29 for .
Update marginals m; and A;:

my < aBi@I,(Af +t, B + ht,i) @7
A7 < 0%, bin (Af +t,BF + hw) 28)

Aster < |[m* —m* 12 /Nand k < k+1
end while
Return: Converged marginals m” and A",

In the case of spherical perceptron, the algorithm enforces (in expectation) the norm constraint
. . . 2 . .
|w|? = N by assuming a unnormalized prior P(w) = ¢"27*", and then solving for 7 the equation

N
230, ¢in(AF +1,BF + 1y ;) = N, (29)
=1

in each AMP iteration using a root-finding algorithm. Notice that v appears implicitely in ¢;, defined
ineq. 19.

B Replica Computation for ASL on the Perceptron

B.1 General framework

In this Section, we outline the key steps of the replica calculation used to derive the time-dependent
free-entropy ¢, of the Stochastic Localization process, as outlined in Section 3. The formalism is
applied to the general perceptron model given in eq. 12, and then specialized on the spherical and
binary case in Appendix D and Appendix E respectively.

We assume M = oN Gaussian-distributed examples, X = {x*} ], 2 ~ N(0,Ix). The weights
will have a factorized prior P(w) = []; P(w;), where we slightly abused the notation. The case of
the non-factorizable global spherical prior will be handled naturally by setting P(w) = 1 but then
constraining the diagonal overlap instead of optimizing it, as explained later.
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We want to compute the free entropy at time ¢ of the model in eq. 12 averaged over the realization of
the sample and the noise in the SL process (eq. 6):

¢y = hm —]Elog Tyt (30)
N—>+oco

This computation is performed using the replica trick twice (the second one is used to express the
expectation over the reference configurations):

Elog Z = lim 9,EZ" and Z'=1limZ°!.

s—0

We can thus write

¢ = lim —hmhma EwgfHw(dw;)H¢(dwa)e<ht>wa>-%“wa“2, 31)
a=1 a=1

N—+oo N s>0n—

where h; = tw] + \/fg, with g ~ A (0,Iy). For convenience, we define the replicated partition
function

n,s 5 * n g )=t ||lw 2
2 = [ T (dwy) [T (duwg) et =Sl (32)
a=1 a=1
For the model in eq. 12, the expectation reads
EZ}" =E fHP(d )HP(d )H@(Z “’xf)H@(Zw‘”’x?) (33)
X w Wy X
® po [ \/N pa % ﬁ
x et Tai WiiWaitVE T4 giwai= 5t La; “’m’,. (34)

where the realization of ¢ depends from the realization of the dataset X, and O is defined as

O(s) =O(s-k) e TUGR), (35)

* gk
Here O(s) is the Heaviside theta function. Introducing A% = ¥, % and uff = Y, w;% and their

conjugate Lagrange multipliers, we obtain

dAh d)\ dufdak

IEZ"S—IEngHP(dwa)HP(dwa)H 1‘[ H@(A”)H@(u” (36)
o S NN 400 A z%ﬂzw St e+ B s giwai- bt Sy 0,

(37)

It is now possible to compute the average over the dataset X and the Gaussian noise g, obtaining

EZn s f H P dwa) H P a) H d/\ d/\/‘ H uﬂdu Hé(}vﬁi) Hé(uﬁj) (38)
po pa
% et Zl“’ BAL—I Y g Ghuli+t T, wliwaﬁgtzi Y ab WaiWpi—5t s w2, (39)
x e 2N ZW(Z@-}AQ f m7w[_j7+2 b Uh ubwmwb1+2z(m )\Zuﬁwmwm) (40)
We now introduce the overlaps
% > Wailhis,  Tap = % D WaiWhis  Paa = % 3wk Wai, (41)
2 7 4

where gq, is the overlap between replicas of the tilted distribution, r,z is an overlap in the reference
system, and p,, iS a cross-overlap between reference and tilted system. We also introduce the
conjugate parameters gop, 7o 3, Paa to enforce their definitions.

The overlaps gqq and 74, Will be fixed to 1, since |wy|? = N in both the spherical and binary case.
For the spherical case, the diagonal multipliers ¢,, will have to be optimized, while their value will
be irrelevant in the binary case.
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With the introduction of the overlaps, and using the factorization of P(w), we can write

EZtnﬁg = f H H P(dw;z) H P(waz) H draﬁd'ﬁ(xﬂ H anbddab H dpaadﬁaa (42)
a=1 aa

a=1 1 agf a<b
% e*N% Tap Paprap=5N Zup Gabdas—N ¥ oy PaaPaa (43)
% e+% Tap PaB i Wawei+5 Tap Gab Xi WaiWhi+ T qq Poaa Li Wi Wai (44)
A AN dutdal o ~ -
e} o a a o nw
« [ TT=e e T =2 TT6 () [16 (ut) 45)
po ™ na po na
w e~ Za ML= 0 QL Ul +EN £y pra+ 3N Loy dab=5 N g daa (46)
< 6_% Tu(Xas j\ﬁi;\gra/ﬁ'zab WY qab+2 T 0g j\gﬂﬁpaa)' (47)

Site-dependent and pattern-dependent terms are now decoupled and factorized. A few more straight-
forward steps lead to the following expression, amenable to saddle point evaluation:

EZZL’S = f H draﬁdfaﬁ H dqabquab H dpaadﬁaa eNq)ta (48)
a<f a<b aa
where
CI)tZG[+G5+OzGE (49)
1 N 1 R . 1 t
GI == 5 Zrozﬁraﬁ - 5 ZQaanb - Zpaapaa +t Zpla + it anb - 5 anaa (50)
af ab aa a ab a

S n
Gs =log [ TT P(dw}) T] P(dw,) *3 Zos Forminith Zan e o pocine | (51)
a=1 a=1

dil,

™

dAydNy — du, - -
GE—logfI;I - ]‘[ . g@(Aa)E[e(ua)

% e_i Za S\Q)\(Y_i ZZ ﬁa“a‘% Zaﬁ S\WS\BTL!B_% zab ﬁaﬁb(Iab_zaa 5\aﬁ'apaa

(52)

As it is usually done in the replica method, we will first choose an Ansatz for the structure of the
overlaps, so that we can perform analytic continuation and take the small n and s limit, followed by
saddle point evaluation.

B.2 Replica Symmetric Ansatz

The Ansatz (RS) we choose is the Replica Symmetric one. Given the symmetries of the problem, it
takes the form

qa=1 ifa=5 rg=1 a=0 p* a=1
ab = . 5 aff = 5 aa = 53
Gab {q ifa+b Tap {r a+f p p  az#l. (53)

The Nishimori conditions discussed in the next Section guarantee that if the RS ansatz is correct for
the reference system, e.g. s it is by definition for the spherical perceptron in the RS regime, then
the RS ansatz above will give a correct prediction for ¢,. More generally, the correct Ansatz for the
tilted system has the same number of steps of symmetry breaking as the correct one for the reference
system.

B.3 Nishimori conditions

Thanks to the Bayesian nature of the problem, the Nishimori conditions apply [Iba, 1999, Nishimori,
1980]. They are a set of identities that we will use to further simplify the overlap structure. We will
state the identities in our context and review their derivation.

Let’s fix the time ¢, and also fix the realization of the disorder in the distribution p (i.e. the realization
of the examples X). Assume w* ~ p, and call h = tw” + \/ig, with g standard Gaussian, the
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observed field (as in eq. 6). The corresponding posterior over w* is pp, ; given in equation eq. 4. For
convenience we drop the time index and write h = h, and p(w|h) = pp (w).

Given K i.i.d. samples from the posterior, wy ~ p(w|h), given a continuous bounded test function
f:RE*N L R the following identity (Nishimori identity) holds:

B Enpuw B,y p f(w wa, . wi) = BusBpjr B,y p f(wr,wa, .. wie)  (54)
In order to show this, fixing K = 2 for simplicity, we rewrite the [.h.s. of the previous equation as
E f(w",ws) = f dw”* dhdwy P(w*)P(hlw*)P(wslh) f(w*,ws) (55)
- f dw* dh dws P(h)P(w*|h) P(ws|h) f(w",ws), (56)
where we used Bayes’ rule. The r.h.s. instead can be rewritten as
E f(wy,w2) = f dw” dh dw dw; P(w”)P(h|lw”)P(wi|h)P(ws|h) f(wi,w2)  (57)
- f dh dw; dws P(h)P(wi|k)P(ws|k) f(w:,ws). (58)

The [.h.s. and the 7.h.s. of eq. 54 are now clearly shown to be the same, once we rename w* to
wj. We can use eq. 54 to establish identities among the overlaps appearing in the replicated free
entropy ®; of eq. 49. In fact, within the RS Ansatz, assuming large /N and at saddle point, consider
the overlaps

p*:Mwa) Vbe[n]; q:%]’viwb) Va,be[n],a#+b. (59)
Since in the replicated partition function w, and w, are independent samples of the posterior

contiditional on wj, the Nishimori identities imply

P =q (60)
Now consider the overlaps
* w), w}
pszNwa) Vae[n],Vae[s],a=*1; T:LN[’) Va,B8€[s],a+0. (61)

Since w,, is decoupled from w}, when « # 0, its distribution is the same as a reference configuration
when w7 is traced out, therefore we have

p=r. (62)
Similar reasoning can be applied to the conjugate order parameters, so that we obtain:

)" =, (63)

p=r. (64)

These conditions simplify considerably the expressions in the computation of the free entropy. The
Nishimori conditions can be also used within Replica Symmetry Breaking (RSB) scenarios for the
reference distribution p. They guarantee that no further RSB steps are needed in the analysis of the
tilted free entropy ¢;.

B.4 Replica Symmetric Free Entropy

B.4.1 Entropic term

Let’s first look at the entropic term Gs within the RS ansatz:

Gs =log f [T P(dwy) [T P(dw,) "% =) Ea vl (1) (e wi)® (65)
a=1 a=1
x 730~ Tq wi+3(4-P)(Zq wa) >+ (5" -D)w] o wat 5 (Za wi+S, wa)® (66)
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Using the RS ansatz, and the Nishimori conditions, this simplifies to:

G =log f [T P(dw) [T P(dwa) e (Fa=?) o wi (67)
a=1
w e+ (Fa=) T w3 (G-7)(Tq wa)*+(4-P)w] Tq wa+5 (T wi+Ta wa)® (68)

Using the Hubbard-Stratonovich transformation twice we can get rid of the quadratic summations
like (3, wq)? in the exponentials, at the cost of introducing two extra integration variables:

Gs =log [ [T Pduz) [T P(dwy) [ DDy edaf)zaw (©9)
a=1 a=1
w 03 (Fa=0) Tq witz\/G-7 Lo wat(§-7)w] Ty wat V(S witE, wa) (70)

-=%/2 L .
where we used Dz = dz*© . asa shorthand to denote a gaussian integral. This can now be
factorized:

Gs =log [ P(dw}) [ DzDy b G Vit z(wi 2 )" (2 ()] (7D

where
Z(’LUT,Z7’)/):fP(dw)e%(f’d*(j)wer(z\/ﬁJr’y\/;wt(quf)wf)w )
Z*(zw):fP(dw*)e%m—f)w”mﬂw* -
(74)

The last step of the replica computation consists in performing the limit n — 0 and s - 0, which
enables to obtain the final expression of ¢,:

Gs(q) = lim lim 0, G's (75)

The final expression of the entropic term depends on the prior of the weights. Its functional form is
reported in section D and E, respectively for the spherical and binary perceptron cases.

B.4.2 Energetic term

Let’s now focus our attention on the energetic term

dhad 1= duediy — ~ ~
GE:1og[H ol 16 (Aa) [16 (ua) (76)
« Tr a 27T « a
e~ ZaAara=iTo Glata=F Tap AaAsTas=F Tap Gatbdab=Laq AalaPaa (77)

After using the RS ansatz over the overlap parameters, the Nishimori conditions, and some manipula-
tions the energetic term simplifies

d\ d/\a duadua
GE_1ong 1 H@(A )n@(ua) (78)
« e—zza /\aka—zza uaua—i(l—r) Ya )\i+q2'kf (79)
B0 S0 # 5 (S0 AarEa i) -2 (M) (30)

We use again two Hubbard-Stratonovich substitutions to make the integrand factorized in the a and «
indices, at the cost of introducing two more gaussian integrals:

dA d/\a duadua
GE_longzmH H H@ (A )H@(ua) 81)
w =1 Za AaRatyV/M)=i £y e (uaty/T42/TT) = § (1-7) Ty Ao+ 55747 (82)
% 6_%(1_(1) Yo ﬂi—iz\/q—r;\l. (83)
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Finally, collecting the factors and taking the limits for n — 0 and s — 0, we arrive at

Gr(q) = 1im lim 0,GE (84)
H T+2/q—T _
fD D~ - q 7\/_ 1- )long_q(v\/F+z\/q—r). (85)
Hl T ('7\/_)
where
~ 1
Ha(b) = f Dz O(=b -k + Jaz)e FUCb-r+Vaz) (86)
In the uniform measure case U(s) = 0, H simplifies to H,(b) = H (- b+”‘) with H(z) = f+°° Dz =
%erfc (%)

B.4.3 Interaction term

Finally we compute the interaction term
| 1 . . 1 t
Gr=-¢ Zraﬂ'ru[i 5 Z dabdab — Zpaapaa +1 Zpla + -t Z ab — 5 Z daa, (87)
2 af 2 ab aa a 2 ab 2 a

which, after using the RS ansatz, the Nishimori conditions, and taking the limits » — 0 and s — 0,
reduces to:

1 1 1
Ggr= 13})% },I—If(l) OnGr = —gfd - 54(] + P+ itq (83)

B.4.4 Saddle Point Equations

The optimization of ¢; can now be performed using the saddle point method [Mézard et al., 1987].
This amounts at solving the following system of equations

g=t+ 2a2gE(Q): (89)

q= 2*QS(Q) (90)

The optimization is usually performed iteratively, starting from an initial guess, inserting it in the
right hand side, obtaining updated values, and iterating until convergence.

It is important to point out that the overlap parameters for the reference network are not obtained
from the free entropy expression derived above; rather, they need to be determined independently
from an analogous (but simpler) free entropy expression that only involves the reference replicas.
The procedure is schematically shown in the next section, and the full computation is reported in
Engel and Van den Broeck [2001].

B.4.5 Reference system

The free entropy associated to the reference system is simply that of a standard perceptron problem,
which is well known and can be found in Engel and Van den Broeck [2001]. The equations of the
overlap parameters depend only on (7,7, 74). This results from the Bayesian structure of the problem:
the reference probability measure is independent of the tilted one; for this reason, the reference free
entropy is independent of ¢, 3. One can recover the expression of reference system free entropy
) (r,#,74) fixing n = 0 and taking the limit s — 0 of ®;, in eq. 49. The RS expression reads:

6T (r,#,74) = G (r, 7,7a) + G (7,74) + aGS) (), o1)
S U
g} )(r,r,rd) = 5(7“7“ - Fq), (92)
G4 (7. 7) = log ( [ Pldwr)e oo/t 93)
() = f Dzlog Hy_, (V7). (94)
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The corresponding saddle point equations, that can be used to determine r, 7 and 74 as a function of
« and k, are:

r=1- Q—Q D (7, 74), 95)
1=1- 5 G\ (#,74) (96)
f= —2a%gf;) (r), 97)

Our treatment differs from the standard one present in the literature only by the addition of the
potential U (s), which however only affects the energetic term and is fully absorbed in the definition

of the H function.

C Computation of the stability distribution

In this Appendix, we perform the computation of the stability distribution in the perceptron problem
with an arbitrary potential U (s). This is a simple generalization to include the potential of a standard
calculation that can be performed with the replica trick Engel and Van den Broeck [2001].

Given an N-dimensional weight vector w, representing a solution of the perceptron problem with

. g . H .
a margin k, and a pattern x*, the stability is defined as s* = L\/%) Our goal is to compute, for a

given target stability s, the average of §(s — s*) over all patterns and all solutions sampled from the
target distribution p (eq. 1), and subsequently average over all realizations of the patterns:

P(s) = EXEW, Z §(s—s") (98)
Since all patterns are statistically equivalent, we can just compute the average stability of the first
pattern:
P(8) = ExFopnp d(s — 5*). (99)
We now expand the formula using the definition of p(w) in eq. 12:
[ P(dw) T, ©(s") 6 (s-s')
J P (dw)® (s)

where will also used the definition of © in eq. 35. In order to take the expectation, we introduce n
replicas, with n integer at first, and to be sent to zero through analytical continuation, so that we can
rewrite the denominator as Z~! = lim,,_.g Z" 1. We give a special role to replica 1, and obtain the
formula

P(s)—hmEX/HP(dwa 1)1‘[[ (\/N wa,sc“))]d(s—\/lj_v(wl,ml>). (101)

P(s)=Ex , (100)

The computation can then be carried out as usual, leading to the free entropy of the reference system

1
in Section B.4.5, followed by saddle point evaluation. In fact, the observable § (s - ﬁ (wl, x! >)
being subdominant does not influence the saddle point. Given the stationary values of the overlaps,
one can then obtain the RS expression for the stability distribution, given by

(e—ff)z
2(1-71)

ﬁf Hi (V1)

P(s)=6(s) (102)
where H has been defined in eq. 21.

D Spherical Perceptron

In this section, we consider the spherical weights case, in which the prior is P(w) = 6(||w||* - N).
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D.1 Free Entropy

We obtain the free energy by specializing the entropic term eq. 51 to the spherical prior, which
together with eq. 50 and eq. 52 gives:

¢1(¢,4) = 91(q,4) + Gs(q) + aGE(q) (103)
1 1 1
g] = _iTAd_ iquJr”q'f"f‘ §tq (104)

gs(q)=—1log<a—m)+f(q+2r(q‘) (?‘f)Q(A’i +1)) (105)
2(q—74q)

(F=7q) (F—=7q) \T—7q
Hy_ o (Wr+a/a=T) .
f DaDy=—=tu G log Hy_y (7/r + 2/T=T) (106)

D.2 Reference system

Once the prior for the perceptron model is specified, the free energy equations for the reference
system become the following:

6O (1,7, 74) = G (1,7, 7a) + G5 (7, 7a) + aG (1), (107)
ggr)(rvfﬂﬁd) = %(T’F _’Fd)? (108)
G4 (#,7q) = (log(Zﬂ)—log(f—fd)+ _ fA ) (109)

(7 =Taq)
60 (r) = [ Dzlog 1, (Vr2). (110)

They are obtained by specializing the entropic term for the reference system in eq. 93 to the case of
spherical perceptron prior, together with eq. 92 and eq. 94.

D.3 Stability Distribution

In this section, we present the distribution of stabilities computed through ASL, and we compare
them with the theoretical expectation, whose derivation is provided in Section C. The distribution of
the stabilities for U(s) = 0 is reported in Fig. 4 for k = —2.1 and several values of « € [5, 20, 80].

0
S S S

Figure 4: Distribution of the stabilities s* of a spherical perceptron with negative margin, where
st = <meﬁ) For number of variables N = 1001, x = —=2.1 and o = 5 (Left), a = 20 (Center) and

a = 80 (Right). The empirical distribution of the stabilities of the ASL samples (blue) coincides for
different parameter regimes with the distribution computed through replica method (black solid line).

E Binary Perceptron

In this section, we consider the binary weights case, in which the (improper) prior is P(w;) =
S(w; = 1) +6(w; +1).
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E.1 Free Entropy

We obtain the free energy by specializing the expression for the entropic term in eq. 51 to the binary
prior, together with eq. 50 and eq. 52:

o1(q,q) = G1(¢:4) + Gs(q) + aGe(q), (111)
eViw*
5(7a=q) PR A (6 — Mt

gs(q)—wgﬂf 2cosh(fy\/_) ( e 4 cosh(z\/q P+ i+ (G- F)w )),

(112)
Hy_o (Wr+2/q-T _
Gr(q) = [ DzDy—" Ig” /) )longfq (WWr+zva=r), (113)
1 1 1

gr= —§fd - §(jq+f’r + itq. (114)

E.2 Reference system

The free energy equations for the reference system are the following:

¢ (r, 7, 7q) = g}”(r Pyia) + G5 (7, 7q) +aG (1), (115)
G\ (r,7,74) = 7(7’7’ Pa), (116)
g (#, Td):—f(r fa)+ [ Dzlog (2cosh (:v7)), (117)

¢ (r) = /Dzlong - (Vr2). (118)

where we have specialized the entropic term in eq. 93, together with the interaction term and the
energetic one in eq. 92 and eq. 94. As a side note, we may observe that in this case the 7y order
parameter simplifies away with the expression of the interaction term Gy, in both the reference and
the tilted systems. This is expected since in the binary case the norm is fixed automatically. We keep
this term in the expressions only for uniformity of notation.

E.2.1 Replica results for the binary perceptron under the uniform distribution

We investigate the output of the replica formalism for the binary case under the uniform distribution,
i.e. with U(s) = 0. The left panel of Fig. 5 shows the free entropy ¢;(q) as a function of the overlap
q for different values of ¢, with parameters o = 0.5 and « = 0. The phenomenology observed in this
case is completely different from that observed for the spherical case: for all « and all ¢ there is
always a second maximum at ¢ = 1. Even though it is not always evident from the plots, we showed
analytically that that is indeed the case, see Section F. As shown in the figure, the maximum at ¢ = 1
eventually becomes the global one for sufficiently large ¢, while there is still a lower-g maximum. As
explained in Section 3, this implies that during the sampling procedure the information on the target
is not correctly reconstructed, leading to the failure of ASL. The phase diagram shown in the right
panel of Fig. 5 shows that this phenomenology is present for all « > 0.
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Figure 5: Left: Free entropy ¢;(q) for the binary perceptron problem for several times. For all ¢,
the curves have two local maxima: one at low ¢ that grows with ¢, and a persistent one at ¢ = 1.
Eventually, the persistent one becomes global, while the lower-q one is still present, which leads to
the failure of ASL. Right: Phase diagram of SL sampling for the binary perceptron. At all « the
situation is like the one in the left panel: there is a region of ¢ where the lower-¢ maximum is not
the global maximum (red regions) and sampling fails, even though eventually the lower-¢ maximum
eventually disappears (green regions).

E.2.2 Experimental results for sampling binary perceptron solutions with Log-potential on
random data

In Figure 6, we report the probability of sampling a correct configuration from the binary perceptron
loss measure with the log-potential, for 7" = 0.5, using the ASL sampling scheme. The asymptotic
algorithmic threshold of a » 0.65 predicted by the RS replica theory (see the left plot in Figure 2)
seems consistent with the large IV extrapolation of numerical data. Finite size effects are quite strong,
though, and we cannot rule out a small gap due to RSB effects.
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Figure 6: The probability of sampling a solution satisfying the binary perceptron constraints with the
ASL algorithm as a function of the constraint density « from a measure with the log-potential with
T =0.5. Each point is averaged over 250 simulations.

E.3 Other plots for T-annealing

For the 7-annealing scheme described in Section 4.4.2, we show in Figure 7 additional experiments
with different values of the number of MC sweeps, eventually also scaling them as O(V). Similar
experiments but with the potential U(s) = —s©(-s), and annealing the temperature 7" instead (from
1 to 0, linearly in the number of sweeps) are presented in Figure 8. It is important to notice that
T-annealing on U(s) = —sO(-s) fails at large N also when scaling the number of sweeps as N,
while the 7-annealing reaches an algorithmic threshold of a ~ 0.55.
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Figure 7: Probability of finding a solution for the 7-annealed MCMC scheme in the Binary Perceptron,
with T = 0.5.
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Figure 8: Probability of finding a solution for the T-annealed MCMC in the Binary Perceptron with
potential U(s) = —sO(-s).

E.4 Experimental results for sampling binary perceptron solutions with Log-potential on
structured datasets

In this section, we use the T—annealing scheme to perform binary classification on structured datasets.
We consider three different datasets: MNIST [Lecun et al., 1998], FashionMNIST [Xiao et al., 2017],
and CIFAR10 [Krizhevsky and Hinton, 2009]. For each of them, we choose two classes and assigne
to them the labels {-1, +1}. We then compare 7—annealing scheme with Simulated Annealing on a
few losses.

E.4.1 MNIST dataset

MNIST patterns classification: We considered the classes 3 and 8. We constructed a binary
perceptron architecture with /N = 784 units (the MNIST image dimension is 28 x 28), and we run
the 7—annelaing procedure with the log —potential, with a nsweeps in {100,784} and T = 0.5. The
results have been compared with the T—annealing MCMC schemes with potential U(s) = ©(s) or
U(s) = —sO(s), with the same number of MCMC sweeps. The results are reported in Fig. 9.

26



MCMC(MNIST) nsweeps = 100 (digits = 3, 8) MCMC(MNIST) nsweeps = 784 (digits = 3, 8)

S E A e
s) = O(s s) = O(s
—®— U(s) = -s0(s) —®— U(s) = -s6(s)
0.75 0.75 -
2 2
o o
: :
Q o -
] 0.50 S 0.50
: :
Q Q
0.25 0.25 -
0.00 . . 0.00 . . .
0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0
a a

Figure 9: Fraction of correctly classifying MNIST patterns, i.e., the fraction of instances producing
zero classification error on digits 3 and 8, as a function of & = M/N. The number of different
problem instances is fixed to 100 (the error bars represent the standard deviation estimated over the
100 instances). The number of MCMC sweeps is fixed to 100 (left) and 784 (right).

Linearly transformed MNIST patterns classification: The same analysis can be performed in
the case in which the patterns that the binary perceptron needs to classify are not directly the MNIST
ones, but are obtained by applying a linear transformation to the MNIST images. Given {x",y"},
data in the MNIST dataset, i.e. * € RP, with D = 784, and y* € R, we apply a linear transformation
to the patterns " using a projection matrix ' € R™V*P so that binary perceptron needs to classify
xt = Fx". The entries of the projection matrix are ¢.i.d. sampled from a Normal distribution, i.e.
F;; ~N(0,1) Vie{l,...,N} Vje{l,...,D}. In this case, the number of MCMC sweeps has
been fixed to IV, and the number of considered instances is 100. In the case of the 7—annealing results
with U(s) = —log(s), the temperature has been fixed to T" = 0.5. The results are reported in Fig.10
and Fig.11.
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Figure 10: Fraction of correctly classified MNIST patterns (digits = 3 and 8), as a function of
a = M/N. The number of different problem instances is fixed to 100, and the number of MCMC
sweeps is fixed to NV with N = 32 (left), and IV = 64 (right).
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Figure 11: Fraction of correctly classified MNIST patterns (digits 3 and 8), as a function of v = M /N.
The number of different problem instances is fixed to 100, and the number of MCMC sweeps is fixed
to N with N = 1024 (left), and N = 2048 (right).

E.4.2 FashionMNIST dataset

FashionMNIST patterns classification: A similar analysis to the previous one has been performed
on the FashionMNIST dataset, where we considered classes 5 and 7. We constructed a binary
perceptron architecture with NV = 784 units and ran the 7—annealing procedure with the log —potential,
using nsweeps MCMC sweeps in {100,784} and T' = 0.5. The results have been compared with
the T—annealing MCMC schemes with potential U(s) = ©(s) or U(s) = —sO(s), with the same
number of MCMC sweeps. The results are reported in Fig. 12.
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Figure 12: Fraction of correctly classifying FashionMNIST patterns, i.e., fraction of instances
producing zero classification error on digits 5 and 7, as a function of « = M /N. The number of
different problem instances is fixed to 100 (the error bars represent the standard deviation estimated
over the 100 instances). The number of MCMC sweeps is fixed to 100 (left) and 784 (right).

Linearly transformed FashionMNIST patterns classification: Analogously to the MNIST case,
for FashionMNIST, we computed the fraction of correctly solved instances as a function of « = M/ N,
in the case in which we try to classify the linear transformation of the patterns, via the feature matrix
F, {z"} u=1,...,m- As in the case of the MNIST dataset, the number of MCMC sweeps has been fixed
to IV, the temperature for the 7—annealing scheme to 7" = 0.5, and the considered classes are 5 and 7.
The results are reported in Fig.13 and Fig.14.
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Figure 13: Fraction of correctly classified FashionMNIST patterns (digits 5 and 7), as a function of
a = M/N. The number of different problem instances is fixed to 100, and the number of MCMC
sweeps is fixed to NV with N = 32 (left), and N = 64 (right).
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Figure 14: Fraction of correctly classified FashionMNIST patterns (digits 5 and 7), as a function of
a = M/N. The number of different problem instances is fixed to 100, and the number of MCMC
sweeps is fixed to NV with N = 1024 (left), and IV = 2048 (right).

E.4.3 CIFARI10 dataset

CIFAR10 patterns classification: A similar analysis to the one performed for the MNIST and
FashionMNIST datasets has been performed over the CIFAR10 dataset, where we considered the
classes 3 and 8. We constructed a binary perceptron architecture with N = 3072 units (the dimension
of the CIFAR10 images is 32 x 32 for 3 different color channels), and we ran the 7-annealing
procedure with the log —potential, with nsweeps = {1000, 3000} MCMC sweeps and T' = 0.5. The
results have been compared with the T—annealing MCMC schemes with potential U(s) = ©(s) or
U(s) = —sO(s), with the same number of MCMC sweeps. The results are reported in Fig. 15.
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Figure 15: Fraction of correctly classifying CIFAR patterns, i.e., fraction of instances producing
zero classification error on digits 3 and 8, as a function of & = M/N. The number of different
problem instances is fixed to 100 (the error bars represent the standard deviation estimated over the
100 instances). The number of MCMC sweeps is fixed to 1000 (left) and 3000 (right).

F Limiting behavior of the free entropy derivative
In this section, we report the analysis of J,¢:(q) as ¢ - 1. We set g = 1 — € and expand for small €,
leading to the results reported in 4.4.

The starting expression is:

1 1
0u(0,4) = =5 (Fa+40) + i1 + Sta+ Gs(@) +aGi(a) (19)

and its derivative is:
doy _t-g¢ . adgE(Q)

(120)

dgq 2 dgq
We consider the two terms separately.
F.1 Interaction term

We start from the first (interaction) term. The dependency of ¢ on e can be determined from the
saddle point equations. The spherical and binary perceptron models need to be considered separately,
since the relevant equation involves Gg, which differs between the two.

F.1.1 Spherical Perceptron

In the spherical case, the saddle point equation for ¢ reads:

0G5(q)
dq

U S VPASRPNNS U PP C k) IO C ek
l 84(21g(q ! 2(@—@)(“2 G (f—fd”)))’ (22

q=2 (121)

1 27 — 7
= <. (123)
q—Ta (f’ - fd)
We can now use the saddle point for the reference system, see Section B.4.5, to rewrite the expression
of g, concluding that ¢ diverges as

1
4=~ +7qg (124)
€

with ¢ constant. This shows that the part of the derivative due to the interaction term diverges as
O(e™1). The sign of the derivative is negative, meaning that the free entropy has a local minimum at
¢ = 1 unless this is overcome by the energetic contribution (which will not be the case with U(s) = 0,
as we will show below).
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F.1.2 Binary perceptron

An analogous computation for the binary perceptron case, already presented in Huang and Kabashima
[2014], results in:

1+qg 0 f Vv’ — P
— = — DzDy —————1log(2cosh (2§ -7+ Vi + Gg-r)w* (125)
2 a4 w;il 7 2cosh('y\/7_2) g( ( 7 ( ) ))
= > szD ﬂtanh(z\ﬂ—f+ \/F+(A—f‘)w*)( : +w*)
wisel 7 QCOSh(’y\/?_Q) 1 7 I 2vq-r
(126)
As for the spherical case, § — oo as ¢ — 1. We can then rewrite the previous expression as
1 ) 67\/7?6—2(2\/q"—f+'y\/;) _ 6_7\/;62(2\/q”—f'+'y\/7?)
1-—e=1-¢"Y szD’y (127)
2 cosh(yV/7)
and thus
1
(j:—glog(%)-rC (128)
1 eoyﬂe—Z(z\/cj—fwy\ﬁ) " 8_7\/;62(2\/cj—f+'y\/;)
C=f+=log szDv (129)
2 cosh(yV/#)

This shows that, as ¢ — 1, the part of the derivative that comes from the interaction term also diverges
in the binary case, but this time logarithmically, as O(loge). The sign of the derivative is again
negative, meaning that the free entropy has a local minimum at ¢ = 1 unless the effect is overcome by
the energetic contribution. As we shall show, the energetic contribution does indeed overcome this
effect and produce a local maximum at ¢ = 1 unless the potential U (s) diverges at the origin.

F.2 Energetic term

Next, we compute the derivative of the energetic term. This does not depend on the model. We
expand Gg(1 - €) for small € and then study (Gg (1 -¢) — Gr(1)) /¢, keeping in mind that:

dgp _ dGe
g de (130)

We perform the expansion, trying to keep the setting general with respect to the potential U. Indeed,
our only starting assumption is that U is twice differentiable over (0, c0).

The energetic term, after some manipulations, and using ¢ = 1 — ¢, can be written as:

N(z,7)
gE=fD'yDz ! (131)
D(v)
D(y) = f e DA POV ) (132)
Vi-r
Nz = [, DAV A, ,0) (133)
A(Zv%)‘) = IOg /E(Z N )DU 6*5U(Uﬁ+a(z,'y,)\,u)) (134)
_%

A
) =y = T T ey —— 4 VT A~ —o 135
a(z, 7, \u) = —/ry—2V1-r—¢ - r T (135)

3To the sake of simplicity, from now on, we do not make explicit the dependence of G.
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We first perform two change of variables, in both A and D, from A to p = —y/7 + A\W/1 -1t

1 PHITY _su(p)
D - Gl —_ P 136
()= = ( ﬂ_) (136)
N (2,7) = Jl_ G(%)e‘w(p)ﬂ(m,p) (137)

€ p+ T

a(z,v,p,u) =p—2/€y /1 - €
(z,7,p,u) =p—2/e - —

(139)

]
“‘w

where G(x) = 5\;% .

Next, we expand the potential U inside the expression of A for small e up to the first order:

U (u/e 4 (27, A00) # U (0) + VU () (u=2) ~ 0 (Ve p) + e a2 U7 (0)
(140)

This allows us to compute the integral A, which converges as long as 1+ U” (p) B¢ > 0 (which is
obviously always true if U is convex). After some explicit integration and further expansions, we
arrive at:

fl(z,%p)w.Ao+\/EA1/2+eA1 +logH(z—\§E) (141)
Ao =-8U (p) (142)
~A1/2 = Bz2U" (p) (143)
" / 2 /
Ay :5(—[] 2(p) (1+2%)+ ﬂ(U2(p)) + v (p)l(;j:’y\ﬁ_")) (144)

At this point, we can observe that the term A, does not contribute because it gets canceled by the
integral over z. Indeed, with further manipulations and changes of variables we arrive at:

fD N() (145)
D(v)
D(v) = f dpG(p”f)e-ﬁU@) (146)
N(y) = / dpG(p”\/_) PO [ Ay + e Ay ] + (147)
+\/_f dr G(re+7\/_)e-ﬁU(Te)fDZlOgH(Z_T)
Ao =-BU (p) (148)
Ay :6(—U”(p) v ’B(UIQ(”))Q Y (p)l(f:w;)) (149)

We can observe that Gg receives three contributions from N. The ones from Ap and ./11 are
straightforward: they represent a zero-order and a first-order contributions. In particular the first one
gives us the limiting value G% = lim._ o G. The first-order term then gives a finite contribution to
the derivative.

Thus, the only way to avoid the local maximum at ¢ = 1 in the binary perceptron case is to choose a
potential U(s) that diverges for s — 0. Then the scaling of the last term with € can be manipulated.
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For the specific choice U (s) = —log(s) we can easily see that we obtain an additional factor ¢°/2,
which makes the term O (e%) and the derivative O (e% ) For 3 > 1, this term therefore becomes

sub-dominant and it does not contribute to the derivative: we revert to the situation where the
dominant contribution no longer comes from the energetic term, but from the interaction term, and it
has the right sign to ensure that ¢ = 1 will correspond to a local minimum rather than a maximum.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims in the abstract and introduction are supported by theoretical and
numerical analysis in the paper.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Some limitations, particularly of AMP, are discussed throughout the paper.
Other stated limitation is that the results are not rigorous but conjecturally correct.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Our theoretical results are computations that follow the style and standard of
rigor of statistical physics: our conclusions are conjectural but likely correct. This is clearly
stated right at the outset. The supporting arguments and limits of the analysis (e.g. where
replica symmetry holds) are discussed. All the steps of the computations are reported in the
appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]
Justification: Numerical experiments are fully explained and straightforward to reproduce.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data is synthetic and easy to produce. The code is very standard, the only
custom algorithm used is short, simple and fully detailed in the text.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: no training is involved
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All plots reporting numerical experiments that involve some degree of sampling
contain error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Experiments are run on CPU and are quite cheap computationally
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9.

10.

11.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We comply with the code of ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Being a mostly theoretical paper focused on simple models, we do not believe
there are any direct positive or negative societal consequences.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: the paper poses no such risk
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: no existing assets are used
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: no assets are released
Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: no crowdsourcing and no research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: does not apply
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs not involved
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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