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ABSTRACT

We investigate the properties of multidimensional probability distributions in the
context of latent space prior distributions of implicit generative models. Our work
revolves around the phenomena arising while decoding linear interpolations be-
tween two random latent vectors – regions of latent space in close proximity to
the origin of the space are oversampled, which restricts the usability of linear in-
terpolations as a tool to analyse the latent space. We show that the distribution
mismatch can be eliminated completely by a proper choice of the latent probabil-
ity distribution or using non-linear interpolations. We prove that there is a trade
off between the interpolation being linear, and the latent distribution having even
the most basic properties required for stable training, such as finite mean. We use
the multidimensional Cauchy distribution as an example of the prior distribution,
and also provide a general method of creating non-linear interpolations, that is
easily applicable to a large family of commonly used latent distributions.

1 INTRODUCTION

Generative latent variable models have grown to be a very popular research topic, with Varia-
tional Auto-Encoders (VAEs) (Kingma & Welling, 2013) and Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) gaining a lot of interest in the last few years. VAEs use a stochas-
tic encoder network to embed input data in a typically lower dimensional space, using a conditional
probability distribution p(z|x) over possible latent space codes z ∈ RD. A stochastic decoder net-
work is then used to reconstruct the original sample. GANs, on the other hand, use a generator
network that creates data samples from noise z ∼ p(z), where p(z) is a fixed prior distribution, and
train a discriminator network jointly to distinguish between real and generated data.

Both of these model families require a probability distribution to be defined on the latent space. The
most popular variants are the multidimensional normal distribution and the uniform distribution on
the zero-centred hypercube. Given a trained model, studying the structure of the latent space is a
common way to measure generator capabilities.

1.1 MOTIVATION BEHIND INTERPOLATIONS

There are various methods used to analyse the latent space. Locally, one can sample and decode
points in close neighbourhood of a given latent vector to investigate a small region in the space. On
the other hand, global methods are designed to capture long-distance relationships between points
in the space, e.g. latent arithmetics, latent directions analysis, and interpolations (see e.g. Mikolov
et al. (2013); Kilcher et al. (2017); Radford et al. (2015); White (2016); Agustsson et al. (2017)).

The main advantage of using interpolations is the interpretability that comes with dealing with one-
dimensional curves, instead of high-dimensional Euclidean space. For example, if the model has
managed to find a meaningful representation, one would expect the latent space to be organised in a
way that reflects the internal structure of the training dataset. In that case, decoding an interpolation
will show a gradual transformation of one endpoint into the other. Contrarily, if the model memorises
the data, the latent space might consist of regions corresponding to particular training examples,
divided by boundaries with unnatural, abrupt changes in generated data (Arvanitidis et al., 2017). We

∗These two authors contributed equally
This work was supported by National Science Centre, Poland (grants no. 2015/19/B/ST6/01819).

1



Published as a conference paper at ICLR 2019

need to note that this notion of "meaningful representation" is not enforced by the training objective.
However, it is not contradicting the objective, making it necessary to use additional tools to evaluate
whether the learned manifold is coherently structured and equipped with desirable qualities.

What distinguishes interpolations from other low-dimensional methods is the shortest path property.
In absence of any additional knowledge about the latent space, it feels natural to use the Euclidean
metric. In that case, the shortest path between two points is defined as a segment. This is, probably
the most popular, linear interpolation, formally defined as fL(x1, x2, λ) = (1−λ)x1+λx2, for λ ∈
[0, 1], where x1, x2 are the endpoints. Other definitions of shortest path might yield different inter-
polations, we will study some of them later on.

While traversing the latent space along the shortest path between two points, a well-trained model
should transform the samples in a sensible way. For example, if the modelled data has a natural
hierarchy, we would expect the interpolation to reflect it, i.e. an image of a truck should not arise
on a path between images of a cat and a dog. Also, if the data can be described with a set of
features, then an interpolation should maintain any features shared by the endpoints along the path.
For example, consider a dataset of images of human faces, with features such as wearing sunglasses,
having a long beard, etc. Again, this is not enforced by the training objective. If one would desire
such property, it is necessary to somehow include the information about the trained manifold in the
interpolation scheme.

There has been an amount of work done on equipping the latent space with a stochastic Riemannian
metric (Arvanitidis et al., 2017) that additionally depends on the generator function. The role of
the shortest paths is fulfilled by the geodesics, and the metric is defined precisely to enforce some
of the properties mentioned above. This approach is somewhat complementary to the one we are
concerned with – instead of analysing the latent space using simple tools, we would need to find
a more sophisticated metric that describes the latent space comprehensively, and then analyse the
metric itself.

If our goal was solely the quality of generated interpolation samples, the aforementioned approach
would be preferable. However, in this work we are concerned with evaluating the properties directly
connected with the model’s objective. With that in mind, we criticise the broad use of linear interpo-
lations in this particular context. In this work we shall theoretically prove that linear interpolations
are an incorrect tool for the stated task, and propose a simple, suitable interpolation variant.

1.2 THE DISTRIBUTION MISMATCH

While considered useful, the linear interpolation used in conjunction with the most popular latent
distributions results in a distribution mismatch (also defined in Agustsson et al. (2017); Kilcher
et al. (2017)). That is, if we fix the λ coefficient and interpolate linearly between two endpoints
sampled from the latent space distribution, the probability distribution of the resulting vectors will
differ significantly from the latent distribution. This can be partially explained by the well-known
fact that in high dimensions the norms of vectors drawn from the latent distribution are concentrated
around a certain value. As a consequence, the midpoints of sampled pairs of latent vectors will
have, on average, significantly smaller norm. Thus, the linear interpolation oversamples regions in
close proximity of the origin of the latent space. A thorough analysis of this phenomenon will be
conducted in section 2.1.

Such behaviour raises questions about the applicability of the linear interpolation to study the latent
space. Indeed, changing the latent distribution after the model was trained may have unexpected
consequences. In Kilcher et al. (2017), experiments conducted using a DCGAN model (Radford
et al., 2015) on the celebA dataset (Liu et al., 2015) showed flawed data generation near the la-
tent space origin. Other works concerning the traversal of latent space do not mention this effect,
e.g. Agustsson et al. (2017). We recreated this experiment, and concluded that it might be caused
by stopping the training process too early (see Appendix C figure 6 for a visualisation). This may
explain the apparent disagreement in the literature. Nevertheless, with either a midpoint decoding
to a median face, or a non-sensible sample, the interpolation is not informative – we would like to
see smooth change of features, and not a transition through the same, homogeneous region.

The solution is, either, to change the latent distribution so that the linear interpolation will not cause
a distribution mismatch, or redefine the shortest path property. A simple well-known compromise is
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to use spherical interpolations (Shoemake, 1985; White, 2016). As the latent distribution is concen-
trated around a sphere, replacing segments with arcs causes relatively small distribution mismatch
(see section 3.2). Nonetheless, reducing the consequences of the distribution mismatch is still a
popular research topic (Agustsson et al., 2017; Kilcher et al., 2017; Arvanitidis et al., 2017).

1.3 MAIN CONTRIBUTIONS

In section 2.1 we show that if the linear interpolation does not change the latent probability distribu-
tion, then it must be trivial or "pathological" (with undefined expected value). Then, in section 2.2,
we give an example of such an invariant distribution, namely the Cauchy distribution, thus prov-
ing its existence. We also discuss the negative consequences of choosing a heavy-tailed probability
distribution as the latent prior.

In section 3 we relax the Euclidean shortest path property of interpolations, and investigate non-
linear interpolations that do not cause the latent distribution mismatch. We describe a general frame-
work for creating such interpolations, and give two concrete examples in sections 3.4 and 3.5. We
find these interpolations to be appropriate for evaluating the model’s objective induced properties in
contrast to the linear interpolations.

The experiments conducted using the DCGAN model on the CelebA dataset are presented solely to
illustrate the problem, not to study the DCGAN itself, theoretically or empirically.

2 LATENT DISTRIBUTIONS

In this section we will tackle the problem of distribution mismatch by selecting a proper latent
distribution. Let us assume that we want to train a generative model which has a D-dimensional
latent space and a fixed latent probability distribution, defined by a random variable Z. We denote by
X ∼ X that the random variableX has distributionX . Xn ' X represents the fact that the sequence
of random variables {Xn}n∈N converges weakly to a random variable with distributionX as n tends
to infinity. By Xn ' Xn we mean that limn→∞ supx∈R |CDFXn(x) − CDFXn(x)| = 0, where
CDFX denotes the cumulative distribution function of X . The index n will usually be omitted for
readability. In other words, by X ' X we mean, informally, that X has distribution similar to X .

2.1 LINEAR INTERPOLATION INVARIANCE PROPERTY

Property 2.1 (Linear Interpolation Invariance). If Z defines a distribution on the D-dimensional
latent space, Z(1) and Z(2) are independent and distributed identically to Z, and for every λ ∈ [0, 1]
the random variable fL(Z(1),Z(2), λ) := (1− λ)Z(1) + λZ(2) is distributed identically to Z, then
we will say that Z has the linear interpolation invariance property, or that linear interpolation does
not change the distribution of Z.

The most commonly used latent probability distributions Z are products of D independent random
variables. That is, Z = (Z1, Z2, . . . , ZD), where Z1, Z2, . . . , ZD are the independent marginals
distributed identically to Z. If the norms of Z concentrate around a certain value, then the latent
distribution resembles sampling from a zero-centred sphere and the linear interpolation oversamples
regions in the proximity of the origin of the latent space. As a consequence, Z does not have
the linear interpolation invariance property. The following observation will shed light upon this
problem. Let N (µ, σ2) denote the normal distribution with mean µ and variance σ2.
Observation 2.1. Let us assume that Z2 has finite mean µ and finite variance σ2. If µ > 0, then
‖Z‖ ' N

(√
Dµ, σ

2

4µ

)
as D →∞. If µ = 0, then ‖Z‖ = 0 almost everywhere.

The proof of this and all further observations is presented in the appendix B.

For example, if Z ∼ N (0, 1), then Z is distributed according to the D-dimensional normal dis-
tribution with mean 0 and identity covariance matrix I. Z2 has moments µ = 1, σ2 = 2, thus
‖Z‖ ' N

(√
D, 12

)
. The second example is Z ∼ U(−1, 1), where U(a, b) is the uniform distribu-

If Z ∼ N (0, 1), then ‖Z‖ is distributed according to the chi distribution, equal to the square root of the
chi-squared distribution.
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tion on the interval [a, b], and Z is distributed uniformly on the hypercube [−1, 1]D. In that case,

Z2 has moments µ = 1
3 , σ2 = 4

45 , thus ‖Z‖ ' N
(√

D
3 ,

1
15

)
.

It is worth noting that the variance of the approximated probability distribution of ‖Z‖, the thickness
of the sphere, does not change as D tends to infinity – only the radius of the sphere is affected. On
the other hand, if the latent distribution is normalised (divided by the expected value of ‖Z‖), then
the distribution concentrates around the unit sphere (not necessarily uniformly), and we observe the
so-called soap bubble phenomenon (Ferenc, 2017).

One might think that the factorisation of the latent probability distribution is the main reason
why the linear interpolation changes the distribution. Unfortunately, this is not the case. Let
Z := 1

2 (Z(1) + Z(2)), where Z(1),Z(2) are two independent samples from Z. Therefore, Z is the
distribution of the middle points of a linear interpolation between two vectors drawn independently
from Z.
Observation 2.2. If Z has a finite mean, and Z is distributed identically to Z, then Z must be
concentrated at a single point.

If a probability distribution is not heavy-tailed, then its tails are bounded by the exponential distri-
bution, which in turn means that it has a finite mean. Therefore, all distributions having undefined
expected value must be heavy-tailed. We will refer to this later on, as the heavy tails may have strong
negative impact on the training procedure.

There have been attempts to find Z, with finite mean, such that Z is at least similar to Z. Kilcher
et al. (2017) managed to reduce the distribution mismatch by defining the latent distribution as

V ∼ U(SD−1), r ∼ Γ(
1

2
, θ), θ > 0, Z =

√
rV,

where U(SD−1) is the uniform distribution on the unit sphere, and Γ( 1
2 , θ) is the gamma distribution.

We extend this idea by using a distribution that has no finite mean, namely the Cauchy distribution.

2.2 THE CAUCHY DISTRIBUTION

The standard Cauchy distribution is denoted by C(0, 1), and its density function is defined
as 1/

(
π(1 + x2)

)
. The most important property of the Cauchy distribution is the fact

that if C(1), . . . , C(n) are independent samples from the standard Cauchy distribution, and
λ1, . . . , λn ∈ [0, 1] with λ1 + . . . + λn = 1, then λ1C(1) + . . . + λnC

(n) is also distributed ac-
cording to the standard Cauchy distribution. In case of n = 2 it means that the Cauchy distribution
satisfies the distribution matching property. On the other hand, as a consequence of observation 2.2,
the Cauchy distribution cannot have finite mean. In fact, all of its moments of order greater than or
equal to one are undefined. See Siegrist (2017) for further details.

There are two ways of using the Cauchy distribution in high dimensional spaces while retaining the
distribution matching property. The multidimensional Cauchy distribution is defined as a product of
independent standard Cauchy distributions. Then, the linear interpolation invariance property can
be simply proved by applying the above formulas coordinate-wise. In the case of vectors drawn
from the multidimensional Cauchy distribution we may expect that some of the coordinates will be
sufficiently larger, by absolute value, than the others (Hansen et al., 2006), thus making the latent
distribution similar to coordinate-wise sampling.

In contrast, the multivariate Cauchy distribution comes with the isotropy property at the cost of the
canonical directions becoming statistically dependent. There are multiple ways of defining it, and
further analysis is out of the scope of this paper. We tested both variants as latent distributions with
similar results. From now on, we shall concentrate on the non-isotropic Cauchy distribution.

The Cauchy distribution is a member of the family of stable distributions, and has been previously
used to model heavy-tailed data (Nolan, 2018). However, according to our best knowledge, the
Cauchy distribution has never been used as the latent distribution in generative models. Figure 1
presents a decoded linear interpolations between random latent vectors using a DCGAN model
trained on the CelebA dataset for the Cauchy distribution and the distribution from Kilcher et al.
(2017).
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Figure 1: Comparison of linear interpolations from DCGAN trained on the Cauchy distribution (top)
and one trained on the distribution proposed by Kilcher et al. (2017) (bottom).

It should be noted that if D is large enough, the distribution of the norms of vectors sampled from
the D-dimensional Cauchy distribution has a low density near zero – similarly to the normal and
uniform distributions – but linear interpolations do not oversample this part of the latent space, due
to the heavy-tailed nature of the Cauchy distribution. Comparison of the distributions of norms is
given in Figure 2.

Figure 2: Illustration of observation 2.1: distributions of Euclidean norms of latent vectors, for
different probability distributions, with increasing latent space dimension.

The distribution-interpolation trade off states that if the probability distribution has the linear inter-
polation invariance property, then it must be trivial or heavy-tailed. In case of the Cauchy distribution
we observed issues with generating images if the norm of the sampled latent vector was relatively
large (the probability distribution of the norms is also heavy-tailed). Some of those faulty exam-
ples are presented in the appendix C. This is consistent with the known fact, that artificial networks
perform poorly if their inputs are not normalised (see e.g. Glorot & Bengio (2010)).

A probability distribution having the linear interpolation invariance property cannot be normalised
using linear transformations. For example, the batch normalisation technique (Ioffe & Szegedy,
2015) would be highly ineffective, as the mean of a batch of samples is, in fact, a single sample
from the distribution. On the other hand, using a non-linear normalisation (e.g., clipping the norm
of the latent vectors in subsequent layers), is mostly equivalent to changing the latent probability
distribution and making the interpolation non-linear. This idea will be explored in the next section.

3 INTERPOLATIONS

In this section we review the most popular variants of interpolations, with an emphasis on the dis-
tribution mismatch analysis. We also present two new examples of interpolations stemming from a
general scheme, that perform well with the popular latent priors.

An interpolation on the latent space RD is formally defined as a function

f : RD × RD × [0, 1] 3 (x1, x2, λ) 7→ x ∈ RD.

For brevity, we will represent f(x1, x2, λ) by fx1,x2(λ).

Property 3.1 (Distribution Matching Property). If Z defines a distribution on the D-dimensional
latent space, Z(1) and Z(2) are independent and distributed identically to Z, and for every λ ∈ [0, 1]
the random variable fZ(1),Z(2)(λ) is distributed identically to Z, then we will say that the interpola-
tion f has the distribution matching property in conjunction with Z, or that the interpolation f does
not change the distribution of Z.
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3.1 LINEAR INTERPOLATION

The linear interpolation is defined as fLx1,x2
(λ) = (1 − λ)x1 + λx2. This interpolation does not

satisfy the distribution matching property for the most commonly used probability distributions, as
they have a finite mean. A notable exception is the Cauchy distribution. This was discussed in
details in the previous section.

3.2 SPHERICAL LINEAR INTERPOLATION

As in Shoemake (1985); White (2016), the spherical linear interpolation is defined as

fSLx1,x2
(λ) =

sin [(1− λ)Ω]

sin Ω
x1 +

sin[λΩ]

sin Ω
x2,

where Ω is the angle between vectors x1 and x2. Note that this interpolation is undefined for parallel
endpoint vectors, and the definition cannot be extended without losing the continuity. Also, if vectors
x1 and x2 have the same length R, then the interpolation corresponds to a geodesic on the sphere
of radius R. In this regard, it might be said that the spherical linear interpolation is defined as the
shortest path on the sphere. The most important fact is that this interpolation can have the distribution
matching property.

Observation 3.1. If Z has uniform distribution on the zero-centred sphere of radius R > 0, then
fSL does not change the distribution of Z.

3.3 NORMALISED INTERPOLATION

Introduced in Agustsson et al. (2017), the normalised interpolation is defined as

fNx1,x2
(λ) =

(1− λ)x1 + λx2√
(1− λ)2 + λ2

.

Observation 3.2. If Z ∼ N (0, I), then fN does not change the distribution of Z.

If vectors x1 and x2 are orthogonal and have equal length, then the curve defined by this interpo-
lation is equal to the one of the spherical linear interpolation. On the other hand, the normalised
interpolation behaves poorly if x1 is close to x2. In the extreme case of x1 = x2 the interpolation is
not constant with respect to λ, which violates any sensible definition of the shortest path.

3.4 CAUCHY-LINEAR INTERPOLATION

Here we present a general way of designing interpolations that have the distribution matching prop-
erty in conjunction with a given probability distribution Z. This method requires some additional
assumptions about Z, but it works well with the most popular latent distributions.

Let L be the D-dimensional latent space, Z define the probability distribution on the latent space,
C be distributed according to the D-dimensional Cauchy distribution on L, K be a subset of L
such that Z is concentrated on this set, and g : L → K be a bijection such that g(C) is distributed
identically to Z on K. Then for x1, x2 ∈ K we define the Cauchy-linear interpolation as

fCLx1,x2
(λ) = g

(
(1− λ)g−1(x1) + λg−1(x2)

)
.

In other words, for endpoints x1, x2 ∼ Z:

1. Transform x1 and x2 using g−1. This step changes the latent distribution to the
D-dimensional Cauchy distribution.

2. Linearly interpolate between the transformations to get xλ = (1− λ)g−1(x1) + λg−1(x2)
for all λ ∈ [0, 1]. The transformed latent distribution remains unchanged.

Originally referred to as distribution matched.
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3. Transform xλ back to the original space using g. We end up with the original latent distri-
bution.

Observation 3.3. With the above assumptions about g the Cauchy-linear interpolation does not
change the distribution of Z.

Finding an appropriate function g might seem hard, but in practice it usually is fairly straightfor-
ward. For example, if Z is distributed identically to the product of D independent one-dimensional
distributions Z, then we can define g as CDF−1C ◦ CDFZ applied to every coordinate.

3.5 SPHERICAL CAUCHY-LINEAR INTERPOLATION

We might want the interpolation to have some other desired properties. For example, to behave
exactly as the spherical linear interpolation if only the endpoints have equal norm. For that purpose,
we need to make additional assumptions. Let Z be isotropic, C be distributed according to the one-
dimensional Cauchy distribution, and g : R→ (0,+∞) be a bijection such that g(C) is distributed
identically as ‖Z‖ on (0,+∞). Then we can modify the spherical linear interpolation formula to
define what we call the spherical Cauchy-linear interpolation

fSCLx1,x2
(λ) =

(
sin [(1− λ)Ω]

sin Ω

x1
‖x1‖

+
sin[λΩ]

sin Ω

x2
‖x2‖

)[
g
(
(1− λ)g−1(‖x1‖) + λg−1(‖x2‖)

)]
,

where Ω is the angle between vectors x1 and x2. In other words:

1. Interpolate the directions of latent vectors using the spherical linear interpolation.
2. Interpolate the norms using the Cauchy-linear interpolation.

Observation 3.4. With the above assumptions about g, the spherical Cauchy-linear interpolation
does not change the distribution of Z if the Z distribution is isotropic.

The simplest candidate for the g function is CDF−1C ◦CDF‖Z‖, but we usually need to know more
about Z to check if the assumptions hold. For example, let Z be aD-dimensional normal distribution
with zero mean and identity covariance matrix. Then ‖Z‖ ∼

√
χ2
D and

CDF√
χ2
D

(x) = CDFχ2
D

(x2) =
1

Γ(D/2)
γ

(
D

2
,
x2

2

)
, for every x ≥ 0,

where Γ denotes the gamma function, and γ is the lower incomplete gamma function. Thus we set
g(x) =

(
CDF−1C ◦ CDFχ2

D

)
(x2), with g−1(x) =

√(
CDF−1

χ2
D
◦ CDFC

)
(x).

(a) Uniform dist. (b) Cauchy dist. (c) Normal dist. (d) Normal dist.

Figure 3: Comparison of the Cauchy-linear (a, b, and c) and the Spherical Cauchy-linear (d) in-
terpolations on a 2D plane for data pairs sampled from different distributions. The Cauchy-linear
interpolation in conjunction with the Cauchy distribution naturally results in segments.
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(a) Uniform dist. (b) Normal dist. (c) Cauchy dist.

Figure 4: Illustration of observation 3.3: comparison of norms of interpolation mid-points for linear
(blue), Cauchy-linear (orange) interpolations, and latent prior distribution (dark line) for different
latent distributions.

Figure 5: Images generated using a DCGAN model trained on the standard Normal distribution.
Comparison of the five interpolations.

Figure 3 shows comparison of the Cauchy-linear and the spherical Cauchy-linear interpolations on
a two-dimensional plane for pairs of vectors sampled from different probability distributions. It
illustrates how these interpolations manage to keep the distributions unchanged. Figure 4 is an
illustration of distribution matching property for Cauchy-linear interpolation. We also compare the
data samples generated by the DCGAN model trained on the CelebA dataset; the results are shown
in figure 5.

4 SUMMARY

We investigated the properties of multidimensional probability distributions in the context of gene-
rative models. We found out that there is a certain trade-off: it is impossible to define a latent
probability distribution with a finite mean and the linear interpolation invariance property. The
D-dimensional Cauchy distribution serves as an example of a latent probability distribution that
remains unchanged by linear interpolation, at the cost of poor model performance, due to the heavy-
tailed nature.

Instead of using the Cauchy distribution as the latent distribution, we propose to use it to define non-
linear interpolations that have the distribution matching property. The assumption of the shortest
path being a straight line must be relaxed, but our scheme is general enough to provide a way of
incorporating other desirable properties.

We observe that there are three different goals when using interpolations for studying a generative
model. Firstly, to check whether the training objective was fulfilled, one must use an interpolation
that does not cause the distribution mismatch. This is, in our opinion, a necessary step before
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performing any further evaluation of the trained model. Secondly, if one is interested in the manifold
convexity, linear interpolations are a suitable method provided the above analysis yields positive
results. Finally, to perform a complete investigation of the learned manifold one can employ methods
that incorporate some information about the trained model, e.g. the approach of Arvanitidis et al.
(2017) mentioned in section 1.1.

We do not propose to completely abandon the use of linear interpolations, as the convexity of the
learned manifold is still an interesting research topic. For instance, we have observed that generative
models are capable of generating sensible images from seemingly out-of-distribution regions, e.g.
the emergence of the median face mentioned in the introduction. In our opinion, this is a promising
direction for future research.
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A EXPERIMENTAL SETUP

All experiments were conducted using a DCGAN model (Radford et al., 2015), in which the genera-
tor network consisted of a linear layer with 8192 neurons, followed by four convolution transposition
layers, each using 5 × 5 filters and strides of 2, with number of filters in order of layers: 256, 128,
64, 3. Except for the output layer, where tanh activation function was used, all previous layers used
ReLU. Discriminator’s architecture mirrored the one from the generator, with a single exception of
using leaky ReLU instead of vanilla ReLU function for all except the last layer. No batch normal-
isation was used in both networks. Adam optimiser with learning rate of 2e−4 and momentum set
to 0.5 was used. Batch size 64 was used throughout all experiments. If not explicitly stated other-
wise, latent space dimension was set to 100. For the CelebA dataset we resized the input images to
64× 64.

B PROOFS

Observation 2.1. Let us assume that Z2 has finite mean µ and finite variance σ2. If µ > 0, then
‖Z‖ ' N

(√
Dµ, σ

2

4µ

)
as D →∞. If µ = 0, then ‖Z‖ = 0 almost everywhere.

Proof. Recall that Z,Z1, . . . , ZD are independent and identically distributed. Therefore
Z2, Z2

1 , . . . , Z
2
D are also independent and identically distributed. Z = (Z1, . . . , ZD) and

‖Z‖2 = Z2
1 + . . .+ Z2

D.

Z2 ≥ 0, therefore µ ≥ 0. If µ = 0, then Z2 = 0 almost everywhere, Z2 = 0 almost everywhere,
Z = 0 almost everywhere, and finally ‖Z‖ = 0 almost everywhere. From now on we will assume
that µ > 0.

Using the central limit theorem we know that
√
D
(Z2

1+...+Z
2
D

D − µ
)

converges in distribution to
N (0, σ2) with D → ∞. The convergence of cumulative distribution functions is uniform, because
the limit is continuous everywhere

∀ε>0∃D>0∀D>D,D∈N∀x∈R :
∣∣∣Pr(√D(Z2

1 + . . .+ Z2
D

D
− µ

)
≤ x

)
− CDFN (0,σ2)(x)

∣∣∣ < ε.

D > 0, thus

Pr
(√

D
(Z2

1 + . . .+ Z2
D

D
− µ

)
≤ x

)
= Pr

(
Z2
1 + . . .+ Z2

D ≤ Dµ+ x
√
D
)

= CDF‖Z‖2
(
Dµ+ x

√
D
)
.

Additionally,
CDFN (0,σ2)(x) = CDFN (Dµ,Dσ2)

(
Dµ+ x

√
D
)
,

and now we have

∀ε>0∃D>0∀D>D,D∈N∀x∈R :
∣∣CDF‖Z‖2(Dµ+ x

√
D
)
− CDFN (Dµ,Dσ2)

(
Dµ+ x

√
D
)∣∣ < ε .

Finally, the function
R 3 x 7→ Dµ+ x

√
D ∈ R

is a bijection (again, because D > 0), so we may substitute Dµ + x
√
D with x and the innermost

statement will hold for every x ∈ R

∀ε>0∃D>0∀D>D,D∈N∀x∈R :
∣∣CDF‖Z‖2(x)− CDFN (Dµ,Dσ2)(x)

∣∣ < ε . (1)

Before taking square root of the normal distribution we must deal with negative values. LetN+(ν, τ)
be defined by its cumulative distribution function:

CDFN+(ν,τ)(x) =

{
0 if x < 0 ,

CDFN (ν,τ)(x) if x ≥ 0 .

The idea is to take all negative values of N (ν, τ) and concentrate them at zero.

10
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Now we can modify (1)

∀ε>0∃D>0∀D>D,D∈N∀x∈R :
∣∣CDF‖Z‖2(x)− CDFN+(Dµ,Dσ2)(x)

∣∣ < ε , (2)

for x ≥ 0 we simply use (1), for x < 0 the inequality simplifies to |0− 0| < ε.

Since ‖Z‖2 and N+(Dµ,Dσ2) are non-negative, we are allowed to take the square root of these
random variables. The square root is a strictly increasing function, thus for x ≥ 0 we have

CDFN+(Dµ,Dσ2)(x
2) = CDF√N+(Dµ,Dσ2)

(x) and CDF‖Z‖2(x2) = CDF‖Z‖(x) ,

therefore we can approximate the variable ‖Z‖

∀ε>0∃D>0∀D>D,D∈N∀x∈R :
∣∣CDF‖Z‖(x)− CDF√N+(Dµ,Dσ2)

(x)
∣∣ < ε , (3)

for x ≥ 0 we substitute x2 for x in (2), for x < 0 the inequality simplifies, again, to |0− 0| < ε.

This paragraph is a summary of the second part of the proof. To calculate
√
N+(Dµ,Dσ2) we

observe that, informally, in proximity of Dµ the square root behaves approximately like scaling
with constant (2

√
Dµ)−1. Additionally, N (Dµ,Dσ2) has width proportional to

√
D, which is

infinitesimally smaller than Dµ, so we expect the result to be√
N+(Dµ,Dσ2) ' N

(√
Dµ,

σ2

4µ

)
.

Let us define

bε =

{
CDF−1N (0,σ2/(4µ))(1− ε) if ε ∈ (0, 12 ) ,

0 if ε ≥ 1
2 .

Here bε is defined so that the probability of x drawn from N
(√
Dµ, σ

2

4µ

)
being at least bε far from

the mean is equal to 2ε. Also, note that bε does not depend on D. For now we will assume that√
Dµ− bε > 0 – this is always true for sufficiently large D, as µ > 0

∀ε>0∃D>0∀D>D,D∈N :
√
Dµ− bε > 0 . (4)

Now let us assume that we have a fixed ε > 0. For x ∈ [−bε, bε] we write the following inequalities

Dµ+ 2x
√
Dµ ≤

(√
Dµ+ x

)2 ≤ Dµ+ 2x
√
Dµ+ b2ε ,

which are equivalent to 0 ≤ x2 ≤ b2ε , thus true.

Every cumulative distribution function is weakly increasing, therefore

CDFN (Dµ,Dσ2)

(
Dµ+ 2x

√
Dµ
)
≤ CDFN (Dµ,Dσ2)

((√
Dµ+ x

)2) ≤
≤ CDFN (Dµ,Dσ2)

(
Dµ+ 2x

√
Dµ+ b2ε

)
.

Because we assumed that
(√
Dµ + x

)2
> 0 for x ∈ [−bε, bε], we can replace N (Dµ,Dσ2) with

N+(Dµ,Dσ2)

CDFN (Dµ,Dσ2)

(
Dµ+ 2x

√
Dµ
)
≤ CDFN+(Dµ,Dσ2)

((√
Dµ+ x

)2) ≤
≤ CDFN (Dµ,Dσ2)

(
Dµ+ 2x

√
Dµ+ b2ε

)
.

We transform the outer distributions using basic properties of the normal distribution. We also take
square root of the middle distribution and obtain

CDFN (
√
Dµ,σ2/(4µ))

(√
Dµ+ x

)
≤ CDF√N+(Dµ,Dσ2)

(√
Dµ+ x

)
≤

≤ CDFN (
√
Dµ,σ2/(4µ))

(√
Dµ+ x+ b2ε/

(
2
√
Dµ
))
. (5)

11
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b2ε/(2
√
Dµ) → 0 with D → ∞ and CDFN (

√
Dµ,σ2/(4µ)) is continuous, thus we have uniform

convergence

∀ε>0∃D>0∀D>D,D∈N∀x∈R :∣∣∣CDFN(√Dµ,σ2/(4µ)
)(√Dµ+ x

)
− CDFN (

√
Dµ,σ2/(4µ))

(√
Dµ+ x+ b2ε/

(
2
√
Dµ
))∣∣∣ < ε .

Using (5) we get

∀ε>0∃D>0∀D>D,D∈N∀x∈[−bε,bε] :
[√

Dµ− bε > 0 =⇒∣∣∣CDFN(√Dµ,σ2/(4µ)
)(√Dµ+ x

)
− CDF√N+(Dµ,Dσ2)

(√
Dµ+ x

)∣∣∣ < ε
]
. (6)

Now we will extend this result to all x ∈ R. For ε > 0 we have

CDF
N
(√

Dµ,σ2/(4µ)
)(√Dµ− bε) ≤ ε, (7)

CDF
N
(√

Dµ,σ2/(4µ)
)(√Dµ+ bε

)
≥ 1− ε . (8)

Substituting −bε and bε for x in (6), and using (7) and (8) respectively, we obtain

∀ε>0∃D>0∀D>D,D∈N : CDF√N+(Dµ,Dσ2)

(√
Dµ− bε

)
< 2ε , (9)

∀ε>0∃D>0∀D>D,D∈N : CDF√N+(Dµ,Dσ2)

(√
Dµ+ bε

)
> 1− 2ε . (10)

Cumulative distribution functions are increasing functions with values in [0, 1], thus combining (7)
and (9)

∀ε>0∀x<−bε : 0 ≤ CDF
N
(√

Dµ,σ2/(4µ)
)(√Dµ+ x

)
≤ ε ,

∀ε>0∃D>0∀D>D,D∈N∀x<−bε : 0 ≤ CDF√N+(Dµ,Dσ2)

(√
Dµ+ x

)
< 2ε ,

∀ε>0∃D>0∀D>D,D∈N∀x<−bε :∣∣∣CDFN(√Dµ,σ2/(4µ)
)(√Dµ+ x

)
− CDF√N+(Dµ,Dσ2)

(√
Dµ+ x

)∣∣∣ < 2ε . (11)

Analogically, using (8) and (10)

∀ε>0∀x>bε : 1 ≥ CDFN (
√
Dµ,σ2/(4µ))(

√
Dµ+ x) ≥ 1− ε ,

∀ε>0∃D>0∀D>D,D∈N∀x>bε : 1 ≥ CDF√N+(Dµ,Dσ2)
(
√
Dµ+ x) > 1− 2ε ,

∀ε>0∃D>0∀D>D,D∈N∀x>bε :∣∣∣CDFN(√Dµ,σ2/(4µ)
)(√Dµ+ x

)
− CDF√N+(Dµ,Dσ2)

(√
Dµ+ x

)∣∣∣ < 2ε . (12)

Thus,

∀ε>0∃D>0∀D>D,D∈N∀x∈R :
[√

Dµ− bε > 0 =⇒∣∣∣CDFN(√Dµ,σ2/(4µ)
)(√Dµ+ x

)
− CDF√N+(Dµ,Dσ2)

(√
Dµ+ x

)∣∣∣ < 2ε
]
, (13)

because for any ε > 0 we may define D := max{D1,D2,D3}, where D1,D2,D3 are taken from
(6), (11) and (12).

To simplify,

∀ε>0∃D>0∀D>D,D∈N∀x∈R :
∣∣∣CDFN(√Dµ,σ2/(4µ)

)(x)− CDF√N+(Dµ,Dσ2)
(x)
∣∣∣ < 2ε , (14)

12
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because for any ε > 0 we may define D := max{D1,D2}, where D1,D2 are taken from (4) and
(13), making the antecedent true. We also replaced

√
Dµ+ x with x, since now the statement holds

for all x ∈ R.

Finally, we combine (3) and (14) using the triangle inequality

∀ε>0∃D>0∀D>D,D∈N∀x∈R :
∣∣∣CDF‖Z‖(x)− CDF

N
(√

Dµ,σ2/(4µ)
)(x)

∣∣∣ < 3ε, (15)

because for any ε > 0 we may define D := max{D1,D2}, where D1,D2 are taken from (3) and
(14), and since it is true for any positive ε, we replace 3ε with ε

∀ε>0∃D>0∀D>D,D∈N∀x∈R :
∣∣∣CDF‖Z‖(x)− CDF

N
(√

Dµ,σ2/(4µ)
)(x)

∣∣∣ < ε,

because for any ε > 0 we may define D := D1, where D1 is taken from (15), substituting ε
3

for ε.

Observation 2.2. If Z has a finite mean, and Z is distributed identically to Z, then Z must be
concentrated at a single point.

Proof. Let Z,Z(1),Z(2),Z(3), . . . be an infinite sequence of independent and identically distributed
random variables. Using induction on n we can show that 1

2n

(
Z(1) + . . . + Z(2n)

)
is distributed

identically to Z. Indeed, for n = 1 this is one of the theorem’s assumptions. To prove the inductive
step let us define

A :=
1

2n

(
Z(1) + . . .+ Z(2n)

)
,

B :=
1

2n

(
Z(2n+1) + . . .+ Z(2n+1)

)
.

A and B are independent – they are defined as functions of independent variables – and, by the
inductive hypothesis, distributed identically to Z. Finally, it is sufficient to observe that

1

2n+1

(
Z(1) + . . .+ Z(2n+1)

)
=

A + B

2
.

Z has finite mean – let us denote it by µ. Let also N+ be the set of strictly positive natural numbers.
By the law of large numbers the sequence { 1n (Z(1) + . . . + Z(n))}n∈N+ converges in probability
to µ. The same is true for any infinite subsequence, in particular for { 1

2n (Z(1) + . . .+Z(2n))}n∈N+
,

but we have shown that all elements of this subsequence are distributed identically to Z, thus Z must
be concentrated at µ.

Observation 3.1. If Z has uniform distribution on the zero-centred sphere of radius R > 0, then
fSL does not change the distribution of Z.

Proof. Let Z,Z(1),Z(2) be independent and identically distributed. Let λ ∈ [0, 1] be a fixed real
number. The random variable fSL

Z(1),Z(2)(λ) is defined almost everywhere (with the exception of
parallel samples from Z(1),Z(2)) and is also concentrated on the zero-centred sphere of radius R
(because if ‖x1‖ = ‖x2‖, then ‖fSLx1,x2

(λ)‖ = ‖x1‖ = ‖x2‖).

Let iso be any linear isometry of the latent space. ‖iso(x)‖ = ‖x‖, thus iso is also an isometry of
the zero-centred sphere of radius R. Additionally, we have

iso
(
fSLx1,x2

(λ)
)

= iso

(
sin [(1− λ)Ω]

sin Ω
x1 +

sin[λΩ]

sin Ω
x2

)
=

sin [(1− λ)Ω]

sin Ω
iso(x1) +

sin[λΩ]

sin Ω
iso(x2)

= fSLiso(x1),iso(x2)
(λ)

and the last equality holds because the isometry does not change the angle Ω between x1 and x2.

13
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Thus, iso
(
fSL
Z(1),Z(2)(λ)

)
= fSL

iso(Z(1)),iso(Z(2))
(λ), and this is distributed identically to fSL

Z(1),Z(2)(λ),

because Z(1),Z(2), both uniform distributions, are invariant to iso.

In that case, fSL
Z(1),Z(2)(λ) is concentrated on the zero-centred sphere of radius R and invariant to all

linear isometries of the latent space. The only distribution having these properties is the uniform
distribution on the sphere.

Observation 3.2. If Z ∼ N (0, I), then fN does not change the distribution of Z.

Proof. Let Z,Z(1),Z(2) be independent and identically distributed. Let λ ∈ [0, 1] be a fixed real
number. The random variables Z(1) and Z(2) are both distributed according to N (0, I). Using the
definition of fN and elementary properties of the normal distribution we conclude

fNZ(1),Z(2)(λ) =
(1− λ)Z(1) + λZ(2)√

(1− λ)2 + λ2
∼ N (

(1− λ)0 + λ0√
(1− λ)2 + λ2

,
(1− λ)2I + λ2I

(1− λ)2 + λ2
) = N (0, I).

Observation 3.3. With the above assumptions about g the Cauchy-linear interpolation does not
change the distribution of Z.

Proof. Let Z,Z(1),Z(2) be independent and identically distributed. Let λ ∈ [0, 1] be
a fixed real number. First observe that g−1(Z(1)) and g−1(Z(2)) are independent (be-
cause Z(1),Z(2) are independent) and distributed identically to C (property of g). Like-
wise, (1− λ)g−1(Z(1)) + λg−1(Z(2)) ∼ C (property of the Cauchy distribution). Therefore,
g((1− λ)g−1(Z(1)) + λg−1(Z(1))) ∼ Z (property of g).

Observation 3.4. With the above assumptions about g, the spherical Cauchy-linear interpolation
does not change the distribution of Z if the Z distribution is isotropic.

Proof. Let Z,Z(1),Z(2) be independent and identically distributed. Let λ ∈ [0, 1] be a fixed real
number. The following statements are straightforward consequences of Z(1),Z(2) being isotropic
(and also independent).

1. The random variables
Z(1)

‖Z(1)‖
,

Z(2)

‖Z(2)‖
, ‖Z(1)‖, ‖Z(2)‖ are independent,

2. ‖Z(1)‖ and ‖Z(2)‖ are both distributed identically to ‖Z‖,

3.
Z(1)

‖Z(1)‖
and

Z(2)

‖Z(2)‖
are both distributed uniformly on the sphere of radius 1.

The next two statements are consequences of Observations 3.1 and 3.3 respectively.

4. The random variable
fSCL
Z(1),Z(2)(λ)

‖fSCL
Z(1),Z(2)(λ)‖

=
sin [(1− λ)Ω]

sin Ω

Z(1)

‖Z(1)‖
+

sin[λΩ]

sin Ω

Z(2)

‖Z(2)‖
is dis-

tributed uniformly on the unit sphere.

5. The random variable ‖fSCL
Z(1),Z(2)(λ)‖ = g

(
(1 − λ)g−1(‖Z(1)‖) + λg−1(‖Z(2)‖)

)
is dis-

tributed identically to ‖Z‖.

fSCL
Z(1),Z(2)(λ)

‖fSCL
Z(1),Z(2)(λ)‖

and ‖fSCL
Z(1),Z(2)(λ)‖ are independent, because they are functions of independent

random variables (Ω is a function of
Z(1)

‖Z(1)‖
and

Z(2)

‖Z(2)‖
), therefore fSCL

Z(1),Z(2)(λ) is isotropic. Using

14
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the statement 5. and the fact that two isotropic probability distributions are equal if and only if
the distributions of their euclidean norms are equal we conclude that fSCL

Z(1),Z(2)(λ) is distributed
identically to Z.

C THE CAUCHY DISTRIBUTION – SAMPLES AND INTERPOLATIONS

Figure 6: Emergence of sensible samples decoded near the origin of the latent space throughout
the training process. Demonstrated using interpolations between opposite vectors sampled from the
latent space.

Figure 7: Linear interpolations between hand-picked points from tails of the Cauchy distribution.

15



Published as a conference paper at ICLR 2019

Figure 8: Generated images from samples from the Cauchy distribution, with occasional "failed"
images from tails of the distribution.

Figure 9: Images generated from samples from the Cauchy distribution, with varying dimension of
the latent space.
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Figure 10: Linear interpolations between random latent vectors. The model was trained using the
Cauchy distribution.

Figure 11: Linear interpolations between opposite latent vectors. The model was trained using the
Cauchy distribution.
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D MORE CAUCHY-LINEAR AND SPHERICAL CAUCHY-LINEAR
INTERPOLATIONS

Figure 12: Cauchy-linear interpolations between opposite latent vectors. The model was trained
using the normal distribution.

Figure 13: Cauchy-linear interpolations between random latent vectors. The model was trained
using the normal distribution.
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Figure 14: Spherical Cauchy-linear interpolations between random latent vectors. The model was
trained using the normal distribution.
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