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ABSTRACT

Deep residual networks (ResNets) and their variants are widely used in many com-
puter vision applications and natural language processing tasks. However, the
theoretical principles for designing and training ResNets are still not fully under-
stood. Recently, several points of view have emerged to try to interpret ResNet
theoretically, such as unraveled view, unrolled iterative estimation and dynami-
cal systems view. In this paper, we adopt the dynamical systems point of view,
and analyze the lesioning properties of ResNet both theoretically and experimen-
tally. Based on these analyses, we additionally propose a novel method for ac-
celerating ResNet training. We apply the proposed method to train ResNets and
Wide ResNets for three image classification benchmarks, reducing training time
by more than 40% with superior or on-par accuracy.

1 INTRODUCTION

Deep neural networks have powered many research areas from computer vision (He et al., 2016;
Huang et al., 2017b), natural language processing (Cho et al., 2014) to biology (Esteva et al., 2017)
and e-commerce (Ha et al., 2016). Deep Residual Networks (ResNets) (He et al., 2016), and their
variants such as Wide ResNets (Zagoruyko & Komodakis, 2016) and DenseNets (Huang et al.,
2017b), are among the most successful architectures. In ResNets, the authors employ identity skip-
connections that bypass residual layers, allowing data to flow from previous layers directly to any
subsequent layers.

With the success of ResNet and its variants on various applications (He et al., 2016; 2017; Pohlen
et al., 2017; Xiong et al., 2017; Oord et al., 2016; Wu et al., 2016), several views such as unraveled
view (Veit et al., 2016), unrolled iterative estimation view (Greff et al., 2017) and dynamical systems
view (Haber et al., 2017; E, 2017; Chang et al., 2017) have emerged to try to interpret ResNets
through theoretical analysis and empirical results. These views provide preliminary interpretations,
however, deep understanding of ResNets is still an active on-going research topic (Jastrzebski et al.,
2017; Li et al., 2016; Hardt & Ma, 2017; Li & Yuan, 2017).

The dynamical systems view interprets ResNets as ordinary differential equations (ODEs), a special
kind of dynamical systems (Haber et al., 2017; E, 2017), opening up possibilities of exploiting the
computational and theoretical success from dynamical systems to ResNets. From this point of view,
stable and reversible architectures (Haber & Ruthotto, 2017; Chang et al., 2017) are developed.
However, few empirical analysis of this view has been done and many phenomena such as the
removing of layers not leading to performance drop are not explained by the dynamical systems
view. In this work, we take steps forward to complement this dynamical systems view with empirical
analysis of its properties and the lesion studies.
∗Authors contributed equally.
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Figure 1: Dynamical systems view of ResNets. ResNets equally discretize the time interval [0,T ]
using time points T0,T1, . . . ,Td , where T0 = 0, Td = T and d is the total number of blocks.

One challenge of deep ResNets is the long training time. It is extremely time-consuming to train on
large datasets such as ImageNet or with very deep ResNets such as 1000-layer networks, which may
take several days or even weeks on high-performance hardware with GPU acceleration. Recently
the reversible residual networks (Gomez et al., 2017; Chang et al., 2017) consumes 50% more com-
putational time for reducing memory usage by reconstructing the activations, which exposes training
time to be a more severe problem. Inspired by the dynamical systems interpretation, we additionally
propose a simple yet effective multi-level method for accelerating ResNets training.

In summary, the main contributions of this work are:

• We study the dynamical systems view and explain the lesion studies from this view through
empirical analysis.

• We propose a simple yet efficient multi-level training method for ResNets based on dynam-
ical systems view.

• We demonstrate the proposed multi-level training method on ResNets (He et al., 2016)
and Wide ResNets (Zagoruyko & Komodakis, 2016) across three widely used datasets,
achieving more than 40% training time reduction with superior or on-par accuracy.

2 RELATED WORK

2.1 RESNETS AND VARIANTS
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Figure 2: A residual block.
Each residual block has two
components: the residual
module G and the identity
skip-connection, which add
up to the output of a block.

ResNets (He et al., 2016) are deep neural networks of stacking sim-
ple residual blocks, which contain identity skip-connections that
bypass the residual layers. A residual block, as shown in Fig. 2,
can be written as

Y j+1 = Y j +G(Y j,θ j) for j = 0, ...,N−1, (1)

where Y j is the feature map at the jth layer, θ j represents the jth
layer’s network parameters. G is referred to as a residual module,
consisting of two convolutional layers. As shown in Fig. 1, the
network is divided into several stages; each consists of a number
of residual blocks. In the first block of each stage, the feature map
size is halved, and the number of filters is doubled. The feature map
remains the same dimensionality for subsequent blocks in a stage.

After the success of ResNets in popular competitions such as Ima-
geNet (Russakovsky et al., 2015), Pascal VOC (Everingham et al.,
2010) and Microsoft COCO (Lin et al., 2014), there emerged many successors (Huang et al., 2016;
2017b; Chang et al., 2017; Gomez et al., 2017; Targ et al., 2016; Hardt & Ma, 2017; Zagoruyko &
Komodakis, 2016). For instance, DenseNet (Huang et al., 2017b) connects between any two layers
with the same feature-map size. ResNxt (Xie et al., 2017) introduces a homogeneous, multi-branch
architecture to increase the accuracy.
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2.2 INTERPRETATIONS OF RESNETS

Unraveled view In Veit et al. (2016), ResNets are interpreted from an unraveled view in which
ResNets are viewed as a collection of many paths which data flow along from input to output. Each
residual block consists of a residual module and an identity skip-connection; a path is defined as a
configuration of which residual module to enter and which to skip. For a ResNet with n residual
blocks, there are 2n unique paths. Through lesion studies, Veit et al. (2016) further demonstrate
that paths in ResNets do not strongly depend on each other and behave like an ensemble. When
a residual block is removed, the number of paths is reduced from 2n to 2n−1, leaving half of the
paths still valid, which explains why ResNets are resilient to dropping blocks. Besides the explicit
ensemble view, training ResNets with stochastic depth (Huang et al., 2016) can be viewed as an
ensemble of networks with varying depths implicitly.

Unrolled iterative estimation view ResNets are interpreted as unrolled iterative estimation in Greff
et al. (2017). From this view, the level of representation stays the same within each stage. The resid-
ual blocks in a stage work together to estimate and iteratively refine a single level of representation:
the first layer in a stage provides a rough estimate for the representation, and subsequent layers re-
fine that estimate. An implication of this view is that processing in each block is incremental and
removing blocks only has a mild effect on the final results. Based on this view, Jastrzebski et al.
(2017) provide more analytical and empirical results.

Dynamical systems view ResNets can be interpreted as a discretization of dynamical systems
(Haber et al., 2017; E, 2017). The basic dynamics at each step is a linear transformation followed
by component-wise nonlinear activation function. The behavior of large dynamical systems is often
a notoriously difficult problem in mathematics, particularly for discrete dynamical systems. This
is similar to the gradient exploding/vanishing problem for deep neural networks or recurrent neural
networks. Imposing structural constraints on dynamical systems such as Hamiltonian systems to
conserve the energy is explored in Haber & Ruthotto (2017); Chang et al. (2017). However, no
interpretation on the phenomenon of deleting layers is studied from this point of view.

2.3 RESNETS EFFICIENT TRAINING METHODS

One major challenge of deep ResNets is their long training time. To alleviate this issue, several
attempts have been made. Stochastic depth (Huang et al., 2016) randomly drops entire residual
blocks during training and bypassing their transformations through identity skip-connections; during
testing, all the blocks are in use. When a block is bypassed for a specific iteration, there is no need to
perform forward-backward computation. With stochastic depth, approximately 25% of training time
could be saved. Figurnov et al. (2017) reduce the inference time of residual networks by learning
to predict early halting scores based on the image content. Huang et al. (2017a) investigate image
classification with computational resource limits at test time. SparseNets (Zhu et al., 2018) is a
simple feature aggregation structure with shortcut paths bypassing exponentially growing number
of layers. Mollifying networks (Gulcehre et al., 2016) start the optimization with an easier (possibly
convex) objective function and let it evolve during the training, until it eventually goes back to being
the original, difficult to optimize, objective function. It can also be interpreted as a form adaptive
noise injection that only depends on a single hyperparameter.

3 RESNETS FROM DYNAMICAL SYSTEMS VIEW

In this section, we first provide a brief introduction to the dynamical systems view in which ResNets
are considered as ODEs. Based on this view, we provide empirical analysis to explain some intrigu-
ing properties and phenomena of ResNets.

3.1 DYNAMICAL SYSTEMS VIEW

For the pre-activation ResNets Y j+1 = Y j +G(Y j,θ j), the residual module G consists of two sets
of batch normalization, ReLU and convolutional layers. Without loss of generality, we can concep-
tually add a parameter h and rewrite the residual module as G = hF . The residual block becomes

Y j+1 = Y j +hF(Y j,θ j), (2)
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Figure 3: The average L2-norm of the residual modules γ vs the number of residual blocks
d. The curve resembles a reciprocal function, which is consistent with Eq. (5) and the dynamical
systems view.

which can be further rewritten as

Y j+1−Y j

h
= F(Y j,θ j). (3)

For a sufficiently small h, Eq. (3) can be regarded as a forward Euler discretization of the initial
value ODE

Ẏ(t) = F(Y(t),θ(t)), Y(0) = Y0, for 0≤ t ≤ T, (4)

where time t corresponds to the direction from input to output, Y(0) is the input feature map after
the initial convolution, and Y(T ) is the output feature map before the softmax classifier. Thus,
the problem of learning the network parameters, θ , is equivalent to solving a parameter estimation
problem or optimal control problem involving the ODE in Eq. (4).

3.2 TIME STEP SIZE

The new parameter h is called the step size of discretization. In the original formulation of ResNets
in Eq. (1), h does not exist, and is implicitly absorbed by the residual module G. We call it the
implicit step size. The step size h can also be explicitly expressed in the model: the output of the
residual module is multiplied by h before being added to the identity mapping. In this case, h is a
hyper-parameter and we name it the explicit step size. In this section, we only consider implicit
step size.

We assume that Y(0) and Y(T ) correspond to the input and output feature maps of the network
respectively, where the time length T is fixed. As illustrated in Fig. 1, ResNets equally discretize
[0,T ] using time points T0,T1, . . . ,Tj, . . . ,Td , where T0 = 0, Td = T and d is the number of blocks.
Thus each time step is h = Tj+1−Tj = T/d.

Thus, we can obtain

‖G(Y j)‖= ‖hF(Y j)‖=
T
d
‖F(Y j)‖, (5)

where F in the underlying ODE in Eq. (4) does not depend on d. In other words, d is inversely
proportional to the norm of the residual modules G(Yj).

Empirical analysis To verify the above statement, we run experiments on ResNets with varying
depths. If our theory is correct, the norm of the residual module ‖G(Y j)‖ should be inversely
proportional to the number of residual blocks. Take ResNet-32 with 15 residual blocks in total as an
example. We calculate the average L2-norm of the residual modules γ = 1

15 ∑
15
j=1 ‖G(Y j)‖. Figure 3

shows γ for different ResNet models. The curve resembles a reciprocal function, which is consistent
with Eq. (5) and the dynamical system point of view.
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(a) CIFAR-10 (b) CIFAR-100

Figure 4: L2-norm of the input and output of the residual module G. ResNet-110 models are
trained on CIFAR-10 and CIFAR-100. The norms are evaluated at test time. It shows that within
a residual block, the identity mapping contributes much more than the residual module. In other
words, G(Y j) is relatively small for most residual blocks.

3.3 LESION STUDY

Lesion studies for ResNets in Veit et al. (2016) remove single or multiple residual blocks, and
shuffle the residual blocks at test time. Surprisingly, only removing downsampling blocks has a
modest impact on performance, no other block removal leads to a noticeable effect.

According to the dynamical systems view, removing one residual block is equivalent to skipping
one time step and squeezing two adjacent steps into one. This operation may change the dynamical
system. However, we will show in the following that the effect is negligible when the output of
residual module G(Y j) is small enough.

Let t0, t1, t2 be three consecutive time points such that t1 = t0 + h and t2 = t0 + 2h. Suppose the
removed block corresponds to time point t1. Before the removal of the time point, the discretization
is

Y(t1) = Y(t0)+hF(Y(t0)),
Y(t2) = Y(t1)+hF(Y(t1)) = Y(t0)+hF(Y(t0))+hF(Y(t1)). (6)

After t1 is removed, the time interval [t0, t2] is squeezed to [t0, t ′2], where t ′2 = t0 +h is the new time
point after t0. The new discretization is

Y(t ′2) = Y(t0)+hF(Y(t0)). (7)

The difference of the feature before and after the removal operation is

Y(t ′2)−Y(t2) = hF(Y(t1)), (8)

which is the output of the residual module G(Y(t1)). Therefore, the effect of removing the block is
negligible when G(Y(t1)) is small.

Empirical analysis To empirically verify that G(Y(t)) are small, we train a ResNet-110 model (3
stages with 18 residual blocks per stage) on CIFAR-10/100, and plot the L2-norm of input Y j and
output G(Y j) of each residual module at test time. As shown in Figure 4, except for the first block
at each stage, later blocks have tiny residual module outputs G(Y j) compared with the inputs Y j.
This provides an explanation why removing one block does not notably impact the performance.

The effect of shuffling residual blocks can be analyzed in a similar way. When the outputs of the
residual modules are small, each block only slightly modifies the feature map. Therefore, we can
expect the effect of shuffling to be moderate, especially in later stages.

When the network is deep, the outputs of the residual modules are close to zero. Each residual
module can be regarded as feature refinement. The magnitude of change is large only in the first
block; the subsequent blocks only slightly refine the features, which is consistent with the unrolled
iterative estimation view.
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Figure 5: An illustration of the interpolation operation for one stage. We insert one residual
block right after each existing block in the stage. The model parameters, including convolutional
weights and batch normalization parameters, are copied from the adjacent old block to interpolated
blocks. After that, the explicit step size h is halved. For example, before interpolation, this stage has
three residual blocks, numbered 1 to 3. After interpolation, block 1, 2 and 3 become block 1’, 3’
and 5’ respectively. Three new blocks are inserted: block 2’, 4’ and 6’, whose parameters are copied
from its previous block respectively.

# Residual Blocks Explicit Step Size h # Training Steps
Cycle 1 2-2-2 1 N1
Cycle 2 4-4-4 0.5 N2
Cycle 3 8-8-8 0.25 N3

Table 1: An illustration of the multi-level method with 3 cycles. The ResNet model has 3
stages; # Residual Blocks column represents the number of blocks in each stage. In cycle 1, the
training starts with a 2-2-2 model using h = 1. After N1 training steps, the first interpolation hap-
pens: the model becomes 4-4-4, and the step size is halved to 0.5. Similarly, N2 training steps later,
the second interpolation doubles the number of blocks to 8-8-8 and halves h to 0.25. Cycle 3 lasts
for N3 training steps.

4 EFFICIENT TRAINING WITH MULTI-LEVEL METHOD

Given the connection between ResNets and ODEs, existing theories and numerical techniques for
ODEs can be applied to ResNets. In numerical analysis, multi-grid methods (Hackbusch, 2013) are
algorithms for solving differential equations using a hierarchy of discretizations with varying step
sizes. Inspired by multi-grid methods, we propose the multi-level training method.

4.1 MULTI-LEVEL TRAINING

The idea of the multi-level method is, during training, we start with a shallow network using a large
explicit step size h. After a few training steps, we switch to a deeper network, by doubling the
number of residual blocks and halving the step size to h/2. This operation is called interpolation,
which applies to all the stages at the same time. Fig. 5 illustrates the interpolation operation for one
stage. The interpolation operation inserts a new residual block right after every existing block, and
copies the convolutional weights and batch normalization parameters from the adjacent old block to
the new block.

In the multi-level training process, interpolations happen several times, thus dividing the training
steps into cycles. Table 1 gives an example to illustrate this process. According to our dynamical
systems view, by interpolating the residual blocks and halving the step size, we solve exactly the
same differential equation. Therefore, the interpolation operation at the beginning of a cycle gives a
good initialization of the parameters.

Each cycle itself can be regarded as a training process, thus we need to reset the learning rate to a
large value at the beginning of each training cycle and anneal the learning rate during that cycle.
Here we adopt the cosine annealing learning rate schedule (Loshchilov & Hutter, 2017). Within
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# Interpolations 0 1 2 3 4 5 · · ·
Theoretical Time Saved 0% 25% 42% 53% 61% 67% · · ·

Table 2: Number of interpolations vs theoretical time saved, relative to the full model. Theo-
retically, time saved is monotonically increasing as the number of interpolation increases, but the
marginal benefit is diminishing.

each cycle, the learning rate is

η = ηmin +
1
2
(ηmax−ηmin)(1+ cos(

Tcur

T
π)), (9)

where ηmin and ηmax represent the minimum and maximum learning rate respectively, Tcur accounts
for how many training steps have been performed in the current cycle, and T denotes the total
number of training steps in this cycle. The learning rate starts from ηmax at the beginning of each
cycle and decreases to ηmin at the end of the cycle.

4.2 TRAINING TIME

Since the number of residual blocks in cycle i is half of that in cycle i+1, theoretically, the running
time in cycle i should also be half of that in cycle i+1. Take a multi-level method with two cycles as
an example, it trains a shallow model (2-2-2 blocks) for N steps and switches to a deep model (4-4-4
blocks) for another N steps. Compared with the deep model trained for 2N steps, the multi-level
method reduces training time by 1/4.

More generally, if one uses the multi-level method with k interpolations equally dividing the training
steps, theoretically it saves 1− 2k+1−1

2k(k+1) of training time, compared to the full model (model in the last
cycle) trained for the same number of total steps. Table 2 shows the theoretical time saved. Time
saved is monotonically increasing as the number of interpolation increases, but the marginal time
saved is diminishing. Furthermore, when the number of interpolations is large, each cycle might not
have enough training steps. Therefore, there is a trade-off between efficiency and accuracy.

5 EXPERIMENTS

The empirical results on the dynamical systems view are presented in Sec. 3.2 and 3.3. In this
section, we evaluate the efficacy and efficiency of the proposed multi-level method on two state-of-
the art deep learning architectures for image classification: ResNet and Wide ResNet, across three
standard benchmarks.

Model # Blocks CIFAR-10 CIFAR-100 STL-10
Error Time Error Time Error Time

ResNet-14 2-2-2 9.75% 38m 33.34% 38m 27.78% 33m
ResNet-50 8-8-8 7.58% 114m 28.64% 115m 25.95% 114m

ResNet-50-i (Ours) 2-2-2 to
8-8-8 7.10% 67m 28.71% 68m 25.98% 68m

ResNet-32 5-5-5 7.74% 76m 29.96% 74m 26.02% 71m
ResNet-122 20-20-20 6.47% 266m 26.74% 266m 25.16% 266m

ResNet-122-i (Ours) 5-5-5 to
20-20-20 6.56% 154m 26.81% 154m 24.36% 162m

Table 3: Main multi-level method results for ResNets with different depths. The model name
with i corresponds to the multi-level method. Our multi-level training method achieves superior or
on-par accuracy with the last cycle model while saving about 40% of training time. The unit of
training time is a minute.
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5.1 DATASETS AND NETWORKS

Datasets Three widely used datasets are used for evaluation: CIFAR-10, CIFAR-100 (Krizhevsky
& Hinton, 2009), and STL10 (Coates et al., 2011). Details on these datasets and data augmentation
methods can be found in Appendix A.

Networks We use ResNets (He et al., 2016) and Wide ResNets (Zagoruyko & Komodakis, 2016)
for all the datasets. All the networks have three stages, with the number of filters equal to 16-32-64
for ResNets, and 32-64-128 for Wide ResNets.

5.2 EXPERIMENTAL SETTINGS

Based on the analysis in Table 2, we use two interpolations, that is three cycles, for the multi-level
method in order to optimize the trade-off between efficiency and accuracy.

For each experiment, we run our multi-level model with three cycles. For comparison, two other
models are trained for the same number of steps: a model with the same architecture as the first
cycle and a model with the same architecture as the last cycle.

We call them first cycle model and last cycle model respectively. We also use the cyclic learning
rate schedule (Loshchilov & Hutter, 2017) for the first cycle model and last cycle model for fair
comparison.

All the models are trained for 160 epochs. For our multi-level method, the models are interpolated at
the 60th and 110th epochs. For baseline models, the learning rate cycle also restarts at epoch 60 and
110. The maximum and minimum learning rates ηmin and ηmax are set 0.001 and 0.5 respectively.
For CIFAR-10 and CIFAR-100 experiments, the mini-batch size is 100. For STL-10 experiments,
the mini-batch size is 32. We use a weight decay of 2× 10−4, and momentum of 0.9. All the
experiments are evaluated on machines with a single Nvidia GeForce GTX 1080 GPU. The networks
are implemented using TensorFlow library (Abadi et al., 2016).

5.3 MAIN RESULTS AND ANALYSIS

We present the main results and analysis in this section. More experimental results can be found in
Appendix D. The theoretical time saved for two interpolations is 42%, which is consistent with the
experiment results.

The main results are shown in Table 3 and 4, for ResNets and Wide ResNets respectively. We report
the test error rate and training time. Compared with the first cycle model, our multi-level method
achieves much lower test error. Compared with the last cycle model, the test error is competitive or
slightly lower, but the training time reduction is over 40%. This result applies to both ResNets and
WResNets across three datasets. The interpolation of (Wide) ResNet-50-i from 2-2-2 to 8-8-8 and
(Wide) ResNet-122-i from 5-5-5 to 20-20-20 show that our multi-level training method is effective
for different network depths.

The train and test curves with both ResNets and Wide ResNets are shown in Fig. 6. Although both
training and test accuracy temporarily drops at the start of each cycle, the performance eventually
surpasses the previous cycles. ResNets and Wide ResNets have similar train and test curves, indi-
cating that our multi-level training method is effective for different network widths.

6 CONCLUSION

In this work, we study ResNets from the dynamical systems view and explain the lesion studies from
this view through both theoretical and empirical analyses. Based on these analyses, we develop a
simple yet effective multi-level method for accelerating the training of ResNets. The proposed
multi-level training method is evaluated on two state-of-the-art residual network architectures across
three widely used classification benchmarks, reducing training time by more than 40% with similar
accuracy. For future work, we would like to explore the dynamical systems view on other ResNets
variants such as DenseNets.
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Model # Blocks CIFAR-10 CIFAR-100 STL-10
Error Time Error Time Error Time

WResNet-14 2-2-2 7.38% 51m 27.92% 51m 24.58% 63m
WResNet-50 8-8-8 5.87% 174m 24.49% 173m 23.82% 222m

WResNet-50-i (Ours) 2-2-2 to
8-8-8 5.95% 101m 24.92% 101m 22.82% 131m

WResNet-32 5-5-5 6.29% 111m 25.32% 111m 23.51% 136m
WResNet-122 20-20-20 5.38% 406m 23.11% 406m 22.00% 516m

WResNet-122-i (Ours) 5-5-5 to
20-20-20 5.46% 239m 23.04% 237m 22.65% 307m

Table 4: Main multi-level method results for Wide ResNets (WResNets) with different depths.
The model name with i corresponds to the multi-level method. Our multi-level training method
achieves superior or on-par accuracy with the last cycle model while saving about 40% of training
time. The unit of training time is a minute.

(a) CIFAR-10 (b) CIFAR-100

Figure 6: Train and test curves using our multi-level method with ResNet-50-i and WResNet-
50-i on CIFAR-10/100. The models are interpolated at epoch 60 and 110, dividing the training steps
to three cycles. Although both training and test accuracy temporarily drops at the start of each cycle,
the performance eventually surpasses the previous cycles.
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A DATASETS AND MODEL DETAILS

CIFAR-10 and CIFAR-100 The CIFAR-10 dataset (Krizhevsky & Hinton, 2009) consists of 50,000
training images and 10,000 testing images in 10 classes with 32×32 image resolution. The CIFAR-
100 dataset has the same number of training and testing images as CIFAR-10, but has 100 classes.
We use the common data augmentation techniques including padding four zeros around the image,
random cropping, random horizontal flipping and image standardization (Huang et al., 2016).

STL-10 The STL-10 dataset (Coates et al., 2011) is an image classification dataset with 10 classes
with image resolutions of 96× 96. It contains 5,000 training images and 8,000 testing images.
Compared with CIFAR-10/100, each class has fewer training samples but higher image resolution.
We use the same data augmentation as the CIFAR-10/100 except for padding 12 zeros around the
images.

Number of parameters We list the number of parameters for each model in Table 5.

Model # Blocks CIFAR-10 CIFAR-100 STL-10
ResNet-14 2-2-2 172,506 178,356 172,506
ResNet-50 8-8-8 755,802 761,652 755,802
ResNet-32 5-5-5 464,154 470,004 464,154
ResNet-122 20-20-20 19,22,394 1,928,244 19,22,394

WResNet-14 2-2-2 685,994 697,604 685,994
WResNet-50 8-8-8 3,013,802 3,025,412 3,013,802
WResNet-32 5-5-5 1,849,898 1,861,508 1,849,898
ResNet-122 20-20-20 7,669,418 7,681,028 7,669,418

Table 5: The number of parameters for each network model.
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B IMPLEMENTATION DETAILS

Interpolation Figure 5 gives a conceptual illustration of the interpolation operation. When im-
plementing this operation, the first block in each stage requires special treatment. The first block
changes the size of the feature map and the number of channels, thus the shapes of convolution and
batch normalization parameters are different from those in subsequent blocks. As a result, we cannot
simply copy the parameters from block 1’ to block 2’. Instead, the parameters of block 2’ are copied
from block 3’.

C FURTHER ANALYSIS OF TIME STEP SIZE

Instead of using h as an implicit step size in Sec. 3.2, we can also explicitly express it in the model.
That is, a residual block represents the function F instead of G, and h becomes a hyperparameter of
the model. In other words, in each residual block, the output of the residual module is multiplied by
h before being added to the identity mapping. Now h is the explicit step size that we can control.
This enables us to verify the claim that the depth of the network does not affect the underlying
differential equation.

Empirical analysis We run the following experiments on CIFAR-10 and CIFAR-100:

• ResNet-32: 15 blocks with h = 1;

• ResNet-62: 30 blocks with h = 0.5;

• ResNet-122: 60 blocks with h = 0.25;

According to our theory, those three models are different discretizations of the same differential
equation in Eq. (2). As a result, the function values F(t) should be roughly the same across the
time interval [0,T ], which is discretized to 15, 30 and 60 time steps respectively. In Figure 7, we
plot the L2-norm of the residual blocks F(Y j) and scale the block number to the corresponding
conceptual time points. It can be seen from the figure that the three curves follow the same trend,
which represents the underlying function F(t).

(a) CIFAR-10 (b) CIFAR-100

Figure 7: Comparison of ‖F(Y j)‖ among three models: (1) ResNet-32 with h = 1, (2) ResNet-62
with h = 0.5, (3) ResNet-122 with h = 0.25. If the dynamical systems view is correct, the three
curves should approximately follow the same trend.

D MORE EXPERIMENTAL RESULTS

Train and test curves on STL-10 We show the train and test curves using our multi-level training
method on ResNet-50-i and Wide ResNet-50-i on STL10 in Fig. 8.

Effect of learning rate To study the effect of ηmax and ηmin on the cyclic learning rate in Eq. (9),
we plot their effect on test accuracy in Fig. 9. We empirically find that ηmax = 0.5 and ηmin = 0.001
achieve the best accuracy. With the increase of maximum learning rate ηmax, the test accuracy
increases first and then decreases. A potential explanation is that with a small learning rate, the
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Figure 8: Train and test curves using our multi-level method with ResNet-50-i and WResNet-
50-i on STL10. Although both training and testing accuracy temporarily drops at the start of each
cycle, the performance eventually surpasses the previous cycles.

Figure 9: Effect of ηmax and ηmin in cyclic learning rate. In most cases, as ηmax increases, the
testing accuracy increases first and then decreases.
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system learns slowly, while with a high learning rate, the system contains too much kinetic energy
and is unable to reach the deeper and narrower parts of the loss function.

Effect of resetting the learning rate To study the effect of resetting the learning rate at the be-
ginning of each cycle, we also run the multi-level training method without resetting the learning
rate, that is to use Eq. 9 throughout all cycles. The experiment setting is the same as described in
Section 5.2. We train Resnet-50-i on CIFAR-10, CIFAR-100 and STL-10. Each setting is repeated
10 times to obtain the confidence intervals. Fig. 10 shows the results: resetting the learning rate at
the beginning of each cycle gives better validation accuracy.

Figure 10: Effect of resetting the learning rate. Resetting the learning rate at the beginning of
each cycle gives better validation accuracy.

Comparison with shallow and deep ResNets Fig. 11 shows that training accuracy curves for a
shallow ResNet (same depth as the starting model) and a deep ResNet (same depth as the final
model).

(a) CIFAR-10 (b) CIFAR-100

Figure 11: Shallow and deep ResNets. Training accuracy curves for a shallow ResNet (same depth
as the starting model) and a deep ResNet (same depth as the final model).
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