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ABSTRACT

Vanishing and exploding gradients are two of the main obstacles in training deep
neural networks, especially in capturing long range dependencies in recurrent neu-
ral networks (RNNs). In this paper, we present an efficient parametrization of the
transition matrix of an RNN that allows us to stabilize the gradients that arise in its
training. Specifically, we parameterize the transition matrix by its singular value
decomposition (SVD), which allows us to explicitly track and control its singular
values. We attain efficiency by using tools that are common in numerical linear
algebra, namely Householder reflectors for representing the orthogonal matrices
that arise in the SVD. By explicitly controlling the singular values, our proposed
svdRNN method allows us to easily solve the exploding gradient problem and we
observe that it empirically solves the vanishing gradient issue to a large extent. We
note that the SVD parameterization can be used for any rectangular weight matrix,
hence it can be easily extended to any deep neural network, such as a multi-layer
perceptron. Theoretically, we demonstrate that our parameterization does not lose
any expressive power, and show how it potentially makes the optimization pro-
cess easier. Our extensive experimental results also demonstrate that the proposed
framework converges faster, and has good generalization, especially in capturing
long range dependencies, as shown on the synthetic addition and copying tasks.

1 INTRODUCTION

Deep neural networks have achieved great success in various fields, including computer vision,
speech recognition, natural language processing, etc. Despite their tremendous capacity to fit com-
plex functions, optimizing deep neural networks remains a contemporary challenge. Two main
obstacles are vanishing and exploding gradients, that become particularly problematic in Recurrent
Neural Networks (RNNs) since the transition matrix is identical at each layer, and any slight change
to it is amplified through recurrent layers (Bengio et al.| (1994)).

Several methods have been proposed to solve the issue, for example, Long Short Term Mem-
ory (LSTM) (Hochreiter & Schmidhuber] (1997)) and residual networks (He et al.|(2016)). Another
recently proposed class of methods is designed to enforce orthogonality of the square transition
matrices, such as unitary and orthogonal RNNs (oRNN) (Arjovsky et al.| (2016); Mhammedi et al.
(2017)). However, while these methods solve the exploding gradient problem, they limit the expres-
sivity of the network.

In this paper, we present an efficient parametrization of weight matrices that arise in a deep neural
network, thus allowing us to stabilize the gradients that arise in its training, while retaining the
desired expressive power of the network. In more detail we make the following contributions:

e We propose a method to parameterize weight matrices through their singular value decom-
position (SVD). Inspired by (Mhammedi et al.|(2017))), we attain efficiency by using tools
that are common in numerical linear algebra, namely Householder reflectors for represent-
ing the orthogonal matrices that arise in the SVD. The SVD parametrization allows us to
retain the desired expressive power of the network, while enabling us to explicitly track and
control singular values.

e We apply our SVD parameterization to recurrent neural networks to exert spectral con-
straints on the RNN transition matrix. Our proposed svdRNN method enjoys similar space
and time complexity as the vanilla RNN. We empirically verify the superiority of svdRNN
over RNN/oRNN, in some case even LSTMs, over an exhaustive collection of time se-
ries classification tasks and the synthetic addition and copying tasks, especially when the
network depth is large.
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e Theoretically, we show how our proposed SVD parametrization can make the optimization
process easier. Specifically, under a simple setting, we show that there are no spurious local
minimum for the linear svdRNN in the population risk.

e Our parameterization is general enough to eliminate the gradient vanishing/exploding prob-
lem not only in RNNs, but also in various deep networks. We illustrate this by applying
SVD parametrization to problems with non-square weight matrices, specifically multi-layer
perceptrons (MLPs) and residual networks.

We now present the outline of our paper. In Section[2] we discuss related work, while in Section [3]
we introduce our SVD parametrization and demonstrate how it spans the whole parameter space and
does not limit expressivity. In Section [4| we propose the svdRNN model that is able to efficiently
control and track the singular values of the transition matrices, and we extend our parameterization
to non-square weight matrices and apply it to MLPs in Section[5] Section[6|provides the optimization
landscape of svdRNN by showing that linear svdRNN has no spurious local minimum. Experimental
results on MNIST and a popular time series archive are present in Section[7} Finally, we present our
conclusions and future work in Section [8

2 RELATED WORK

Numerous approaches have been proposed to address the vanishing and exploding gradient problem.
Long short-term memory (LSTM) (Hochreiter & Schmidhuber| (1997)) attempts to address the van-
ishing gradient problem by adding additional memory gates. Residual networks (He et al.| (2016))
pass the original input directly to the next layer in addition to the original layer output. |Mikolov
(2012) performs gradient clipping, while |[Pascanu et al.|(2013) applies spectral regularization to the
weight matrices. Other approaches include introducing L, or L, penalization on successive gradient
norm pairs in back propagation (Pascanu et al.| (2013)).

Recently the idea of restricting transition matrices to be orthogonal has drawn some attention. |Le
et al.| (2015) proposed initializing recurrent transition matrices to be identity or orthogonal (IRNN).
This strategy shows better performance when compared to vanilla RNN and LSTM. However, there
is no guarantee that the transition matrix is close to orthogonal after a few iterations. The uni-
tary RNN (uRNN) algorithm proposed in |Arjovsky et al|(2016) parameterizes the transition matrix
with reflection, diagonal and Fourier transform matrices. By construction, uRNN ensures that the
transition matrix is unitary at all times. Although this algorithm performs well on several small
tasks, Wisdom et al.{(2016) showed that uRNN only covers a subset of possible unitary matrices and
thus detracts from the expressive power of RNN. An improvement over uRNN, the orthogonal RNN
(oRNN), was proposed by [Mhammedi et al.|(2017). oRNN uses products of Householder reflectors
to represent an orthogonal transition matrix, which is rich enough to span the entire space of orthog-
onal matrices. Meanwhile, Vorontsov et al.|(2017) empirically demonstrate that the strong constraint
of orthogonality limits the model’s expressivity, thereby hindering its performance. Therefore, they
parameterize the transition matrix by its SVD, W = UXV T (factorized RNN) and restrict 3 to be
in a range close to 1; however, the orthogonal matrices U and V' are updated by geodesic gradi-
ent descent using the Cayley transform, thereby resulting in time complexity cubic in the number
of hidden nodes which is prohibitive for large scale problems. Motivated by the shortcomings of
the above methods, our work in this paper attempts to answer the following questions: Is there an
efficient way to solve the gradient vanishing/exploding problem without hurting expressive power?

As brought to wide notice in |He et al.| (2016), deep neural networks should be able to preserve
features that are already good. \Hardt & Ma, (2016) consolidate this point by showing that deep
linear residual networks have no spurious local optima. In our work, we broaden this concept and
bring it to the area of recurrent neural networks, showing that each layer is not necessarily near
identity, but being close to orthogonality suffices to get a similar result.

Generalization is a major concern in training deep neural networks. |Bartlett et al.| (2017) provide
a generalization bound for neural networks by a spectral Lipschitz constant, namely the product of
spectral norm of each layer. Thus, our scheme of restricting the spectral norm of weight matrices
reduces generalization error in the setting of \Bartlett et al.|(2017). As supported by the analysis in
Cisse et al.|(2017)), since our SVD parametrization allows us to develop an efficient way to constrain
the weight matrix to be a tight frame (Tropp et al.|(2005)), we consequently are able to reduce the
sensitivity of the network to adversarial examples.
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3 SVD PARAMETERIZATION

The SVD of the transition matrix W € R™ ™ of an RNN is given by W = UXVT, where ¥ is
the diagonal matrix of singular values, and U,V € R™*" are orthogonal matrices, i.e., UTU =
UUT = Tand VTV = VVT = I (Trefethen & Bau I11/(1997)). During the training of an RNN, our
proposal is to maintain the transition matrix in its SVD form. However, in order to do so efficiently,
we need to maintain the orthogonal matrices U and V' in compact form, so that they can be easily
updated by forward and backward propagation. In order to do so, as in Mhammedi et al.|(2017), we
use a tool that is commonly used in numerical linear algebra, namely Householder reflectors (which,
for example, are used in computing the QQ R decomposition of a matrix).

Given a vector u € R* k < n, the n x n Householder reflector Hy (u) is defined as:

In_k
Hi(u) = ( Ik—Q’f:‘uZ) , u70 (1)

I, , otherwise.
The Householder reflector is clearly a symmetric matrix, and it can be shown that it is orthogonal,
ie,H?>=1 (Householder|(1958)). Further, whenu # 0, it has n—1 eigenvalues that are 1, and one
eigenvalue which is —1 (hence the name that it is a reflector) . In practice, to store a Householder
reflector, we only need to store v € RF rather than the full matrix.

Given a series of vectors {u; }!'_, where uj, € R*, we define the map:
M RF x .. x R — R?X?
(Uky ooy ) = Hop (). Hi (ug), )
where the right hand side is a product of Householder reflectors, yielding an orthogonal matrix (to
make the notation less cumbersome, we remove the superscript from H;} for the rest of this section).

Theorem 1. The image of M is the set of all n X n orthogonal matrices.

The proof of Theorem |l|is an easy extension of the Householder QR factorization Theorem, and is
presented in Appendix Although we cannot express all n X n matrices with My, any W € R™*"
can be expressed as the product of two orthogonal matrices U,V and a diagonal matrix 3, i.e. by
its SVD: W = UXV . Given o € R" and {uibiy,  {vitiy, with ui,v; € RY, we finally define
our proposed SVD parametrization:

My ks RF % x R® x RF2 x .. x R" x R™ — R™X

(Uky y weoy Uy Vkgy evy Uny ) = Hop () oo Hiey (g, )diag (o) Hiy (Viy ) Hn(vp). (3)

Theorem 2. The image of M 1 is the set of n X n real matrices.
ie. R =My (R x ... x R" x R x ... x R" x R")

The proof of Theorem 2| is based on the singular value decomposition and Theorem|l| and is pre-
sented in Appendix E} The astute reader might note that M 1 seemingly maps an input space of
n? + 2n dimensions to a space of n® dimensions; however, since Hy (u) is invariant to the norm of
Uy, the input space also has exactly n? dimensions. Although Theorems and [Z]are simple exten-
sions of well known linear algebra results, they ensure that our parameterization has the ability to
represent any matrix and so the full expressive power of the RNN is retained.

Theorem 3. The image of My, 1, includes the set of all orthogonal nxn matrices if k1+ko < n+2.

Theorem indicates that if the total number of reflectors is greater thann: (n—k1+1)+ (n—ka+
1) > n, then the parameterization covers all orthogonal matrices. Note that when fixing o = 1,
My ey ({Ui}iog, » {Vi} i, 1) € O(n), where O(n) is the set of n x n orthogonal matrices. Thus
when k1 + ko < n + 2, we have O(n) = My, r, [Rkl X .o X R x RF2 x ... x R™ x 1]

4 SVD-RNN

In this section, we apply our SVD parameterization to RNNs and describe the resulting svdRNN
algorithm in detail. Given a hidden state vector from the previous step Rt € R™ and input
=1 € R™, RNN computes the next hidden state h\*) and output vector o'") € R" as:

Y = o(WhtD 4 Mz(t=Y 4 p) )
o® =yp® (5)
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In svdRNN we parametrize the transition matrix W € R™*"™ using m1 + my Householder reflectors
as:
W = Mn—ml-l—l,n—mg—i-l(un—ml—i-lv coo Uns Un—mo+15 -+ Un, U) (6)
= Hn (un) -~-Hn7m1+1 (unfml +1 )diag<U)Hn7m2+1 ('Unfm2+1)---Hn('Un) (7)
This parameterization gives us several advantages over the regular RNN. First, we can select the
number of reflectors my and mq to balance expressive power versus time and space complexity. By
Theorem 2| the choice my = mo = n gives us the same expressive power as vanilla RNN. Notice
ORNN could be considered a special case of our parametrization, since when we set m1 + ms > n
and o = 1, we can represent all orthogonal matrices, as proven by Theorem[3| Most importantly,
we are able to explicitly control the singular values of the transition matrix. In most cases, we want
to constrain the singular values to be within a small interval near 1. The most intuitive method is to
clip the singular values that are out of range. Another approach would be to initialize all singular
values to 1, and add a penalty term ||o — 1||? to the objective function. Here, we have applied
another parameterization of o proposed in|\Vorontsov et al.|(2017):

o; =2r(f(6;) — 0.5)+ 0", i € [n] ®)
where f is the sigmoid function and &; is updated from u;, v; via stochastic gradient descent. The
above allows us to constrain o; to be within [0* — r,c* + r]. In practice, c* is usually set to 1 and
r < 1. Note that we are not incurring more computation cost or memory for the parameterization.
For regular RNN, the number of parameters is (n, + n; + n + 1)n, while for svdRNN it is (n, +

m? +m§ —mi1—ms2 _ — ;
n; + my +mg + 2)n — . In the extreme case where m1 = mo = n, it becomes
(no + n; + n + 3)n. Later we will show that the computational cost of svdRNN is also of the same
order as RNN in the worst case.

4.1 FORWARD/BACKWARD PROPAGATION

In forward propagation, we need to iteratively evaluate h®) from t = 0 to L using @). The only
different aspect from a regular RNN in the forward propagation is the computation of Wh(=1.
Note that in svdRNN, W is expressed as product of m1 + mq Householder matrices and a diagonal
matrix. Thus Wh(t_l) can be computed iteratively using (m1 + ms) inner products and vector

additions. Denoting tj, = (OZ;’“ ) we have:
201, Al h
”Hk(uk)h:<ln— Wﬂ’“)h h—2ATA T, ©)
Uy, Uk Uy, Uk

Thus, the total cost of computing Wh(t’l) is O((my + ma)n) floating point operations (flops).
Detailed analysis can be found in Section .2} Let L({u;}, {v;}, o, M,Y,b) be the loss or objective

function, C) = Wh®) 32 = diag(5). leenag(t), we define:
oL [ac®] oL oL oct ] oL 0
oul)  |oa) | 9CW 5,0 T | 9,0 | aCh’ (o
oL [oc®1" oL oL [ox®0]" oL .
50 T | a0 p5w T os®] an®’ an
oL [oac® 1" oL 0
ohET T | ghET | 9c® (12

ac® agc®  sc® and ac®

Back propagation for svdRNN requires These partial gradients

o’ g osm ME PR
can also be computed iteratively by computing the gradient of each Householder matrix at a time.
We drop the superscript (t ) now for ease of exposition. Given h = Hy(ug)h and g = a—i we have
oL oh| oL < 2ukuk ) ﬁ;g R
— == —==II—-— g=9—2—=—1 (13)
Oh [3h oh u;— iy, ukTuk
9T
oL oh oL Wl h 1 alh
=|a| = =-2(—2-1,+ hily, + ——diy ), 14
D [aak] oh (ugak alan * T @lag? k)Y (19
aT aT
h h
— 9k —2AT’ngh 4k “kguk (15)
Uy, uk ke Uk uk U Uk Uk
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Details of forward and backward propagation can be found in Appendix (B). One thing worth notic-
ing is that the oRNN method in [Mhammedi et al| (2017) actually omitted the last term in (13) by
assuming that ||ug|| are fixed. Although the scaling of uy, in the Householder transform does not
affect the transform itself, it does produce different gradient update for uy even if it is scaled to norm
1 afterwards.

4.2 COMPLEXITY ANALYSIS
Table 1| gives the time complexity of various algorithms. Hprod and H grad are defined in Algo-
rithm (see Appendix (@) ). Algorithmneeds 6k flops, while Algorithm uses (3n + 10k) flops.

Since [Jug||? only needs to be computed once per iteration, we can further decrease the flops to 4k
and (3n + 8k). Also, in back propagation we can reuse « in forward propagation to save 2k flops.

flops
Hprod(h, uy) 4k
Hgrad(h, u, g) 3n + 6k

svdRNN-Local FP(n, m1,m>) 4n(my +ma) — 2m3 — 2m3 + O(n)
svdRNN-Local BP(n,m1,ma)  6n(my + mz) — 1.5m? — 1.5m3 + O(n)
oRNN-Local FP(n, m) dnm —m? + O(n)
oRNN-Local BP(n,m) nm — 2m? + O(n)

Table 1: Time complexity across algorithms

5 EXTENDING SVD PARAMETERIZATION TO GENERAL WEIGHT MATRICES

In this section, we extend the parameterization to non-square matrices and use Multi-Layer Percep-
trons(MLP) as an example to illustrate its application to general deep networks. For any weight
matrix W € R™*"(without loss of generality m < n), its reduced SVD can be written as:

W =U(2]0)(Ve|VR)"T = USV, (16)
where U € R™*™, ¥ € diag(R™),V, € R" ™. There exist up, ..., U, and v, ..., vk, s.t. U =
Ho (). HE (ury), V= H] (vn) .. HE, (Vk,), where ky € [m], ko € [n]. Thus we can extend the
SVD parameterization for any non-square matrix:

/\/1,2"17122 R x . x R™ x RF2 x ... x R x Rmin(m.n) |, gmxn

(Why s vey Urny Ukgy wees Uny ) > HI (W) < - - Zi(ukl)f}’}-{% (Vky) -+ Ho(vp). (A7)

where 3 = (diag(c)|0) if m < n and (diag(c)|0)T otherwise. Next we show that we only need
2min(m,n) reflectors (rather than m + n) to parametrize any m X n matrix. By the definition of
&, we have the following lemma:

Lemma 1. Given {v;}1,, define V) = 1" (v,,).. H} (vg,) for k € [n]. We have:
V*(ylzl) = V*(’]?), Vk1, ke € [n], ¢ <min(n — ki, n — k2).

Here V, ; indicates the ith column of matrix V. According to Lemma E] we only need at most first
m Householder vectors to express Vi, which results in the following Theorem:

Theorem 4. If m < n, the image of MY";" ., is the set of all m x n matrices; else the image of

MZL_’%_HJ is the set of all m X n matrices.

Similarly if we constrain u;,v; to have unit length, the input space dimensions of M’f;l"_m 41 and

i1 1 are both mn, which matches the output dimension. Thus we extend Theorem 2| to the
non-square case, which enables us to apply SVD parameterization to not only the RNN transition
matrix, but also to general weight matrices in various deep learning models. For example, the
Multilayer perceptron (MLP) model is a class of feedforward neural network with fully connected
layers:

A = W E=DpE=1) 4 pt=1))y (18)
Here h®®) € R™, =1 ¢ R™~1 and W) € R™>"~1_ Applying SVD parameterization to W)
say ny < ng_1, we have:

W(t) = H?Li (unt)H;lt (ul)EHnt71 (vnt—lf’ﬂﬁ*l)”'H?Li:i (’Unt—l)'

ng_1—n¢+1
We can use the same forward/backward propagation algorithm as described in Algorithm[l] Besides
RNN and MLP, SVD parameterization method also applies to more advanced frameworks, such as
Residual networks and LSTM, which we will not describe in detail here.
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6 THEORETICAL ANALYSIS

Since we can control and upper bound the singular values of the transition matrix in svdRNN, we can
clearly eliminate the exploding gradient problem. In this section, we now analytically illustrate the
advantages of svdRNN with lower-bounded singular values from the optimization perspective. For
the theoretical analysis in this section, we will limit ourselves to a linear recurrent neural network,
i.e., an RNN without any activation.

6.1 REPRESENTATIONS OF RNN WITHOUT ACTIVATION

Linear recurrent neural network. For simplicity, we follow a setting similar tol[Hardt & Ma|(2016).
For compact presentation, we stack the input data as X € R™**, where X = (@ [z ... 2=,

and transition weights as W € R"™ "™ where W = (W|W?|---|W"). Then we can simplify the

output as: .

oM (X) =Y (W'n + > W (Maz") + b))
i=1

By absorbing M and b in each data ¥ and assuming h'%) = 0, we further simplify the output as:
t
oM(X) =YYy Wial=V
i=1

Suppose the input data X ~ D, and assume its underlying relation to the output is y = Avec(X)+n,
where A € R"*"™ and residue n € R" satisfies Ex~p[n|X] = 0. We consider the individual loss:

FW;X,y) = [[0M(X) = yl5 = [[Y Wrec(X) — yll5.
Claim 1. With linear recurrent neural networks, the population risk
RW] = Exp[f(W: X.y)] = (YW - AR2[F + C,
where Y = Ex p[vec(X)vec(X)T], and C = E|||n||3]. Meanwhile
VwRW] = (YW — A)S (I)2W[3W2] .- pw'=1)
6.2 ALL CRITICAL POINTS ARE GLOBAL MINIMUM

Theorem 5. With linear recurrent neural networks, if transition matrix W satisfies omin(W) > e >
0, all critical points in the population risk are global minimum.

Proof. Write YW — Aas (Ey|E|---|E;), where each E; € R¥*?, By Claim|[1]
N T
IVwRIW][[% = (YW — A (La]2W T [BW 12| [t(W )1 1%
> omin(E)(YW = A) (La2W T BWT)?|--- It(WT)H)T 1%

min

t
> opin(2) Y OVl
=1

> opin(2) min {2V YW — A%

1<i<t

> 0pin(2) min {22 VHR(W) - RY)

Therefore when Vi R[W] =0 suffices R(W) = R*, meaning W reaches the global minimum. [

Theorem 3] potentially explains why our system is easier to optimize, since with our scheme of SVD
parametrization, we have the following corollary.

Corollary 1. With the update rule in (8), linear svdRNNs have no spurious local minimum.

While the above analysis lends further credence to our observed experimental results, we leave it to
future work to perform a similar analysis in the presence of non-linear activation functions.

7 EXPERIMENTAL RESULTS

In this section, we provide empirical evidence that shows the advantages of SVD parameterization
in both RNNs and MLPs. For RNN models, we compare our svdRNN algorithm with (vanilla) RNN,
IRNN(Le et al|(2015)), oRNN(Mhammedi et al|(2017)) and LSTM (Hochreiter & Schmidhuber
(1997)). The transition matrix in IRNN is initialized to be orthogonal while other matrices are
initialized by sampling from a Gaussian distribution. For MLP models, we implemented vanilla
MLP, Residual Network (ResNet)(He et al.|(2016l)) and used SVD parameterization for both of them.
We used a residual block of two layers in ResNet. In most cases leaky_Relu is used as activation
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Sfunction, except for LSTM, where leaky_Relu will drastically harm the performance. To train these
models, we applied Adam optimizer with stochastic gradient descent (Kingma & Ba|(2014)). These
models are implemented with Theano (Al-Rfou et al.|(2016)) ).|I|

7.1 TIME SERIES CLASSIFICATION

In this experiment, we focus on the time series classification problem, where time series are fed
into RNN sequentially, which then tries to predict the right class upon receiving the sequence
end (Hiisken & Stagge| (2003)). The dataset we choose is the largest public collection of class-
labeled time-series with widely varying length, namely, the UCR time-series collection from |Chen
et al.| (2015 E| We present the test accuracy on 20 datasets with RNN, LSTM, oRNN and svdRNN
in Table [3{Appendix|C) and Figure[l} In all experiments, we used hidden dimension nj, = 32, and
chose total number of reflectors for oRNN and svdRNN to be m = 16 (for svdRNN m; = mq = 8).
We choose proper depth t as well as input size n;. Given sequence length L, since tn; = L, we
choose n; to be the maximum divisor of L that satisfies depth < /L. To have a fair comparison

CBF, n_h = 32 50words, n_h = 32 Adiac, n_h = 32
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Figure 1: Performance comparisons of the RNN based models on three UCR datasets.

of how the proposed principle itself influences the training procedure, we did not use dropout in any
of these models. As illustrated in the optimization process in Figure[l) this resulted in some overfit-
ting (see (a) CBF), but on the other hand it shows that svdRNN is able to prevent overfitting. This
supports our claim that since generalization is bounded by the spectral norm of the weights|Bartlett
et al.| (2017), svdRNN will potentially generalize better than other schemes. This phenomenon is
more drastic when the depth is large (e.g. ArrowHead(251 layers) and FaceAll(131 layers)), since
regular RNN, and even LSTM, have no control over the spectral norms. Also note that there are
substantially fewer parameters in oORNN and svdRNN as compared to LSTM.

7.2 MNIST

In this experiment, we compare different models on the MNIST image dataset. The dataset was
split into a training set of 60000 instances and a test set of 10000 instances. The 28 x 28 MNIST
pixels are flattened into a vector and then traversed by the RNN models. Table 2| shows accuracy
scores across multiple We tested different models with different network depth as well as width.
Figure [Pfa)(b) shows the test accuracy on networks with 28 and 112 layers (20 and 128 hidden
dimensions) respectively. It can be seen that the svdRNN algorithms have the best performance
and the choice of r (the amount that singular values are allowed to deviate from 1) does not have
much influence on the final precision. Also we explored the effect of different spectral constraints
and explicitly tracked the spectral margin (max; |o; — 1|) of the transition matrix. Intuitively, the
influence of large spectral margin should increase as the network becomes deeper. Figure [2{d)
shows the spectral margin of different RNN models. Although IRNN has small spectral margin at
first few iterations, it quickly deviates from orthogonal and cannot match the performance of oORNN
and svdRNN. Figure e ) shows the magnitude of first layer gradient || % ll2. RNN suffers from
vanishing gradient at first 50k iterations while oRNN and svdRNN are much more stable. Note that
LSTM can perform relatively well even though it has exploding gradient in the first layer.

We also tested RNN and svdRNN with different amount of non-linearity, as shown in Figure [J[c).
This is achieved by adjusting the leak parameter in leaky_Relu: f(x) = max(leak - z,x). With
leak = 1.0, it reduces to the identity map and when leak = 0 we are at the original Relu function.
From the figures, we show that svdRNN is resistant to different amount of non-linearity, namely
converge faster and achieve higher accuracy invariant to the amount of the leak factor. To explore
the reason underneath, we illustrate the gradient in Figure[2{f), and find out svdRNN could eliminate
the gradient vanishing problem on all circumstances, while RNN suffers from gradient vanishing
when non-linearity is higher.

'we thank Mhammedi for providing their code for oRNN(Mhammedi et al. (2017)))
?Details of the data sets, including how to split into train/vaildiation/test sets, are given in Appendix
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Figure 2: RNN models on MNIST

Models Hidden dimension ~ Number of parameters  Test accuracy
svdRNN 256(my, my = 16) ~ 13k 97.6
OoRNN( 256(m = 32) ~ 11k 97.2
RNN( 128 ~ 35k 94.1
uRNN(Arjovs ) 512 ~ 16k 95.1
RC uRNN L. [(2016)) 512 ~ 16k 97.5
FC uRNN| . ém 116 ~ 16k 92.8
factorized | (2017) 128 ~ 32k 94.6
LSTM (Vorontsov et al.|(20 128 ~ 64k 97.3

Table 2: Results for the pixel MNIST dataset across multiple algorithms.

For the MLP models, each instance is flattened to a vector of length 784 and fed to the input layer.
After the input layer there are 40 layers with hidden dimension 32 (Figure[3{a)) or 30 to 100 layers
with hidden dimension 128 (Figure[3(b)). On a 40-layer network, svdMLP and svdResNet achieve
similar performance as ResNet while MLP’s convergence is slower. However, when the network is
deeper, both MLP and ResNet start to fail. With ny, = 128, MLP is not able to function with L > 35
and ResNet with L > T70. On the other hand, the SVD based methods are resilient to increasing
depth and thus achieve higher precision.

MNIST, np = 32, L=40 MNIST n,=128

0.85

H —— ResNet
o.80f| 1 —— svdMLP m=8

lest Accuracy

svdMLP m=16
svdResNet m=8
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LP L=100
—+- svdReshet L=100

0.70 .

100000 200000 300000 400000 500000 0 25000 50000 75000 100000 125000 150000 175000
# samples # samples.

() (b)
Figure 3: MLP models on MNIST with L layers n;, hidden dimension

8 CONCLUSIONS

In this paper, we have proposed an efficient SVD parametrization of various weight matrices in
deep neural networks, which allows us to explicitly track and control their singular values. This
parameterization does not restrict the network’s expressive power, while simultaneously allowing
fast forward as well as backward propagation. The method is easy to implement and has the same
time and space complexity as compared to original methods like RNN and MLP. The ability to
control singular values helps in avoiding the gradient vanishing and exploding problems, and as we
have empirically shown, gives good performance. Although we only showed examples in the RNN
and MLP framework, our method is applicable to many more deep networks, such as Convolutional
Networks etc. However, further experimentation is required to fully understand the influence of using
different number of reflectors in our SVD parameterization. Also, the underlying structures of the
image of My, r, when k1, ko # 1 is a subject worth investigating.
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APPENDIX A PROOFS
A.1 PROOF OF PROPOSITION

Proposition 1. (Householder QR factorization) Let B € R"*". Then there exists an upper tri-
angular matrix R with positive diagonal elements, and vectors {u;}?_, with u; € R, such that
B =H(uy)...H} (u1)R. (Note that we allow u; = 0, in which case, H*(u;) = I, as in (I))

Proof of Proposition[l] For n = 1, note that H}(u;) = £1. By setting u; = 0 if By; > 0 and
uy # 0 otherwise, we have the factorization desired.

Assume that the result holds for n = k, then forn = k + 1 set up41 = By — || B1]|e;. Here By is
the first column of B and e; = (1,0,...,0) T. Thus we have

k+1 _ (IIB1ll Biak
Hyy (uk1)B = ( 01 )

where B € R¥*¥. Note that HZE(ukH) = I;41 when uj,; = 0 and the above still holds. By

assumption we have B = H¥ (uy)... 1} (u1) R. Notice that H* 1 (u;) = (1 H'-“(ui))’ so we have
that

Y () M () M g ) B = (1221 Praes ) — R

is an upper triangular matrix with positive diagonal elements. Thus the result holds for any n by the
theory of mathematical induction. O

A.2 PROOF OF THEOREM

Proof. Observe that the image of M; is a subset of O(n), and we now show that the converse
is also true. Given A € O(n), by Proposition |1} there exists an upper triangular matrix R with
positive diagonal elements, and an orthogonal matrix ) expressed as @@ = H?(uy,)...H} (u1) for
some set of Householder vectors {u;}" ;, such that A = QR. Since A is orthogonal, we have
ATA = AAT = I, thus:
ATA=R"™Q"QR=R'R=1,; Q"TAATQ=Q"QRR'"Q"Q=RR" =1,

Thus R is orthogonal and upper triangular matrix with positive diagonal elements. So R = I,, and
A=Q =H(up).. H](u1). O

A.3 PROOF OF THEOREM

Proof. 1tis easy to see that the image of M ; is a subset of R"*"™. For any W € R"*™, we have its

SVD, W = UXV T, where ¥ = diag(c). By Theorem for any orthogonal matrix U, V € R"*",

there exists {u; }7{v;}_; such that U = M (uy, ..., u,) and V.= My (vy, ..., v, ), then we have:
W =Hy (up,)... HT (u1) ZHT (v1)... Hy (vn)

= Ml,l(uly ceey Up, V1, ...,’Un,O')

A.4 PROOF OF THEOREM

Proof. Let A € R™™™ be an orthogonal matrix. By Theorem |1} there exist {a;}];, such that
A = My(ay,...,an). Since AT is also orthogonal, for the same reason, there exist {b; }?_, such
that AT = M (by, ..., b,). Thus we have:
A = ’Hn(an)...H1(a1) = Hl(bl)Hn(bn)
Observe that one of k3 > k1 — 1 and k; > ko — 1 must be true. If ko > k1 — 1, set
ug =ag, k=n,n—1,...,kq,
Vkotki—k—1 :ak,k:kl - 1,...,]., (19)
(o :O,t:k2+k1 —2,...,TL,
and then we have:
Mgy ey (Wky s ooy Uy Uk ooy Uny 1) = Hop () oo Moy (Wi ) In Mooy (Vi ) o (V)
- Hn(an)?’-lkl (akl)In'Hklf1(ak1,1)...'H1(a1)
=A (20)
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Else, assign:
v =bp, k=n,n—1,..., ko,
Uko+ky—k—1 :bk,k:k‘g —1,...,1, (21)
Ut :O,t:k2+]€1 72,...,77,,
and then we have:
Mkth (ukl, ...,umvkz, ceey Unyy 1) = Hl(bl)...szfl(bszl)In'Hb (bkz)Hn(bn)
=A (22)

A.5 PROOF OF THEOREM
m,n

Proof. It is easy to see that the image of M. is a subset of R™*™. For any W € R™*", we have
its SVD, W = UXV T, where ¥ is an m x n diagonal matrix. By Theorem for any orthogonal
matrix U € R™*™ V € R™ ", there exists {u;}7,{v;}7_; such that U = H" (up,)... H]" (u1)
and V = H"(vy,)...H7 (v1). By Lemmall] if m < n we have:
W = H (up). H (ur) ZHT (v1)- Ho (vn)
= Hy (un). - H (w1)2Hy i1 (Vn—mgr) - Hy, (0n).
Similarly, for n < m, we have:
W = H (un) ... HT (ug ) SHT (v1)... Hoy (vn)
=H (un)--Hy 1 (Um—n1) ZHT (v1).. Hy (vn).

A.6 PROOF OF CLAIM

Proof.
RW] = Ex~p[f(W; X, y)]

=Exp [[[(YW — A)vec(X) — n|°]
=E [tr (YW — A)vec(X)vec(X) (YW — A) )] +E[[[n]]*] - 2E (YW — A)vec(X),n)]
=tr (YW — A)E [vec(X)vec(X) '] YW —A)T) +C
= [(YW - A2|5 +C
For the derivative,
RIW + AW] = ||(Y (W + AW |(W + AW)?|--- (W + AW)) — A)SV2|3 + C
= RIW] + ((AW2WAW| - W' TAW) 12, (YW = )T12) 4 o |AW[3)
— RIW] + <AW, (YW — A)S (L2 |3W2] - - - |tWt’1)T>
Therefore VR[W] = (YW — A)S (1,2W[3W2] - .- |twt=1) T

Remark: here when W and AW are not commutative, each W AW should instead be written as
> =0 W/ AWW?*~/. Since the change of order doesn’t impact the analysis, we informally simplify
the expressions here.

O
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APPENDIX B DETAILS OF FORWARD AND BACKWARD PROPAGATION
ALGORITHMS

Algorithm 1 Local forward/backward propagation

Input h(t 1); ac(t>’U - (un|~-~|un—m1+1)>

L,V = (Un|t-~-‘”nfm2;r11) oL oL oL oL Algorithm 2
Output: W = wht= )j U BV’ 96 GhG-D h = Hprod(h,us)
// Begin forward propagation -
h(v) « h Input: h,Auk
for/ifn n— 1 n—m2+1do Output: h =31, (ux)h
~ 7 2upu

W) Hprod(hkﬂ, ve) /I Compute VT /f Compute b = (I — Jr v )h
end for R a < prmugh
hY | shy) /I Compute XV Th e
fork—n—m1+1 .,n do Xk

h Hprod(hk Lug) // Compute USVTh
end for
Ct) « p Algorithm 3
//Begin E)ackward propagation h,ay = Hgrad(h,ug, g)

«— T . _ 9oL
gork;if(n)n—l n—mi + 1do glpu;{ ?u)k}’lg = 90 Where

R (U
9.G") iy < Hyrad(hy” jur,g) 1 Compute 2& Qutput: f — 2%, — oL
gnd for . T
¥ < diag(g o h;:z))), g+ Xg // Compute 2% “= ||“’2c“2uk h
@)  24i295) i (5) oL = e d
fork=n—mo+1,...,ndo h < g — Puy N
G(Un 1 & ngad(th, vg,g) // Compute g—i t  —ag — Bh+ abux

%nd for 5 oL

L L v
G« G G G T g 5 g

APPENDIX C  MORE EXPERIMENTAL DETAILS

C.1 DETAILS ON THE TIME SERIES CLASSIFICATION TASK

For the time series classification task, we use the training and testing sets directly from the UCR
time series archive http://www.cs.ucr.edu/~eamonn/time_series_data/, and ran-
domly choose 20% of the training set as validation data. We provide the statistical descriptions of
the datasets and experimental results in Table 3]

Datasets Data Descriptions Depth RNN LSTM oRNN svdRNN
training/testing size  length  #class acc (Nparam) acc (Nparam) acc (Nparam) acc (Nparam)

S0words 450 455 270 50 27 | 0492 (3058) | 0.598 (7218) | 0.642 (2426) | 0.651 (2850)
Adiac 390 391 176 37 16 | 0552 (2694) | 0.706  (6950) | 0.668 (2062) | 0.726  (2486)
ArrowHead 36 175 251 3 251 | 0509 (1219) | 0.537 (4515) | 0.669 (587) | 0.800 (1011)
Beef 30 30 470 5 47 | 0600 (1606) | 0.700  (5766) | 0.733 (974) | 0.733 (1398)
BeetleFly 20 20 512 2 320950 (1699) | 0.850 (6435) | 0.900 (1067) | 0.950 (1491)
CBF 30 900 128 3 16 | 0702 (1476) | 0967 (5444) | 0.881 (844) | 0.948 (1268)
Coffee 28 28 286 2 22| 1.000 (1570) | 1.000 (6018) | 1.000 (938) | 1.000 (1362)
Cricket X 390 390 300 12 20 0310 (1997) | 0456  (6637) | 0.495 (1365) | 0.500 (1789)
DistalPhalanxOutlineCorrect | 276 600 80 2 10 0.790  (1410) | 0.798 (5378) | 0.830 (778) 0.840 (1202)
DistalPhalanxTW 154 399 80 6 10 0.815 (1641) | 0.795  (5609) | 0.807 (1009) | 0.815 (1433)
ECG200 100 100 9% 2 12| 0.640 (1410) | 0.640 (5378) | 0.640 (778) | 0.640 (1202)
ECG5000 500 4500 140 5 14 0.941  (1606) | 0.936  (5766) | 0.940 (974) 0.945 (1398)
ECGFiveDays 23 861 136 2 17 | 0947 (1443) | 0790 (5411) | 0976 (811) | 0.948 (1235)
FaceAll 560 1690 131 14 131 0.549  (1615) | 0.455 (4911) | 0.714  (983) 0.714  (1407)
FaceFour 24 88 350 4 25 | 0625 (1701) | 0477 (6245) | 0.511 (1069) | 0.716  (1493)
FacesUCR 200 2050 131 14 131 | 0449 (1615) | 0.629 (4911) | 0.710  (983) | 0.727  (1407)
Gun Point 50 150 150 2 15 | 0947 (1507) | 0920 (5667) | 0.953 (875) | 0.960 (1299)
InsectWingbeatSound 220 1980 256 11 16 | 0534 (1996) | 0.515 (6732) | 0.598 (1364) | 0.586 (1788)
ItalyPowerDemand 67 1029 24 2 6 0970  (1315) | 0.969 (4899) | 0.972 (683) 0973 (1107)
Lighting2 60 61 637 2 49 0.541 (1570) | 0.541 (6018) | 0.541 (938) | 0.541 (1362)
MiddlePhalanxOutlineCorrect | 291 600 80 2 10 0.793  (1410) | 0.783  (5378) | 0.712  (778) 0.820 (1202)

Table 3: Test accuracy (number of parameters) on UCR datasets. For each dataset, we present the
testing accuracy when reaching the smallest validation error. The highest precision is in bold, and
lowest two are colored gray.
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C.2 EXPERIMENTAL RESULTS ON THE ADDING AND COPYING TASKS
We tested RNN models on the Adding and Copying tasks with the same settings as Arjovsky et al.

:

C.2.1 ADDING TASK

The Adding task requires the network to remember two marked numbers in a long sequence and add
them. Each input data includes two sequences: top sequence whose values are sampled uniformly
from [0, 1] and bottom sequence which is a binary sequence with only two 1’s. The network is asked
to output the sum of the two values. From the empirical results in Figure 4} we can see that when
the network is not deep (number of layers L=30 in (a)(d)), every model outperforms the baseline of
0.167 (always output 1 regardless of the input). Also, the first layer gradients do not vanish for all
models. However, on longer sequences (L=100 in (b)(e)), IRNN failed and LSTM converges much
slower than svdRNN and oRNN. If we further increase the sequence length (L=300 in (c)(f)), only
svdRNN and oRNN are able to beat the baseline within reasonable number of iterations. We can
also observe that the first layer gradient of oORNN/svdRNN does not vanish regardless of the depth,
while IRNN/LSTM’s gradient vanish as L becomes lager.

Adding task L=300 n,=128
— s
0175 IRNN
o — oRNN os — oRmN

— svaRNN

Adding task L=30 n,=128 Adding task L=100 n,=128
0200 o6 06
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0125
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0075
02 | )\ 02
e L U
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0000 ., KTV TSRy 0o
20000 40000 60000 80000 100000 120000 140000 10000 20000 30000 40000 50000 60600 2500 5000 7500 10000 12300 15000 17300 20000
eration tteration Reration
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Figure 4: RNN models on the adding task with L layers and nj; hidden dimension. The top plots
show the test MSE, while the bottom plots show the magnitude of the gradient at the first layer.

C.2.2 COPYING TASK

Let A = {a;}?_, be the alphabet. The input data sequence x € AT+2° where T is the time lag.
x1.10 are sampled uniformly from i{ai}zzo and xr410 is set to ag. Rest of x; is set to ag. The
network is asked to output x1.19 after seeing ag. That is to copy x1.10 from the beginning to the end
with time lag T

A baseline strategy is to predict ag for T+ 10 entrees and randomly sample from {a;}1_, for the last
10 digits. From the empirical results in Figure[5] svdRNN consistently outperforms all other models.
IRNN and LSTM models are not able to beat the baseline with large time lag. In fact, the loss of
RNN/LSTM is very close to the baseline (memoryless strategy) indicates that they do not memorize
any useful information throughout the time lag.

0.30 Copying task T=100 n,=128 030 Copying task T=300 n,=128 0.30 Copying task T=500 n,=128
-~ baseline -~ baseline
0.25 0.25 — LSTM 0.25 — LSTM
\ IRNN IRNN
0204k 0.20 —— ORNN 0.20 — ORNN
S S S, i i | —— svdRNN —— svdRNN
0.15 0.15 0.15

---- baseline
0.10 —— LST™
IRNN N

0.05 —— ORNN 0.05 - 0.05
—— svdRNN
0.00 0.00 0.00
50000 100000 150000 200000 250000 20000 40000 60000 80000 10000012000014000 20000 40000 60000 80000
# samples # samples # samples

0.10 0.10
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I€st LrossEntropy
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Figure 5: RNN models on the Copying task with 7" time lag and n;, hidden dimension.
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