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Abstract

It is suggested that the task of audio-to-score translation offers an adequate testbed1

to investigate the division of labor between background knowledge and machine2

learning in the domain of audio pattern recognition, with a controllable level of3

difficulty and the ability to synthesize a limitless amount of labelled data.4

As a proof of concept, this paper focuses on pitch detection from audio signals.5

Extensive background knowledge is used to initialize simple convolutional neural6

nets (NN) and achieve the recognition of single notes with a decent accuracy. The7

performance achieved by trained NNs, however, is significantly higher. Some8

tentative interpretations of this fact are obtained by opening the black box and9

inspecting the modifications of the NN filters due to supervised learning.10

1 Introduction and Rationale11

Audio-to-speech translation has been intensively studied since the early 80s, as a key step of the12

natural language processing chain. While mainstream approaches used to be rooted in statistical13

and linguistic feature extraction [1], new end-to-end approaches rooted on deep neural networks are14

revolutionizing the field [2], along the same lines as in computer vision [3, 4].15

This paper investigates a related but different issue, the audio-to-score translation (AST) in music, at16

the core of the Music Information Retrieval Evaluation eXchange (MIREX) international challenges17

[5]. This domain offers rich resources in terms of labelled data and feature extraction using extensive18

signal processing libraries. It thus supports the investigation of the benefits of using background19

knowledge, and specifically what knowledge can be given to the learning agent and what should20

better be learned, in a systematic way.21

Data resources. MIREX 2018 offers a number of tracks, ranging from the identification of the22

type of music, to the name of the composer or the music mood. Former MIREX editions were23

concerned with other tracks including the alignment of audio to scores [6]. In the following, we24

focus on a subtask of audio-to-score translation task, pitch detection, formulated as a supervised25

learning task and tackled using the MAPS database [7]. It is claimed that the single note identification26

from audio signal is most similar to phoneme identification from audio signal, the elementary task of27

audio-to-speech translation.28

Prior knowledge and pre-processing Dedicated and robust signal processing (SP) libraries[8]29

have been developed to achieve audio signal pre-processing and build time-frequency representations30

of the signal. These signal representations can be provided as pixel matrices or vectors to standard31

neural network (NN) architectures, together with the associated labels (single note or chords), and32

used to train NNs using standard supervised learning.33
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An alternative is offered by using simple convolutional NN architectures on the raw signal. The34

point is that the convolutional mask aimed to detect a given frequency f can be either learned, or35

deterministically set to Wf,j = cos( 2πfjfs
) for j = [[0, N ]], with N is the mask dimension and36

fs = 22.05 kHz the sampling frequency of the audio signal.37

Research Agenda This paper reports on the lessons learned from training NN (either from scratch,38

or using educated weight initialization) for pitch detection, claiming that these lessons are relevant to39

audio-to-speech phoneme recognition for the following reasons.40

Pitch detection is assumedly easier than phoneme identification for a ground truth compact description41

of every note is available, e.g. in terms of Fourier coefficient. The diversity among notes is lesser than42

for phonemes (a note most similar but different from another note does not exist as far as musical43

instruments are well tuned), but still presents some ambiguities as a note evokes its harmonic by44

construction. The phoneme diversity due to the different speakers has its equivalent in music: a same45

note played on different instruments corresponds to different audio signals, due to the distinctive46

timbre of the musical instruments.47

For these reasons, it is conjectured that pitch detection defines a relevant and informative testbed for48

phoneme detection. After briefly presenting Automatic Music Transcription, we describe the goals49

of the presented experiments, before reporting on the lessons learned, about how and when the SP50

knowledge is worth being exploited and what are the pitfalls.51

2 Automatic Music Transcription52

Automatic Music Transcription (AMT) [9] is a difficult task even for human experts [10]. Most of53

the time, AMT and pitch detection research is done on piano music, to avoid the variability due54

to the direct contact between the musician and the string that produces the sound. First attempts55

to automatically transcript polyphonic music due to Moorer [11] inspired many followers [12, 13,56

14], mostly using statistical approaches. AMT and Music Information Retrieval were more recently57

revisited using Deep Learning techniques, specifically convolutional (CNNs) and deep belief networks58

(DBNs) [15, 16, 17].59

Only pitch detection is considered in the following. The set of audio frequencies corresponding to60

the musical notes are distributed on a log-scale; the pythagorean scale consists in fn ∝ f0 2
n/12,61

mapping the human ear perception.62

Pitch detection can be achieved through extracting robust features from the raw audio signal. Com-63

pared to computer vision, the extracted features are only required to be invariant w.r.t. translation in64

time.1 In principle, each such feature would correspond to a given pitch, facilitating the interpretation65

of the feature extraction achieved by the neural net.66

3 Experimental setting and goals of experiments67

The main goal of these experiments regards the nature and value of the prior SP knowledge concerning68

the target identification task. Specifically, does the available prior knowledge yield a perfect accuracy?69

Otherwise, how is this knowledge modified and improved through supervised training? Thirdly, how70

much gain is provided by the use of the prior knowledge? Finally, how do the NN hyper-parameters71

interact with the model space and how to best tune them?72

These questions are empirically investigated on the MIDI Aligned Piano Sounds dataset [7]. We73

restricted ourselves to the identification of monophonic (isolated) notes, forming 88 distinct balanced74

classes. The raw audio signal is downsampled to 22kHz. Each file is divided into 2,400 sample-long75

examples (about 109ms), overlapping with a stride of 600. The period of the lowest note (A0,76

frequency 27.5Hz) spreads over 800 samples.77

The NN architecture is a convolutional neural network applied on the raw audio signal, with a stride78

of 10 or 50, followed by a global max pooling. Each note is associated to one filter mask of dimension79

1In all generality, the extracted features should also be invariant w.r.t. the timbre of the instruments; however
only piano music is considered in the following.
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800. The educated initialization of the corresponding filter weights is defined from the pure sine wave80

corresponding to the fundamental frequency (with no biases for the sake of interpretability).81

Three architectures are compared: model A is a 1 layer CNN model with initialized weights, with82

no training, model B a 1 layer CNN model with initialized weights, with training, and model C a83

1-layer CNN model with random initialization, with training.84

Model performance is assessed using 8-fold cross validation (all samples of a same audio file being85

either in the training or in the test set).86

4 Results87

Impact of prior knowledge on accuracy and learning curve. As shown (Table 1), untrained88

model A yields 45% accuracy (significantly higher than the default accuracy for 88 balanced classes),89

thanks to its educated initialization. Still, trained models B and C both significantly outperform model90

A. The educated initialization (in model B) speeds up the convergence (compared to model C) toward91

the same optimum (Fig. 1). The performances are improved as the stride is reduced, especially so for92

high frequencies (Fig. 3).93

Table 1: Comparison of the performances of models A, B and C on test sets after 100 epochs.
Stride 50 Stride 10

Before training After training Before training After training

initialized 0.45 0.64± 0.02 0.46 0.71± 0.02
not initialized - 0.64± 0.02 - 0.70± 0.01

Figure 1: Learning curves of trained Model B (initialized with SP knowledge) and Model C (random
initialization) on the training set (stride 50).

Opening the black-box. The masks in models A, B and C are inspected by plotting their Fourier94

coefficients (Fig. 2). By construction, masks in model A (Fig. 2.top) exactly correspond to the95

sought frequencies. On model B (SP initialization), supervised learning results in augmenting96

each filter with the harmonics of the associated frequency, particularly so for low frequencies; this97

augmentation explains the improved performance of model B compared to model A. On model98

C (random initialization), the same augmentation is observed with a notable difference: for low99

frequencies f , only harmonics 2f, 3f, . . . are learned; frequency f itself is missed. This phenomenon100

confirms that good performances per se do not imply that the targeted concepts have been correctly101

identified.102

The accuracy per note of models A, B, and C are depicted on Fig. 3. As mentioned above, we observe103

a significant improvement in performances when the model is trained (B and C), above all in a low104

frequency notes range. Indeed, for pitches between 40 and 80, the accuracy is roughly equivalent,105

whereas for pitches < 40, the trained masks obtain much better results. This is probably due to the106

timbral specificity of the piano, where the distribution of the energy for a given note is distributed107

differently depending on the pitch range.108
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Figure 2: Models A, B and C: magnitude of frequencies detected for each filter (horizontal line), with
stride 50, after 100 epochs training for models B and C.

Figure 3: Models A, B and C: Accuracy per note. Left: stride 50; Right: stride 10. The downward
accuracy spikes occur for frequencies whose period is a divider of the stride period (see discussion).

Adding a fully connected layer. Another model is investigated, adding a fully connected layer on109

the top of the conv/max pooling layers. The question is whether and how this additional FC layer110

will alleviate the limitations of the simple B and C architectures, and in practice, whether augmenting111

the filters with the associated harmonics will still be necessary. Most interestingly, it appears that the112

augmentation of the filters is no longer necessary (Fig. 4, left) and the fact that both a frequency and113

its harmonics are involved in the pitch detection is visible from the FC weights, below the diagonal114

(Fig. 4, right). This phenomenon is observed mostly with educated initialization. For both educated115

and random initialization, the predictive accuracy increases from circa 70% to 80%.116

Figure 4: Model B augmented with a fully connected layer. Left: magnitude of frequencies detected
for each filter; Right: weights of the fully connected layer; pixel (i,j) represents the weight of filter fj
to identify frequency fi.

5 Discussion117

These experiments firstly confirm that good performances can be obtained through merely extracting118

features correlated to the target class (here the harmonics of the sought frequencies). The convolutional119

structure, aimed to achieve phase-invariance, is most effective for low stride values. For higher stride120

values, the invariance property does not hold and the accuracy shows a downward peak. An alternative121

is to consider neurons in the complex space [18].122

Overall, the merits of using SP knowledge are twofold: it speeds up the convergence and it ensures123

that the target concept is properly grasped. On the other hand, supervised learning is beneficial as it124

automatically detects and exploits the relationships among frequencies and harmonics for a more125

robust detection.126
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