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ABSTRACT

The formation of structure in the brain, that is, of the connections between cells
within neural populations, is by large an unsupervised learning process: the emer-
gence of this architecture is mostly self-organized. In the primary visual cortex
of mammals, for example, one may observe during development the formation
of cells selective to localized, oriented features. This leads to the development of
a rough representation of contours of the retinal image in area V1. We modeled
these mechanisms using sparse Hebbian learning algorithms. These algorithms
alternate a coding step to encode the information with a learning step to find the
proper encoder. A major difficulty faced by these algorithms is to deduce a good
representation while knowing immature encoders, and to learn good encoders with
a non-optimal representation. To address this problem, we propose to introduce
a new regulation process between learning and coding, called homeostasis. Our
homeostasis is compatible with a neuro-mimetic architecture and allows for the fast
emergence of localized filters sensitive to orientation. The key to this algorithm
lies in a simple adaptation mechanism based on non-linear functions that recon-
ciles the antagonistic processes that occur at the coding and learning time scales.
We tested this unsupervised algorithm with this homeostasis rule for a range of
existing unsupervised learning algorithms coupled with different neural coding
algorithms. In addition, we propose a simplification of this optimal homeostasis
rule by implementing a simple heuristic on the probability of activation of neurons.
Compared to the optimal homeostasis rule, we show that this heuristic allows to
implement a more rapid unsupervised learning algorithm while keeping a large part
of its effectiveness. These results demonstrate the potential application of such a
strategy in machine learning and we illustrate this with one result in a convolutional
neural network.

1 INTRODUCTION

The neural architecture is a complex dynamic system that operates at different time scales. In
particular, one of its properties is to succeed in representing quickly information (the coding step)
while optimizing in the long term its encoding (the learning step). In the case of the mammalian
primary visual cortex (V1) for instance, this rapid coding operation, of the order of 50 milliseconds
in humans, is the key to the results of Hubel & Wiesel (1968), who showed that some cells of V1
have relatively localized receptive fields which are predominantly selective at different orientations.
As such, one can consider the rapid coding of the retinal image as a process of transforming the raw
visual information into a rough “sketch” that represents the outlines of objects in the image by using
elementary edge-like features. This internal representation and the visual information share the same
property of being sparse: for most natural images, only a relatively small number of features are
necessary to describe the input. Thus, the coding step consists in choosing the right encoder that
selects as few features (called atoms) as possible among a collection of them (called the dictionary).
Amazingly, Olshausen & Field (1996) have shown that when enforcing a sparse prior on the encoding
step, such edge-like filters are emerging using a simple Hebbian unsupervised learning strategy.

Additionally, recent advances in machine learning, and especially on unsupervised learning have
shed new light on the functioning of the underlying biological neural processes. By definition,
unsupervised learning aims at learning the best dictionary to represent the input image autonomously,
that is, without using other external knowledge such as in supervised or reinforcement learning.
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Algorithms that combines such learning as the input to classical, supervised deep-learning show
great success in tasks like image denoising (Vincent et al., 2008) or classification (Sulam et al.,
2017). A variant consists in forcing the generated representation to be sparsely encoded (Makhzani &
Frey, 2013), whether by adding a penalty term to the optimized cost function or by encoding each
intermediate representation by a pursuit algorithm (Papyan et al., 2016). Interestingly, (Papyan et al.,
2016) proposes a model of Convolutional Sparse Coding (CSC) tightly connected with Convolutional
Neural Network (CNN), so much that the forward pass of the CNN is equivalent to a CSC with a
thresholding pursuit algorithm. These unsupervised algorithms are equivalent to a gradient descent
optimization over an informational-type coding cost (Kingma & Welling, 2013). This cost makes it
then possible to quantitatively evaluate the joint exploration of new learning or coding strategies. As
such, this remark shows us that unsupervised learning consists of two antagonistic mechanisms, a
long time scale that corresponds to the learning and exploration of new components and a faster scale
that corresponds to coding.

In particular, an aspect often ignored in this type of learning is the set of homeostasis mechanisms that
control the average activity of neurons within a population. Indeed, there is an intrinsic complexity
in unsupervised dictionary learning algorithms: how to adapt the regularization parameter of each
atom to make sure no atoms are wasted because of improper regularization settings? In the original
algorithms of sparse unsupervised learning (Olshausen & Field, 1997), homeostasis is implemented
as a heuristic that prevents the algorithm from diverging. In most unsupervised learning algorithms
it takes the form of a normalization, that is, an equalization of the energy of each atom in the
dictionary (Mairal et al., 2014). However, the neural mechanisms of homeostasis are at work in many
components of the neural code and are essential to the overall transduction of neural information. For
example, the sub-networks of glutamate and GABA-type neurons may regulate the overall activity of
neural populations (Marder & Goaillard, 2006). In particular, such mechanisms could be tuned to
balance the contribution of the excitatory populations with respect to that in inhibitory populations.
As a consequence, this creates a so-called balanced network which may explain many facets of the
properties of the primary visual cortex (Hansel & van Vreeswijk, 2012). At the modelling level,
these mechanisms are often implemented in the form of normalization rules (Schwartz & Simoncelli,
2001) which are considered as the basis of a normative theory to explain the function of the primary
visual cortex (Carandini & Heeger, 2012). However, when extending such model using unsupervised
learning, most modelling effort is rather intended to show that the cells’ selectivity that emerges have
the same characteristics than those observed in neuro-physiology (Ringach, 2002; Rehn & Sommer,
2007; Loxley, 2017). Other algorithms use non-linearities that implicitly implement homeostatic
rules in neuro-mimetic algorithms (Brito & Gerstner, 2016). These non-linearities are mainly used in
the output of successive layers of deep learning networks that are nowadays widely used for image
classification or artificial intelligence. However most of these non-linear normalization rules are
based on heuristics mimicking neural mechanisms but are not justified as part of the global problem
underlying unsupervised learning. Framing this problem in a probabilistic framework allows to
consider in addition to coding and learning the intermediate time scale of homeostasis and allows
us also to associate it to an adaptation mechanisms (Rao & Ballard, 1999). Our main argument is
that by optimizing unsupervised learning at different time scales, we allow for the implementation
of fast algorithms compatible with the performance of biological networks and in comparison with
classical (Olshausen & Field, 1997) or Deep Learning approaches.

In this paper, we will first define a simple algorithm for controlling the selection of coefficients
in sparse coding algorithms based on a set of non-linear functions similar to a generic neural gain
normalization mechanisms. Such functions will be used to implement an homeostasis mechanism
based on histogram equalization by progressively adapting these non-linear functions. In particular,
this algorithm will extend an already existing algorithm of unsupervised sparse learning (Perrinet,
2010) to a more general setting. In particular, we will show quantitative results of this optimal
algorithm by applying it to different pairs of coding and learning algorithms. Second, we will propose
a simplification of this homeostasis algorithm based on the activation probability of each neuron and
show that it yields similar quantitative results as the full homeostasis algorithm and that it converges
more rapidly than classical methods (Olshausen & Field, 1997; Sandin & Martin-del Campo, 2017).
In particular, we focused in our architecture to be able to quantitatively cross-validate for every
single hyper-parameters and all these scripts are available at https://github.com/XXX/ZZZ.
Finally, we will conclude by showing an application of such an adaptive algorithm to CNNs and
discuss on its development in real-world architectures.
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Figure 1: Role of homeostasis in learning sparse representations: We show the results of Sparse
Hebbian Learning using different homeostasis algorithms at convergence (1024 learning epochs).
The compared algorithms are : None (using a simple simple normalization of the atoms), OLS
(the method of (Olshausen & Field, 1997)), HEH (using the optimal homeostasis described in this
paper). (A) For each algorithm, we show 18 atoms from the 441 filters of the same size as the image
patches (M = 22× 22 = 484, circularly masked) and presented in a matrix (separated by a white
border). The upper and lower row respectively show the least and most probably selected atoms.
This highlights the fact that without proper homeostasis, dictionary learning leads to inhomogeneous
representations. (B) Evolution of cost F (in bits, see Eq. 4) as a function of the number of iterations
and cross-validated over 10 runs. While OLS provides a similar convergence than None, the HEH
method provides a better final convergence.

2 UNSUPERVISED LEARNING AND THE OPTIMAL REPRESENTATION OF
IMAGES

Visual items composing natural images are often sparse, such that knowing a model for the generation
of images, the brain may use this property to reconstruct images using only a few of these items. In
the context of the representation of natural images1 y = (yk)Kk=1 ∈ RK×M represented in a matrix
as a set ofK vector samples (herein, we will use a batch size ofK = 256) as images raveled alongM
pixels (each yk,j ∈ R are the corresponding luminance values), let us assume the generic Generative
Linear Model, such that for any sample k the image was generated as yk = ΦTak + ε, where by
definition, the coefficients are denoted by ak = (ak,i)

N
i=1 ∈ RN and the dictionary by Φ ∈ RN×M .

Finally, ε ∈ RM is a Gaussian iid noise which is Normal without loss of generality by scaling the
norm of the dictionary’s rows. Knowing this model, unsupervised learning aims at finding the least
surprising causes (the parameters âk and Φ) for the data yk. In particular, the cost may be formalized
in a probabilistic terms as (Olshausen & Field, 1997):

F ≈ 〈− log[p(yk|âk,Φ)pΦ(âk)]〉k=1...K = 〈1
2
||yk − Φâk||22 − log pΦ(âk)〉k=1...K (1)

Such hypothesis allows to retrieve the cost that is optimized in most of existing models of unsupervised
learning. Explicitly, the representation is optimized by minimizing a cost defined on prior assumptions
on representation’s sparseness, that is on log pΦ(ak). For instance, learning is accomplished in
SPARSENET (Olshausen & Field, 1997) by defining a sparse prior probability distribution function
for each coefficients in the factorial form log pΦ(ak) ∼ −β

∑
i log(1 +

a2i
σ2 ) where β corresponds

to the steepness of the prior and σ to its scaling (see Figure 13.2 from (Olshausen, 2002)). Then,
knowing this sparse solution, learning is defined as slowly changing the dictionary using Hebbian
learning.

1We use image patches drawn from large images of outdoor scenes, as provided in the kodakdb database
which is available in the code’s repository.
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Indeed, to compute the partial derivate of F with respect to Φ, we have ∀i:
∂

∂Φi
F = 〈1

2

∂

∂Φi
[(yk − ΦT âk)T (yk − ΦT âk)]〉k=1...K = 〈âk(yk − ΦT âk)〉k=1...K . (2)

This allows to define unsupervised learning as the gradient descent using this equation. Similarly
to Eq. 17 in (Olshausen & Field, 1997) or to Eq. 2 in (Smith & Lewicki, 2006), the relation is a
linear “Hebbian” rule (Hebb, 1949) since it enhances the weight of neurons proportionally to the
activity (coefficients) between pre- and post-synaptic neurons. Note that there is no learning for
non-activated coefficients and also that we used a (classical) scheduling of the learning rate and a
proper initialization of the weights (see Annex 2.5 & 2.6). The novelty of this formulation compared
to other linear Hebbian learning rule such as (Oja, 1982) is to take advantage of the sparse (non-linear)
representation, hence the name Sparse Hebbian Learning (SHL). In general, the parameterization
of the prior in Eq. 1 has major impacts on results of the sparse coding and thus on the emergence
of edge-like receptive fields and requires proper tuning. For instance, a L2-norm penalty term (that
is, a Gaussian prior on the coefficients) corresponds to Tikhonov regularization (Tikhonov, 1977)
and a L1-norm term (that is, an exponential prior for the coefficients) corresponds to the convex cost
which is optimized by least-angle regression (LARS) (Efron et al., 2004) or FISTA (Beck & Teboulle,
2009).

2.1 ALGORITHM: SPARSE CODING WITH A CONTROL MECHANISM FOR THE SELECTION OF
ATOMS

Concerning the choice of a proper prior distribution, the spiking nature of neural information
demonstrates that the transition from an inactive to an active state is far more significant at the coding
time scale than smooth changes of the firing rate. This is for instance perfectly illustrated by the
binary nature of the neural code in the auditory cortex of rats (DeWeese et al., 2003). Binary codes
also emerge as optimal neural codes for rapid signal transmission (Bethge et al., 2003). This is also
relevant for neuromorphic systems which transmit discrete, asynchronous events (such as a network
packet). With a binary event-based code, the cost is only incremented when a new neuron gets
active, regardless to its (analog) value. Stating that an active neuron carries a bounded amount of
information of λ bits, an upper bound for the representation cost of neural activity on the receiver end
is proportional to the count of active neurons, that is, to the `0 pseudo-norm ||ak||0 = |{i,ak,i 6= 0}|:

F ≈ 〈1
2
||yk − Φak||22 + λ||ak||0〉k=1...K (3)

This cost is similar with information criteria such as the Akaike Information Criteria (Akaike, 1974)
or distortion rate (Mallat, 1998, p. 571). For λ = log2N , it gives the total information (in bits) to
code for the residual (using entropic coding) and the list of spikes’ addresses. In general, the high
inter-connectivity of neurons (on average approximately 10000 synapses per neurons) justifies such
an informational perspective with respect to the analog quantization of information in the point-to-
point transfer of information between neurons. However, Eq. 3 defines a harder cost to optimize
(in comparison to convex formulations in Equation 1 for instance) since the hard `0 pseudo-norm
sparseness leads to a non-convex optimization problem which is NP-complete with respect to the
dimension M of the dictionary (Mallat, 1998, p. 418).

Still, there are many solutions to this optimization problem and here, we will use a generalized version
of the Matching Pursuit (MP) algorithm (Mallat, 1998, p. 422). A crucial aspect of this algorithm
is the arg max function as it produces at each step a competition among N neurons (that is, λ bits).
For this reason, we will introduce a mechanism to tune this competition. For any signal yk drawn
from the database, we get the coefficients ak = S(yk; Ψ = {Φ, z,N0}) thanks to Algorithm 1. The
parameter N0 > 0 controls the amount of sparsity that we impose to the coding. The novelty of this
generalization of MP lies in the scalar functions z = {zi}i=1...N which control the competition for
the best match across atoms. While an identical symmetric function is chosen in the original MP
algorithm (that is, ∀i, zi(ak) = |ak|), we will define these at a first attempt as the rescaled non-linear
rectified linear unit (ReLU) with gain γi: ∀i, zi(ak,i) = γi ∗ak,i ∗δ(ak,i > 0) where δ is Kronecker’s
indicator function.

We found as in (Rehn & Sommer, 2007) that by using an algorithm like Matching Pursuit (that
is using the symmetric function or setting ∀i, γi = 1 as in (Mairal et al., 2014) for instance), the
Sparse Hebbian Learning algorithm could provide results similar to SPARSENET. An advantage is

4



Under review as a conference paper at ICLR 2019

Algorithm 1 Generalized Matching Pursuit: ak = S(yk; Ψ = {Φ, z,N0})
1: set the sparse vector ak to zero,
2: initialize āki = 〈yk,Φi〉 for all i
3: while ||ak||0 < N0 do:
4: select the best match: i∗ = arg maxi[zi(āki)]
5: update the sparse coefficient: ak,i∗ = ak,i∗ + ¯ak,i∗ ,
6: update residual coefficients: ∀i, ¯ak,i ← ¯ak,i − ak,i∗〈Φi∗ ,Φi〉.
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Figure 2: Histogram Equalization Homeostasis and its role in unsupervised learning: (A) Non-
linear homeostatic functions zi,∀i learned using Hebbian learning. These functions were computed
for different homeostatic strategies (None, OLS or HEH) but only used in HEH. Note that for our
choice of N0 = 13, all cumulative functions start around 1 − N0/N ≈ .970. At convergence of
HEH, the probability of choosing any filter is equiprobable, while the distribution of coefficients
is more variable for None and OLS. As a consequence, the distortion between the distributions of
sparse coefficients is minimal for HEH, a property which is essential for the optimal representation of
signals in distributed networks such as the brain. (B) Effect of learning rate η (eta) and homeostatic
learning rate ηh (eta homeo) on the final cost as computed for the same learning algorithms but
with different homeostatic strategies (None, OLS or HEH). Parameters were explored around a default
value, on a logarithmic scale and over 4 octaves. This shows that HEH is robust across a wide range
of parameters.

the non-parametric assumption on the prior based on this more generic `0 pseudo-norm sparseness.
However, we observed that this class of algorithms could lead to solutions corresponding to a local
minimum of the full objective function: Some solutions seem as efficient as others for representing the
signal but do not represent edge-like features homogeneously (Figure 1-A, None). Moreover, using
other sparse coding algorithms which are implemented in the sklearn library, we compared the
convergence of the learning with different sparse coding algorithms. In particular, we compared the
learning as implemented with matching pursuit to that with orthogonal matching pursuit (OMP) (Pati
et al., 1993), LARS or FISTA (see Annex 2.4). For all these sparse coding algorithms, during the
early learning step, some cells may learn “faster” than others. In particular, these cells have more
peaked distributions of their activity and tend to be selected more often. There is the need for a
homeostasis mechanism that will ensure convergence of learning. The goal of this work is to study
the specific role of homeostasis in learning sparse representations and to propose a homeostasis
mechanism based on the functions zi which optimizes the learning of an efficient representation.

2.2 ALGORITHM: HISTOGRAM EQUALIZATION HOMEOSTASIS

Knowing a dictionary and a sparse coding algorithm, we may transform any data sample yk into a set
of sparse coefficients using the above algorithm: ak = S(yk; Ψ = {Φ, z,N0}) (see Algorithm 1). In
particular, at any step during learning, dictionaries may not have been homogeneously learned and
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may exhibit different distributions. However, this would not be taken into account in the original cost
(see Eq. 3) as we assumed as in Olshausen & Field (1997) that pΦ(âk) is factorized, that is, that the
components of the sparse vector are independent. As a consequence, we may use a deviation to this
hypothesis as an additional component to the cost:

F ≈ 〈1
2
||yk − Φak||22 + λ||ak||0 + MI(ak)〉k=1...K (4)

Where we used the mutual information MI as a proxy to measure the dependence between the
components of the sparse vector. Indeed, as information is coded in the address of neurons, infor-
mation transfer as computed through Shannon entropy, is optimized when the activity within the
neural population is uniformly balanced, that is when each neuron is a priori selected with the same
probability. In particular, a necessary (yet not sufficient) condition for minimizing this cost is that
the prior probability of selecting coefficients are identical ∀(i, j), qΨ(ak,i) = qΨ(ak,j) to ensure the
optimality of the choice of the `0 pseudo-norm and compare it to the representation in the primary
visual cortex. As we have seen, we may use different transformation functions z to influence the
choice of coefficients such that we may use these functions to optimize the objective cost defined
by Eq. 4.

To achieve this uniformity, we may define an homeostatic gain control mechanism based on
histogram equalization, that is, by transforming coefficients in terms of quantiles by setting
∀i, zi(·) = P (· > ai). Such a transform is similar to the inverse transform sampling which is
used to optimize representation in auto-encoders (Doersch, 2016) and can be considered as a non-
parametric extension of the “re-normalization trick” used in variational auto-encoders (Kingma &
Welling, 2013). Moreover, it has been found that such an adaptation mechanism is observed in the
response of the retina to various contrast distributions (Laughlin, 1981). However, an important point
to note is that this joint optimization problem between coding and homeostasis is circular as we can
not access the true posterior pΦ(a): Indeed, the coefficients depend on non-linear coefficients through
ak = S(yk; Ψ = {Φ, zi, N0}), while the non-linear functions depend on the (cumulative) distribu-
tion of the coefficients. We will make the assumption that such a problem can be solved iteratively
by slowly learning the non-linear functions. Starting with an initial set of non-linear functions as in
None, we will derive an approximation for the sparse coefficients. Then, the function zi for each
coefficient of the sparse vector is calculated using an iterative moving average scheme (parameterized
by time constant 1/ηh) to smooth its evolution during learning. At the coding level, this non-linear
function is incorporated in the matching step of the matching pursuit algorithm, to modulate the
choice of the most probable as that corresponding to the maximal quantile: i∗ = arg maxi zi(ai)
(see Algorithm 1). We will coin this variant as Histogram Equalization Homeostasis (HEH). The
rest of this Sparse Hebbian Learning algorithm is left unchanged. As we adapt the dictionaries
progressively during Sparse Hebbian Learning, we may incorporate this HEH homeostasis during
learning by choosing an appropriate learning rate ηh. To recapitulate the different choices we made
from the learning to the coding and the homeostasis, the unsupervised learning can be summarized
using the following steps (see Algorithm 2).

Algorithm 2 Homeostatic Unsupervised Learning of Kernels: Φ = H(y; η, ηh, N0)

1: Initialize the point non-linear gain functions zi to similar cumulative distribution functions,
2: initialize atoms Φi to random points on the K-unit sphere,
3: for T epochs do:
4: draw a new batch y from the database of natural images,
5: for each data point yk do:
6: compute the sparse representation vector a = S(yk; Ψ = {Φ, z,N0}) (see Algorithm 1),
7: modify dictionary: ∀i,Φi ← Φi + η · ai · (yk − Φa),
8: normalize dictionary: ∀i,Φi ← Φi/||Φi||,
9: update homeostasis functions: ∀i, zi(·)← (1− ηh) · zi(·) + ηh · δ(ai ≤ ·).

We compared qualitatively the set Φ of receptive filters generated with different homeostasis algo-
rithms (see Fig. 1-A). A more quantitative study of the coding is shown by comparing the decrease of
the cost as a function of the iteration step (see Fig. 1-B). This demonstrate that forcing the learning
activity to be uniformly spread among all receptive fields results in a faster convergence of the
representation error as represented by the decrease of the cost F .
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Figure 3: Homeostasis on Activation Probability (HAP) and a quantitative evaluation of home-
ostatic strategies: (A) 18 from the 441 dictionaries learned for the two heuristics EMP and HAP
and compared to the optimal homeostasis (see Figure 1-A, HEH). Again, the upper and lower row
respectively show the least and most probably selected atoms. (B) Comparison of the cost F during
learning and cross-validated over 10 runs: The convergence of OLS is similar to EMP. The simpler
HAP heuristics gets closer to the more demanding HEH homeostatic rule, demonstrating that this
heuristic is a good compromise for fast unsupervised learning.

2.3 RESULTS: FAST UNSUPERVISED LEARNING USING HOMEOSTASIS

We have shown above that we can find an exact solution to the problem of homeostasis during
Sparse Hebbian Learning. However, this solution has several drawbacks. First, it is computationally
intensive on a conventional computer as it necessitates to store each zi function to store the cumulative
distribution of each coefficient. More importantly, it seems that biological neurons seem to rather
use a simple gain control mechanism. This can be implemented by modifying the gain γi of the
slope of the ReLu function to operate a gradient descent on the cost based on the distribution of each
coefficients. Such strategy can be included in the SHL algorithm by replacing line 8 in Algorithm 2.
For instance, the strategy of (Olshausen & Field, 1997) assumes a cost on the difference between the
observed variance of coefficients Vi as computed over a set of samples compared to a desired value
σ2
g (and assuming a multiplicative noise parameterized by α) :

Vi ← (1− ηh) · Vi + ηh · 1/K
∑

k=1···K

a2
i,k and γi ← γi ·

(
Vi
σ2
g

)α
(5)

This is similar to the mechanisms of gain normalization proposed by Schwartz & Simoncelli (2001)
and which were recently shown to provide efficient coding mechanisms by Simoncelli (2017).
However, compared to these methods which manipulate the gain of dictionaries based on the energy
of coefficients, we propose to rather use a methodology based on the probability of activation. Indeed,
the main distortion that occurs during learning is on higher statistical moments rather than variance,
for instance when an atom is winning more at the earlier iterations, its pdf will typically be more
kurtotic than a filter that has learned less.

Recently, such an approach was proposed by Sandin & Martin-del Campo (2017). Based on the
same observations, the authors propose to optimize the coding during learning by modulating the
gain of each dictionary element based on the recent activation history. They base their Equalitarian
Matching Pursuit (EMP) algorithm on a heuristics which cancels the activation of any filter that was
more often activated than a given threshold probability (parameterized by 1 + αh). In our setting, we
may compute a similar algorithm using an evaluation of probability of activation followed by binary
gates:

pi ← (1− ηh) · pi + ηh · 1/K
∑

k=1···K

δ(ai,k > 0) and γi = δ(pi < N0/N ∗ (1 + αh)) (6)

7
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Interestingly, they reported that such a simple heuristic could improve the learning, deriving a similar
result as we have shown in Figure 1 and Figure 2. Again, such strategy can be included in Algorithm 2.

Similarly, we may derive an approximate homeostasis algorithm based on the current activation
probability but using a gradient descent approach on gain modulation. Ideally, this corresponds
to finding γi such that we minimize the entropy −

∑
i=1···N pi log pi. However, the sparse coding

function S(yk; Ψ = {Φ, z,N0}) is not differentiable. One possible heuristic is then to differentiate
the change of modulation gain that would be necessary to achieve an equiprobable probability, that is
when ∀i, pi = p0

def.
= N0/N :

pi ← (1− ηh) · pi + ηh · 1/K
∑

k=1···K

δ(ai,k > 0) and γi = exp(−(pi − p0)/αh) (7)

We will coin this variant of the algorithm Homeostasis on Activation Probability (HAP). Following
these derivations, we quantitatively compared OLS, EMP and HAP to HEH (see Figure 3). This shows
that while EMP slightly outperforms OLS (which itself is more efficient than None, see Figure 2-B),
HAP proves to be closer to the optimal solution given by HEH. In particular, we replicated in HAP
the result of Sandin & Martin-del Campo (2017) that while homeostasis was essential in improving
unsupervised learning, the coding algorithm (MP versus OMP) mattered relatively little (see Annex
2.4). Also, we verified the dependence of this efficiency with respect to different hyperparameters (as
we did in Figure 2-B). These quantitative results show that the HEH algorithm could be replaced by a
simpler and more rapid heuristic, HAP, which is based on activation probability. This would generate
similar efficiency for the coding of patches from natural images.

3 DISCUSSION AND CONCLUSION

One core advantage of sparse representations is the efficient coding of complex signals using compact
codes. Inputs are thus represented as combination of few elements drawn from a large dictionary
of atoms. As a consequence, a common design for unsupervised learning rules relies on a gradient
descent over a cost measuring representation quality with respect to sparseness. This constraint
introduces a competition between atoms. In the context of the efficient processing of natural images,
we proposed here that such strategies can be optimized by including a proper homeostatic regulation
enforcing a fair competition between the elements of the dictionary. We implemented this rule by
introducing a non-linear gain normalization similar to what is observed in biological neural networks.
We validated this theoretical insight by challenging this adaptive unsupervised learning algorithm with
alternate heuristics for homeostasis. Simulations show that at convergence, while the coding accuracy
did not vary much, including homeostasis changed qualitatively the learned features. In particular,
homeostasis results in a more homogeneous set of orientation selective filters, which is closer to what
is found in the visual cortex of mammals (Ringach, 2002; Rehn & Sommer, 2007; Loxley, 2017). To
further validate these results, we quantitatively compared the efficiency of the different variants of the
algorithms, both at the level of homeostasis (homeostatic learning rate, parameters of the heuristics),
but also to the coding (by changing M , N or N0) and to the learning (by changing the learning rate,
the scheduling or M ). This demonstrated that overall, this neuro-inspired homeostatic algorithm
provided with the best compromise between efficiency and computational cost.

In summary, this biologically-inspired learning rule demonstrates that principles observed in neural
computations can help improve real-life machine learning algorithms. Indeed, by developing this
fast learning algorithm, we hope for its rapid application in artificial intelligence algorithms. This
type of architecture is economical, efficient and fast. It makes it possible to be transferred to
most deep learning algorithms. Along with this, we hope that this new type of rapid unsupervised
learning algorithm can provide a normative theory for the coding of information in low-level sensory
processing, whether it is visual or auditory, for example. Moreover, by its nature, this algorithm can
easily be extended to convolutional networks such as those used in deep learning neural networks.
This extension is possible by extending the filter dictionary by the hypothesis of invariances to the
translation of representations. Our results on different databases show the stable and rapid emergence
of characteristic filters on these different bases (see Figure 4 and Annex 3.1). This result shows a
probable prospect of extending this representation and for which we hope to obtain classification
results superior to the algorithms existing in the state-of-the-art. As such, empirical evaluations of
the proposed algorithms should be extended. For instance, it would be very useful to test for image
classification results on standard benchmark datasets.
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Figure 4: Extension to Convolutional Neural Networks (CNNs): We extend the HAP algorithm
to a single layered CNN with 20 kernels and using the ATT face database. We show here the kernels
learned without (None, top row) and with (HAP, bottom row) homeostasis (note that we used the
same initial conditions). As for the simpler case, we observe a heterogeneity of activation counts
without homeostasis, that is, in the case which simply normalizes the energy of kernels (see (A)).
With homeostasis, we observe the convergence of the activation probability for the different kernels
(see (B)). This demonstrates that this heuristic extends well to a CNN architecture.
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This supplementary information presents :

first, the code to generate the figures from the paper,
second, some control experiments that were mentionned in the paper,
finally, some perspectives for future work inspired by the algorithms presented in the paper.

Figures for "An adaptive algorithm for unsupervised
learning"

In [1]: %load_ext autoreload
%autoreload 2

In [2]: import numpy as np
np.set_printoptions(precision=2, suppress=True)
seed = 42
np.random.seed(seed)

In [3]: # some overhead for the formatting of figures
import matplotlib.pyplot as plt

fontsize = 12
FORMATS = ['.pdf', '.eps', '.png', '.tiff']
FORMATS = ['.pdf', '.png']
dpi_export = 600

fig_width_pt = 318.670  # Get this from LaTeX using \showthe\column
width
fig_width_pt = 450  # Get this from LaTeX using \showthe\columnwidt
h
#fig_width_pt = 1024 #221     # Get this from LaTeX using \showthe\
columnwidth / x264 asks for a multiple of 2
ppi = 72.27 # (constant) definition of the ppi = points per inch
inches_per_pt = 1.0/ppi  # Convert pt to inches
#inches_per_cm = 1./2.54
fig_width = fig_width_pt*inches_per_pt  # width in inches
grid_fig_width = 2*fig_width
phi = (np.sqrt(5) + 1. ) /2
#legend.fontsize = 8
#fig_width = 9
fig_height = fig_width/phi
figsize = (fig_width, fig_height)

def adjust_spines(ax, spines):
    for loc, spine in ax.spines.items():
        if loc in spines:
            spine.set_position(('outward', 10))  # outward by 10 po
ints
            spine.set_smart_bounds(True)
        else:



            spine.set_color('none')  # don't draw spine

    # turn off ticks where there is no spine
    if 'left' in spines:
        ax.yaxis.set_ticks_position('left')
    else:
        # no yaxis ticks
        ax.yaxis.set_ticks([])

    if 'bottom' in spines:
        ax.xaxis.set_ticks_position('bottom')
    else:
        # no xaxis ticks
        ax.xaxis.set_ticks([])

import matplotlib
pylab_defaults = { 
    'font.size': 10,
    'xtick.labelsize':'medium',
    'ytick.labelsize':'medium',
    'text.usetex': False,
#    'font.family' : 'sans-serif',
#    'font.sans-serif' : ['Helvetica'],
    }
    
#matplotlib.rcParams.update({'font.size': 18, 'font.family': 'STIXG
eneral', 'mathtext.fontset': 'stix'})
matplotlib.rcParams.update(pylab_defaults)
#matplotlib.rcParams.update({'text.usetex': True})

import matplotlib.cm as cm

from IPython.display import Image

DEBUG = True
DEBUG = False
hl, hs = 10*'-', 10*' '

In [4]: tag = 'ICLR'
datapath = '../../SparseHebbianLearning/database'
# different runs
#opts = dict(datapath=datapath, verbose=0)
#opts = dict(cache_dir='cache_dir_cluster', datapath=datapath, verb
ose=0)
#opts = dict(cache_dir='cache_dir_ICLR', datapath=datapath, verbose
=0)
opts = dict(cache_dir='cache_dir_cluster25', eta=0.002, eta_homeo=0
.005, datapath=datapath, verbose=0)

In [5]: from shl_scripts.shl_experiments import SHL
shl = SHL(**opts)
data = shl.get_data(matname=tag)



In [6]: shl?

In [7]: print('number of patches, size of patches = ', data.shape)
print('average of patches = ', data.mean(), ' +/- ', data.mean(axis
=1).std())
SE = np.sqrt(np.mean(data**2, axis=1))
print('average energy of data = ', SE.mean(), '+/-', SE.std())

In [8]: #!ls -l {shl.cache_dir}/{tag}*
!ls {shl.cache_dir}/{tag}*lock*
!rm {shl.cache_dir}/{tag}*lock*
#!rm {shl.cache_dir}/{tag}*
#!ls -l {shl.cache_dir}/{tag}*

figure 1: Role of homeostasis in learning sparse
representations

TODO : cross-validate with 10 different learnings

In [9]: fname = 'figure_map'
N_cv = 10
one_cv = 0 # picking one to display intermediate results

learning
The actual learning is done in a second object (here dico ) from which we can access another set of
properties and functions (see the shl_learn.py
(https://github.com/bicv/SHL_scripts/blob/master/shl_scripts/shl_learn.py) script):

Type:        SHL
String form: <shl_scripts.shl_experiments.SHL object at 0x10919412
8>
File:        
~/science/SparseHebbianLearning/shl_scripts/shl_experiments.py
Docstring:  
Base class to define SHL experiments:
    - initialization
    - coding and learning
    - visualization
    - quantitative analysis

number of patches, size of patches =  (65520, 324)
average of patches =  5.0641928164665185e-19  +/-  0.0095770518654
37931
average energy of data =  0.29851622590347293 +/- 0.08935954499531
101

ls: cache_dir_cluster25/ICLR*lock*: No such file or directory
rm: cache_dir_cluster25/ICLR*lock*: No such file or directory



In [10]: homeo_methods = ['None', 'OLS', 'HEH']

list_figures = ['show_dico', 'time_plot_error', 'time_plot_logL', '
time_plot_MC', 'show_Pcum']
list_figures = []
dico = {}
for i_cv in range(N_cv):
    dico[i_cv] = {}
    for homeo_method in homeo_methods:
        shl = SHL(homeo_method=homeo_method, seed=seed+i_cv, **opts
)
        dico[i_cv][homeo_method] = shl.learn_dico(data=data, list_f
igures=list_figures, matname=tag + '_' + homeo_method + '_seed=' + 
str(seed+i_cv))

list_figures = ['show_dico']
for i_cv in [one_cv]:
    for homeo_method in homeo_methods:
        print(hl + hs + homeo_method[:3] + hs + hl)
        shl = SHL(homeo_method=homeo_method, seed=seed+i_cv, **opts
)
        shl.learn_dico(data=data, list_figures=list_figures, matnam
e=tag + '_' + homeo_method + '_seed=' + str(seed+i_cv))

        print('size of dictionary = (number of filters, size of ima
gelets) = ', dico[i_cv][homeo_method].dictionary.shape)
        print('average of filters = ',  dico[i_cv][homeo_method].di
ctionary.mean(axis=1).mean(), 
              '+/-',  dico[i_cv][homeo_method].dictionary.mean(axis
=1).std())
        SE = np.sqrt(np.sum(dico[i_cv][homeo_method].dictionary**2, 
axis=1))
        print('average energy of filters = ', SE.mean(), '+/-', SE.
std())
        plt.show()

----------          Non          ----------
size of dictionary = (number of filters, size of imagelets) =  (44
1, 324)
average of filters =  -1.1980961885168967e-05 +/- 0.00124694840890
4883
average energy of filters =  1.0 +/- 3.920778245506598e-17



----------          OLS          ----------
size of dictionary = (number of filters, size of imagelets) =  (44
1, 324)
average of filters =  -4.089243933727358e-06 +/- 0.001241096006797
0878
average energy of filters =  1.0 +/- 3.9562611248144994e-17



----------          HEH          ----------
size of dictionary = (number of filters, size of imagelets) =  (44
1, 324)
average of filters =  -6.6112572753952305e-06 +/- 0.00121065448870
92556
average energy of filters =  1.0 +/- 3.700743415417188e-17



panel A: plotting some dictionaries

In [11]: pname = '/tmp/panel_A' #pname = fname + '_A'

In [12]: from shl_scripts import show_dico
if DEBUG: show_dico(shl, dico[one_cvi_cv][homeo_method], data=data, 
dim_graph=(2,5))

In [13]: dim_graph = (2, 9)
colors = ['black', 'orange', 'blue']
homeo_methods

Out[13]: ['None', 'OLS', 'HEH']



In [14]: subplotpars = dict( left=0.042, right=1., bottom=0., top=1., wspace
=0.05, hspace=0.05,)
fig, axs = plt.subplots(3, 1, figsize=(fig_width/2, fig_width/(1+ph
i)), gridspec_kw=subplotpars)

for ax, color, homeo_method in zip(axs.ravel(), colors, homeo_metho
ds): 
    ax.axis(c=color, lw=2, axisbg='w')
    ax.set_facecolor('w')
    fig, ax = show_dico(shl, dico[one_cv][homeo_method], data=data, 
dim_graph=dim_graph, fig=fig, ax=ax)
    # ax.set_ylabel(homeo_method)
    ax.text(-8, 7*dim_graph[0], homeo_method, fontsize=12, color=co
lor, rotation=90)#, backgroundcolor='white'

for ext in FORMATS: fig.savefig(pname + ext, dpi=dpi_export)

In [15]: ### TODO put the p_min an p_max value in the filter map

In [16]: if DEBUG: Image(pname +'.png')

In [17]: if DEBUG: help(fig.subplots_adjust)

In [18]: if DEBUG: help(plt.subplots)

In [19]: if DEBUG: help(matplotlib.gridspec.GridSpec)

panel B: quantitative comparison

In [20]: pname = '/tmp/panel_B' #fname + '_B'



%tikz \draw (0,0) rectangle (1,1);%%tikz --save {fname}.pdf \draw[white, fill=white] (0.\linewidth,0) rectangle
(1.\linewidth, .382\linewidth) ;

In [21]: from shl_scripts import time_plot
variable = 'F'
alpha_0, alpha = .3, .15
subplotpars = dict(left=0.2, right=.95, bottom=0.2, top=.95)#, wspa
ce=0.05, hspace=0.05,)
fig, ax = plt.subplots(1, 1, figsize=(fig_width/2, fig_width/(1+phi
)), gridspec_kw=subplotpars)
for i_cv in range(N_cv):
    for color, homeo_method in zip(colors, homeo_methods): 
        ax.axis(c='b', lw=2, axisbg='w')
        ax.set_facecolor('w')
        if i_cv==0:
            fig, ax = time_plot(shl, dico[i_cv][homeo_method], vari
able=variable, unit='bits', color=color, label=homeo_method, alpha=
alpha_0, fig=fig, ax=ax)
        else:
            fig, ax = time_plot(shl, dico[i_cv][homeo_method], vari
able=variable, unit='bits', color=color, alpha=alpha, fig=fig, ax=a
x)        
        # ax.set_ylabel(homeo_method)
        #ax.text(-8, 7*dim_graph[0], homeo_method, fontsize=12, col
or='k', rotation=90)#, backgroundcolor='white'
ax.legend(loc='best')
for ext in FORMATS: fig.savefig(pname + ext, dpi=dpi_export)
if DEBUG: Image(pname +'.png')

Montage of the subplots

In [22]: import tikzmagic

In [23]: %load_ext tikzmagic

In [24]: #DEBUG = True
if DEBUG: help(tikzmagic)



!echo "width=" ; convert {fname}.tiff -format "%[fx:w]" info: !echo ", \nheight=" ; convert {fname}.tiff -format
"%[fx:h]" info: !echo ", \nunit=" ; convert {fname}.tiff -format "%U" info:!identify {fname}.tiff

In [25]: %%tikz -f pdf --save {fname}.pdf
\draw[white, fill=white] (0.\linewidth,0) rectangle (1.\linewidth, 
.382\linewidth) ;
\draw [anchor=north west] (.0\linewidth, .382\linewidth) node {\inc
ludegraphics[width=.5\linewidth]{/tmp/panel_A}};
\draw [anchor=north west] (.5\linewidth, .382\linewidth) node {\inc
ludegraphics[width=.5\linewidth]{/tmp/panel_B}};
\begin{scope}[font=\bf\sffamily\large]
\draw [anchor=west,fill=white] (.0\linewidth, .382\linewidth) node 
[above right=-3mm] {$\mathsf{A}$};
\draw [anchor=west,fill=white] (.53\linewidth, .382\linewidth) node 
[above right=-3mm] {$\mathsf{B}$};
\end{scope}

In [26]: !convert  -density {dpi_export} {fname}.pdf {fname}.jpg
!convert  -density {dpi_export} {fname}.pdf {fname}.png
#!convert  -density {dpi_export} -resize 5400  -units pixelsperinch 
-flatten  -compress lzw  -depth 8 {fname}.pdf {fname}.tiff
Image(fname +'.png')

figure 2: Histogram Equalization Homeostasis

In [27]: fname = 'figure_HEH'

First collecting data:

Out[26]:



In [28]: list_figures = ['show_Pcum']

dico = {}
for homeo_method in homeo_methods:
    print(hl + hs + homeo_method + hs + hl)
    shl = SHL(homeo_method=homeo_method, **opts)
    #dico[homeo_method] = shl.learn_dico(data=data, list_figures=li
st_figures, matname=tag + '_' + homeo_method + '_' + str(one_cv))
    dico[homeo_method] = shl.learn_dico(data=data, list_figures=lis
t_figures, matname=tag + '_' + homeo_method + '_seed=' + str(seed+o
ne_cv))
    plt.show()

----------          None          ----------

----------          OLS          ----------

----------          HEH          ----------



In [29]: dico[homeo_method].P_cum.shape

panel A: different P_cum

Out[29]: (441, 128)



In [30]: pname = '/tmp/panel_A' #pname = fname + '_A'

from shl_scripts import plot_P_cum
variable = 'F'
subplotpars = dict(left=0.2, right=.95, bottom=0.2, top=.95)#, wspa
ce=0.05, hspace=0.05,)
fig, ax = plt.subplots(1, 1, figsize=(fig_width/2, fig_width/(1+phi
)), gridspec_kw=subplotpars)
for color, homeo_method in zip(colors, homeo_methods): 
    ax.axis(c='b', lw=2, axisbg='w')
    ax.set_facecolor('w')
    fig, ax = plot_P_cum(dico[homeo_method].P_cum, ymin=0.95, ymax=
1.001, 
                         title=None, suptitle=None, ylabel='non-lin
ear functions', 
                         verbose=False, n_yticks=21, alpha=.02, c=c
olor, fig=fig, ax=ax)
    ax.plot([0], [0], lw=1, color=color, label=homeo_method, alpha=
.6)
    # ax.set_ylabel(homeo_method)
    #ax.text(-8, 7*dim_graph[0], homeo_method, fontsize=12, color='
k', rotation=90)#, backgroundcolor='white'
ax.legend(loc='lower right')
for ext in FORMATS: fig.savefig(pname + ext, dpi=dpi_export)
if DEBUG: Image(pname +'.png')

In [31]: if DEBUG: help(fig.legend)

panel B: comparing the effects of parameters

In [35]: opts

In [ ]: pname = '/tmp/panel_B' #fname + '_B'

from shl_scripts.shl_experiments import SHL_set

Out[35]: {'cache_dir': 'cache_dir_cluster25',
 'eta': 0.002,
 'eta_homeo': 0.005,
 'datapath': '../../SparseHebbianLearning/database',
 'verbose': 0}



homeo_methods = ['None', 'EMP', 'HAP', 'HEH', 'OLS']

homeo_methods = ['None', 'OLS', 'HEH']

variables = ['eta', 'alpha_homeo', 'eta_homeo', 'l0_sparseness', 'n
_dictionary']
variables = ['eta', 'alpha_homeo', 'eta_homeo', 'l0_sparseness']
variables = ['alpha_homeo', 'eta_homeo']
variables = ['eta', 'alpha_homeo', 'eta_homeo']
variables = ['eta', 'eta_homeo']

list_figures = []

bases = [10, 10, 2, 2]
bases = [4] * 4

for homeo_method, base in zip(homeo_methods, bases):
    opts_ = opts.copy()
    opts_.update(homeo_method=homeo_method)
    experiments = SHL_set(opts_, tag=tag + '_' + homeo_method)#, ba
se=base)
    experiments.run(variables=variables, n_jobs=1, verbose=0)
    

import matplotlib.pyplot as plt
subplotpars = dict(left=0.2, right=.95, bottom=0.2, top=.95, wspace
=0.5, hspace=0.35,)

x, y = .05, -.3

if len(variables)==4:
    fig, axs = plt.subplots(2, 2, figsize=(fig_width/2, fig_width/(
1+phi)), gridspec_kw=subplotpars, sharey=True)
    for i_ax, variable in enumerate(variables):
        for color, homeo_method in zip(colors, homeo_methods): 
            opts_ = opts.copy()
            opts_.update(homeo_method=homeo_method)
            experiments = SHL_set(opts_, tag=tag + '_' + homeo_meth
od)#, base=base)
            ax = axs[i_ax%2][i_ax//2]
            fig, ax = experiments.scan(variable=variable, list_figu
res=[], display='final', fig=fig, ax=ax, color=color, display_varia
ble='F', verbose=0) #, label=homeo_metho
            ax.set_xlabel('') #variable
            ax.text(x, y,  variable, transform=axs[i_ax].transAxes)  
            #axs[i_ax].get_xaxis().set_major_formatter(matplotlib.t
icker.ScalarFormatter())

else:    
    fig, axs = plt.subplots(len(variables), 1, figsize=(fig_width/2
, fig_width/(1+phi)), gridspec_kw=subplotpars, sharey=True)

    for i_ax, variable in enumerate(variables):
        for color, homeo_method in zip(colors, homeo_methods): 
            opts_ = opts.copy()
            opts_.update(homeo_method=homeo_method)



!echo "width=" ; convert {fname}.tiff -format "%[fx:w]" info: !echo ", \nheight=" ; convert {fname}.tiff -format
"%[fx:h]" info: !echo ", \nunit=" ; convert {fname}.tiff -format "%U" info:!identify {fname}.tiff

            experiments = SHL_set(opts_, tag=tag + '_' + homeo_meth
od)#, base=base)
            fig, axs[i_ax] = experiments.scan(variable=variable, li
st_figures=[], display='final', fig=fig, ax=axs[i_ax], color=color, 
display_variable='F', verbose=0) #, label=homeo_metho
            axs[i_ax].set_xlabel('') #variable
            axs[i_ax].text(x, y,  variable, transform=axs[i_ax].tra
nsAxes) 
            #axs[i_ax].get_xaxis().set_major_formatter(matplotlib.t
icker.ScalarFormatter())

#fig.legend(loc='lower right')
for ext in FORMATS: fig.savefig(pname + ext, dpi=dpi_export)
if DEBUG: Image(pname +'.png')

Montage of the subplots

In [ ]: %%tikz -f pdf --save {fname}.pdf
\draw[white, fill=white] (0.\linewidth,0) rectangle (1.\linewidth, 
.382\linewidth) ;
\draw [anchor=north west] (.0\linewidth, .382\linewidth) node {\inc
ludegraphics[width=.5\linewidth]{/tmp/panel_A.pdf}};
\draw [anchor=north west] (.5\linewidth, .382\linewidth) node {\inc
ludegraphics[width=.5\linewidth]{/tmp/panel_B.pdf}};
\begin{scope}[font=\bf\sffamily\large]
\draw [anchor=west,fill=white] (.0\linewidth, .382\linewidth) node 
[above right=-3mm] {$\mathsf{A}$};
\draw [anchor=west,fill=white] (.53\linewidth, .382\linewidth) node 
[above right=-3mm] {$\mathsf{B}$};
\end{scope}

In [ ]: !convert  -density {dpi_export} {fname}.pdf {fname}.jpg
!convert  -density {dpi_export} {fname}.pdf {fname}.png
#!convert  -density {dpi_export} -resize 5400  -units pixelsperinch 
-flatten  -compress lzw  -depth 8 {fname}.pdf {fname}.tiff
Image(fname +'.png')

figure 3:

learning

In [36]: fname = 'figure_HAP'



In [37]: colors = ['orange', 'red', 'green', 'blue']
homeo_methods = ['OLS', 'HEH', 'EMP', 'HAP']
list_figures = []
dico = {}
for i_cv in range(N_cv):
    dico[i_cv] = {}
    for homeo_method in homeo_methods:
        shl = SHL(homeo_method=homeo_method, seed=seed+i_cv, **opts
)
        dico[i_cv][homeo_method] = shl.learn_dico(data=data, list_f
igures=list_figures, matname=tag + '_' + homeo_method + '_seed=' + 
str(seed+i_cv))

list_figures = ['show_dico'] if DEBUG else []
for i_cv in [one_cv]:
    for homeo_method in homeo_methods:
        print(hl + hs + homeo_method + hs + hl)
        shl = SHL(homeo_method=homeo_method, seed=seed+i_cv, **opts
)
        shl.learn_dico(data=data, list_figures=list_figures, matnam
e=tag + '_' + homeo_method + '_seed=' + str(seed+i_cv))
        plt.show()
        print('size of dictionary = (number of filters, size of ima
gelets) = ', dico[i_cv][homeo_method].dictionary.shape)
        print('average of filters = ',  dico[i_cv][homeo_method].di
ctionary.mean(axis=1).mean(), 
              '+/-',  dico[i_cv][homeo_method].dictionary.mean(axis
=1).std())
        SE = np.sqrt(np.sum(dico[i_cv][homeo_method].dictionary**2, 
axis=1))
        print('average energy of filters = ', SE.mean(), '+/-', SE.
std())



panel A: plotting some dictionaries

In [38]: pname = '/tmp/panel_A' #pname = fname + '_A'

----------          OLS          ----------
size of dictionary = (number of filters, size of imagelets) =  (44
1, 324)
average of filters =  -4.089243933727358e-06 +/- 0.001241096006797
0878
average energy of filters =  1.0 +/- 3.9562611248144994e-17
----------          HEH          ----------
size of dictionary = (number of filters, size of imagelets) =  (44
1, 324)
average of filters =  -6.6112572753952305e-06 +/- 0.00121065448870
92556
average energy of filters =  1.0 +/- 3.700743415417188e-17
----------          EMP          ----------
size of dictionary = (number of filters, size of imagelets) =  (44
1, 324)
average of filters =  4.993730484951632e-05 +/- 0.0012218228270885
788
average energy of filters =  1.0 +/- 3.700743415417188e-17
----------          HAP          ----------
size of dictionary = (number of filters, size of imagelets) =  (44
1, 324)
average of filters =  -2.429586935952582e-05 +/- 0.001195729444507
5826
average energy of filters =  1.0 +/- 3.775513461943296e-17



In [39]: subplotpars = dict( left=0.042, right=1., bottom=0., top=1., wspace
=0.05, hspace=0.05,)
fig, axs = plt.subplots(3, 1, figsize=(fig_width/2, fig_width/(1+ph
i)), gridspec_kw=subplotpars)

for ax, color, homeo_method in zip(axs.ravel(), colors[1:], homeo_m
ethods[1:]): 
    ax.axis(c=color, lw=2, axisbg='w')
    ax.set_facecolor('w')
    from shl_scripts import show_dico
    fig, ax = show_dico(shl, dico[one_cv][homeo_method], data=data, 
dim_graph=dim_graph, fig=fig, ax=ax)
    # ax.set_ylabel(homeo_method)
    ax.text(-8, 7*dim_graph[0], homeo_method, fontsize=12, color=co
lor, rotation=90)#, backgroundcolor='white'

for ext in FORMATS: fig.savefig(pname + ext, dpi=dpi_export)

panel B: quantitative comparison

In [40]: pname = '/tmp/panel_B' #fname + '_B'



In [41]: from shl_scripts import time_plot
variable = 'F'
alpha = .3
subplotpars = dict(left=0.2, right=.95, bottom=0.2, top=.95)#, wspa
ce=0.05, hspace=0.05,)
fig, ax = plt.subplots(1, 1, figsize=(fig_width/2, fig_width/(1+phi
)), gridspec_kw=subplotpars)
for i_cv in range(N_cv):
    for color, homeo_method in zip(colors, homeo_methods): 
        ax.axis(c='b', lw=2, axisbg='w')
        ax.set_facecolor('w')
        if i_cv==0:
            fig, ax = time_plot(shl, dico[i_cv][homeo_method], vari
able=variable, unit='bits', color=color, label=homeo_method, alpha=
alpha_0, fig=fig, ax=ax)
        else:
            fig, ax = time_plot(shl, dico[i_cv][homeo_method], vari
able=variable, unit='bits', color=color, alpha=alpha, fig=fig, ax=a
x)        
ax.legend(loc='best')
for ext in FORMATS: fig.savefig(pname + ext, dpi=dpi_export)
if DEBUG: Image(pname +'.png')    

In [42]: if DEBUG: Image(pname +'.png')

Montage of the subplots

In [43]: %%tikz -f pdf --save {fname}.pdf
\draw[white, fill=white] (0.\linewidth,0) rectangle (1.\linewidth, 
.382\linewidth) ;
\draw [anchor=north west] (.0\linewidth, .382\linewidth) node {\inc
ludegraphics[width=.5\linewidth]{/tmp/panel_A}};
\draw [anchor=north west] (.5\linewidth, .382\linewidth) node {\inc
ludegraphics[width=.5\linewidth]{/tmp/panel_B}};
\begin{scope}[font=\bf\sffamily\large]
\draw [anchor=west,fill=white] (.0\linewidth, .382\linewidth) node 
[above right=-3mm] {$\mathsf{A}$};
\draw [anchor=west,fill=white] (.53\linewidth, .382\linewidth) node 
[above right=-3mm] {$\mathsf{B}$};
\end{scope}



!echo "width=" ; convert {fname}.tiff -format "%[fx:w]" info: !echo ", \nheight=" ; convert {fname}.tiff -format
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In [44]: !convert  -density {dpi_export} {fname}.pdf {fname}.jpg
!convert  -density {dpi_export} {fname}.pdf {fname}.png
#!convert  -density {dpi_export} -resize 5400  -units pixelsperinch 
-flatten  -compress lzw  -depth 8 {fname}.pdf {fname}.tiff
Image(fname +'.png')

figure 4: Convolutional Neural Network

In [45]: fname = 'figure_CNN'

Out[44]:



subplotpars = dict( left=0.042, right=1., bottom=0., top=1., wspace=0.05, hspace=0.05,) fig, axs =

In [46]: from CHAMP.DataLoader import LoadData
from CHAMP.DataTools import LocalContrastNormalization, FilterInput
Data, GenerateMask
from CHAMP.Monitor import DisplayDico, DisplayConvergenceCHAMP, Dis
playWhere

import os
datapath = os.path.join("/tmp", "database")
path = os.path.join(datapath, "Raw_DataBase")
TrSet, TeSet = LoadData('Face', path, decorrelate=False, resize=(65
, 65))

# MP Parameters
nb_dico = 20
width = 9
dico_size = (width, width)
l0 = 20
seed = 42
# Learning Parameters
eta = .05
nb_epoch = 500

TrSet, TeSet = LoadData('Face', path, decorrelate=False, resize=(65
, 65))
N_TrSet, _, _, _ = LocalContrastNormalization(TrSet)
Filtered_L_TrSet = FilterInputData(
    N_TrSet, sigma=0.25, style='Custom', start_R=15)

mask = GenerateMask(full_size=(nb_dico, 1, width, width), sigma=0.8
, style='Gaussian')

from CHAMP.CHAMP_Layer import CHAMP_Layer

from CHAMP.DataTools import SaveNetwork, LoadNetwork
homeo_methods = ['None', 'HAP']

for homeo_method, eta_homeo  in zip(homeo_methods, [0., 0.0025]):
    ffname = 'cache_dir_CNN/CHAMP_low_' + homeo_method + '.pkl'
    try:
        L1_mask = LoadNetwork(loading_path=ffname)
    except:
        L1_mask = CHAMP_Layer(l0_sparseness=l0, nb_dico=nb_dico,
                          dico_size=dico_size, mask=mask, verbose=1
)
        dico_mask = L1_mask.TrainLayer(
            Filtered_L_TrSet, eta=eta, eta_homeo=eta_homeo, nb_epoc
h=nb_epoch, seed=seed)
        SaveNetwork(Network=L1_mask, saving_path=ffname)

panel A: plotting some dictionaries

In [47]: pname = '/tmp/panel_A' #pname = fname + '_A'



plt.subplots(2, 1, figsize=(fig_width/2, fig_width/(1+phi)), gridspec_kw=subplotpars) for ax, color,
homeo_method in zip(axs.ravel(), ['black', 'green'], homeo_methods): ax.axis(c=color, lw=2, axisbg='w')
ax.set_facecolor('w') ffname = 'cache_dir/CHAMP_low_' + homeo_method + '.pkl' L1_mask =
LoadNetwork(loading_path=ffname) fig, ax = DisplayDico(L1_mask.dictionary, fig=fig, ax=ax) #
ax.set_ylabel(homeo_method) ax.text(-8, 7*dim_graph[0], homeo_method, fontsize=12, color=color,
rotation=90)#, backgroundcolor='white' for ext in FORMATS: fig.savefig(pname + ext, dpi=dpi_export)

from shl_scripts import time_plot variable = 'F' alpha = .3 subplotpars = dict(left=0.2, right=.95, bottom=0.2,
top=.95)#, wspace=0.05, hspace=0.05,) fig, axs = plt.subplots(2, 1, figsize=(fig_width/2, fig_width/(1+phi)),
gridspec_kw=subplotpars) for ax, color, homeo_method in zip(axs, ['black', 'green'], homeo_methods):
print(ax, axs) ffname = 'cache_dir_CNN/CHAMP_low_' + homeo_method + '.pkl' L1_mask =
LoadNetwork(loading_path=ffname) fig, ax = DisplayConvergenceCHAMP(L1_mask, to_display=['histo'],
fig=fig, ax=ax) ax.axis(c=color, lw=2, axisbg='w') ax.set_facecolor('w') # ax.set_ylabel(homeo_method)
#ax.text(-8, 7*dim_graph[0], homeo_method, fontsize=12, color=color, rotation=90)#,
backgroundcolor='white' for ext in FORMATS: fig.savefig(pname + ext, dpi=dpi_export) if DEBUG:
Image(pname +'.png')

In [48]: subplotpars = dict(left=0.042, right=1., bottom=0., top=1., wspace=
0.05, hspace=0.05,)

for color, homeo_method in zip(['black', 'green'], homeo_methods): 
    #fig, axs = plt.subplots(1, 1, figsize=(fig_width/2, fig_width/
(1+phi)), gridspec_kw=subplotpars)
    ffname = 'cache_dir_CNN/CHAMP_low_' + homeo_method + '.pkl'
    L1_mask = LoadNetwork(loading_path=ffname)
    fig, ax = DisplayDico(L1_mask.dictionary)
    # ax.set_ylabel(homeo_method)
    #for ax in list(axs):
    #    ax.axis(c=color, lw=2, axisbg='w')
    #    ax.set_facecolor('w')
    ax[0].text(-4, 3, homeo_method, fontsize=8, color=color, rotati
on=90)#, backgroundcolor='white'
    plt.tight_layout( pad=0., w_pad=0., h_pad=.0)

    for ext in FORMATS: fig.savefig(pname + '_' + homeo_method + ex
t, dpi=dpi_export)

panel B: quantitative comparison

In [49]: pname = '/tmp/panel_B' #fname + '_B'

<Figure size 576x28.8 with 0 Axes>

<Figure size 576x28.8 with 0 Axes>



In [50]: from shl_scripts import time_plot
variable = 'F'
alpha = .3
subplotpars = dict(left=0.2, right=.95, bottom=0.2, top=.95)#, wspa
ce=0.05, hspace=0.05,)

for color, homeo_method in zip(['black', 'green'], homeo_methods): 
    #fig, axs = plt.subplots(1, 1, figsize=(fig_width/2, fig_width/
(1+phi)), gridspec_kw=subplotpars)
    ffname = 'cache_dir_CNN/CHAMP_low_' + homeo_method + '.pkl'
    L1_mask = LoadNetwork(loading_path=ffname)
    fig, ax = DisplayConvergenceCHAMP(L1_mask, to_display=['histo']
, color=color)
    ax.axis(c=color, lw=2, axisbg='w')
    ax.set_facecolor('w')
    ax.set_ylabel('counts')
    ax.set_xlabel('feature #')
    ax.set_ylim(0, 560)
    #ax.text(-8, 7*dim_graph[0], homeo_method, fontsize=12, color=c
olor, rotation=90)#, backgroundcolor='white'
    #ax[0].text(-8, 3, homeo_method, fontsize=12, color=color, rota
tion=90)#, backgroundcolor='white'
    
    for ext in FORMATS: fig.savefig(pname + '_' + homeo_method + ex
t, dpi=dpi_export)
    if DEBUG: Image(pname +'.png')    

Montage of the subplots



In [51]: %ls -ltr /tmp/panel_*

In [52]: fname

In [53]: 382+191

In [54]: %%tikz -f pdf --save {fname}.pdf
\draw[white, fill=white] (0.\linewidth,0) rectangle (1.\linewidth, 
.382\linewidth) ;
\draw [anchor=north west] (.0\linewidth, .375\linewidth) node {\inc
ludegraphics[width=.95\linewidth]{/tmp/panel_A_None}};
\draw [anchor=north west] (.0\linewidth, .300\linewidth) node {\inc
ludegraphics[width=.95\linewidth]{/tmp/panel_A_HAP}};
\draw [anchor=north west] (.0\linewidth, .191\linewidth) node {\inc
ludegraphics[width=.45\linewidth]{/tmp/panel_B_None}};
\draw [anchor=north west] (.5\linewidth, .191\linewidth) node {\inc
ludegraphics[width=.45\linewidth]{/tmp/panel_B_HAP}};
\begin{scope}[font=\bf\sffamily\large]
%\draw [anchor=west,fill=white] (.0\linewidth, .382\linewidth) node 
[above right=-3mm] {$\mathsf{A}$};
\draw [anchor=west,fill=white] (.0\linewidth, .191\linewidth) node 
[above right=-3mm] {$\mathsf{A}$};
\draw [anchor=west,fill=white] (.53\linewidth, .191\linewidth) node 
[above right=-3mm] {$\mathsf{B}$};
\end{scope}

-rw-r--r--  1 501  wheel   67281 Nov 27 00:04 /tmp/panel_A.pdf
-rw-r--r--  1 501  wheel   79492 Nov 27 00:04 /tmp/panel_A.png
-rw-r--r--  1 501  wheel   49220 Nov 27 00:04 /tmp/panel_B.pdf
-rw-r--r--  1 501  wheel  555716 Nov 27 00:04 /tmp/panel_B.png
-rw-r--r--  1 501  wheel   27370 Nov 27 00:05 /tmp/panel_A_None.pd
f
-rw-r--r--  1 501  wheel   18909 Nov 27 00:05 /tmp/panel_A_None.pn
g
-rw-r--r--  1 501  wheel   26909 Nov 27 00:05 /tmp/panel_A_HAP.pdf
-rw-r--r--  1 501  wheel   16431 Nov 27 00:05 /tmp/panel_A_HAP.png
-rw-r--r--  1 501  wheel    8816 Nov 27 00:05 /tmp/panel_B_None.pd
f
-rw-r--r--  1 501  wheel   39035 Nov 27 00:05 /tmp/panel_B_None.pn
g
-rw-r--r--  1 501  wheel    8813 Nov 27 00:05 /tmp/panel_B_HAP.pdf
-rw-r--r--  1 501  wheel   38743 Nov 27 00:05 /tmp/panel_B_HAP.png

Out[52]: 'figure_CNN'

Out[53]: 573



!echo "width=" ; convert {fname}.tiff -format "%[fx:w]" info: !echo ", \nheight=" ; convert {fname}.tiff -format
"%[fx:h]" info: !echo ", \nunit=" ; convert {fname}.tiff -format "%U" info:!identify {fname}.tiff

In [55]: !convert  -density {dpi_export} {fname}.pdf {fname}.jpg
!convert  -density {dpi_export} {fname}.pdf {fname}.png
#!convert  -density {dpi_export} -resize 5400  -units pixelsperinch 
-flatten  -compress lzw  -depth 8 {fname}.pdf {fname}.tiff
Image(fname +'.png')

coding
The learning itself is done via a gradient descent but is highly dependent on the coding / decoding
algorithm. This belongs to a another function (in the shl_encode.py
(https://github.com/bicv/SHL_scripts/blob/master/shl_scripts/shl_encode.py) script)

Supplementary controls

starting a learning

In [ ]: shl = SHL(**opts)
list_figures = ['show_dico', 'show_Pcum', 'time_plot_F']
dico = shl.learn_dico(data=data, list_figures=list_figures, matname
=tag + '_vanilla')

In [ ]: print('size of dictionary = (number of filters, size of imagelets) 
= ', dico.dictionary.shape)
print('average of filters = ',  dico.dictionary.mean(axis=1).mean()
, 
      '+/-',  dico.dictionary.mean(axis=1).std())
SE = np.sqrt(np.sum(dico.dictionary**2, axis=1))
print('average energy of filters = ', SE.mean(), '+/-', SE.std())

Out[55]:



getting help

In [ ]: help(shl)

In [ ]: help(dico)

loading a database
Loading patches, with or without mask:

In [ ]: N_patches = 12
from shl_scripts.shl_tools import show_data
opts_ = opts.copy()
opts_.update(verbose=0)
for i, (do_mask, label) in enumerate(zip([False, True], ['Without m
ask', 'With mask'])):
    data_ = SHL(DEBUG_DOWNSCALE=1, N_patches=N_patches, n_image=1, 
do_mask=do_mask, seed=seed, **opts_).get_data()
    fig, axs = show_data(data_)
    axs[0].set_ylabel(label);
    plt.show()

Testing different algorithms

In [ ]: fig, ax = None, None

for homeo_method in ['None', 'HAP']:
    for algorithm in ['lasso_lars', 'lars', 'elastic', 'omp', 'mp']
: # 'threshold', 'lasso_cd', 
        opts_ = opts.copy()
        opts_.update(homeo_method=homeo_method, learning_algorithm=
algorithm, verbose=0)
        shl = SHL(**opts_)
        dico= shl.learn_dico(data=data, list_figures=[],
                       matname=tag + ' - algorithm={}'.format(algor
ithm) + ' - homeo_method={}'.format(homeo_method))
        fig, ax = shl.time_plot(dico, variable='F', fig=fig, ax=ax, 
label=algorithm +'_' + homeo_method)

    ax.legend()

Testing two different dictionary initalization strategies
White Noise Initialization + Learning



In [ ]: shl = SHL(one_over_F=False, **opts)
dico_w = shl.learn_dico(data=data, matname=tag + '_WHITE', list_fig
ures=[])
shl = SHL(one_over_F=True, **opts)
dico_1oF = shl.learn_dico(data=data, matname=tag + '_OVF', list_fig
ures=[])
fig_error, ax_error = None, None
fig_error, ax_error = shl.time_plot(dico_w, variable='F', fig=fig_e
rror, ax=ax_error, color='blue', label='white noise')
fig_error, ax_error = shl.time_plot(dico_1oF, variable='F', fig=fig
_error, ax=ax_error, color='red', label='one over f')
#ax_error.set_ylim((0, .65))
ax_error.legend(loc='best')

Testing two different learning rates strategies
We use by defaut the strategy of ADAM, see https://arxiv.org/pdf/1412.6980.pdf
(https://arxiv.org/pdf/1412.6980.pdf)

In [ ]: shl = SHL(beta1=0., **opts)
dico_fixed = shl.learn_dico(data=data, matname=tag + '_fixed', list
_figures=[])
shl = SHL(**opts)
dico_default = shl.learn_dico(data=data, matname=tag + '_default', 
list_figures=[])
fig_error, ax_error = None, None
fig_error, ax_error = shl.time_plot(dico_fixed, variable='F', fig=f
ig_error, ax=ax_error, color='blue', label='fixed')
fig_error, ax_error = shl.time_plot(dico_default, variable='F', fig
=fig_error, ax=ax_error, color='red', label='ADAM')
#ax_error.set_ylim((0, .65))
ax_error.legend(loc='best')

Testing different number of neurons and sparsity
As suggested by AnonReviewer3, we have tested how the convergence was modified by changing the
number of neurons. By comparing different numbers of neurons we could re-draw the same figures for
the convergence of the algorithm as in our original figures. In addition, we have also checked that this
result will hold on a range of sparsity levels. In particular, we found that in general, increasing the 
l0_sparseness  parameter, the convergence took progressively longer. Importantly, we could see that

in both cases, this did not depend on the kind of homeostasis heuristic chosen, proving the generality of
our results.

This is shown in the supplementary material that we have added to our revision ("Testing different
number of neurons and sparsity") . This useful extension proves the originality of our work as highlighted
in point 4, and the generality of these results compared to the parameters of the network.



In [ ]: from shl_scripts.shl_experiments import SHL_set
homeo_methods = ['None', 'OLS', 'HEH']
homeo_methods = ['None', 'EMP', 'HAP', 'HEH', 'OLS']

variables = ['l0_sparseness', 'n_dictionary']
list_figures = []

#n_dictionary=21**2

for homeo_method in homeo_methods:
    opts_ = opts.copy()
    opts_.update(homeo_method=homeo_method, datapath=datapath)
    experiments = SHL_set(opts_, tag=tag + '_' + homeo_method)
    experiments.run(variables=variables, n_jobs=1, verbose=0)

fig, axs = plt.subplots(len(variables), 1, figsize=(fig_width/2, fi
g_width/(1+phi)), gridspec_kw=subplotpars, sharey=True)

for i_ax, variable in enumerate(variables):
    for color, homeo_method in zip(colors, homeo_methods): 
        opts_ = opts.copy()
        opts_.update(homeo_method=homeo_method, datapath=datapath)
        experiments = SHL_set(opts_, tag=tag + '_' + homeo_method)
        fig, axs[i_ax] = experiments.scan(variable=variable, list_f
igures=[], display='final', fig=fig, ax=axs[i_ax], color=color, dis
play_variable='F', verbose=0) #, label=homeo_metho
        axs[i_ax].set_xlabel('') #variable
        axs[i_ax].text(.1, .8,  variable, transform=axs[i_ax].trans
Axes) 
        #axs[i_ax].get_xaxis().set_major_formatter(matplotlib.ticke
r.ScalarFormatter())

Perspectives

Convolutional neural networks



In [ ]: from CHAMP.DataLoader import LoadData
from CHAMP.DataTools import LocalContrastNormalization, FilterInput
Data, GenerateMask
from CHAMP.Monitor import DisplayDico, DisplayConvergenceCHAMP, Dis
playWhere

import os
home = os.getenv('HOME')
datapath = os.path.join("/tmp", "database")
path = os.path.join(datapath, "Face_DataBase")
TrSet, TeSet = LoadData('Face', path, decorrelate=False, resize=(65
, 65))
to_display = TrSet[0][0, 0:10, :, :, :]
print('Size=', TrSet[0].shape)
DisplayDico(to_display)

Training on a face database

In [ ]: # MP Parameters
nb_dico = 20
width = 9
dico_size = (width, width)
l0 = 20
seed = 42
# Learning Parameters
eta = .05
nb_epoch = 500

TrSet, TeSet = LoadData('Face', path, decorrelate=False, resize=(65
, 65))
N_TrSet, _, _, _ = LocalContrastNormalization(TrSet)
Filtered_L_TrSet = FilterInputData(
    N_TrSet, sigma=0.25, style='Custom', start_R=15)
to_display = Filtered_L_TrSet[0][0, 0:10, :, :, :]
DisplayDico(to_display)

mask = GenerateMask(full_size=(nb_dico, 1, width, width), sigma=0.8
, style='Gaussian')
DisplayDico(mask)

Training the ConvMP Layer with homeostasis



In [ ]: from CHAMP.CHAMP_Layer import CHAMP_Layer

from CHAMP.DataTools import SaveNetwork, LoadNetwork
fname = 'cache_dir_CNN/CHAMP_low_None.pkl'
try:
    L1_mask = LoadNetwork(loading_path=fname)
except:
    L1_mask = CHAMP_Layer(l0_sparseness=l0, nb_dico=nb_dico,
                      dico_size=dico_size, mask=mask, verbose=2)
    dico_mask = L1_mask.TrainLayer(
        Filtered_L_TrSet, eta=eta, nb_epoch=nb_epoch, seed=seed)
    SaveNetwork(Network=L1_mask, saving_path=fname)

DisplayDico(L1_mask.dictionary)
DisplayConvergenceCHAMP(L1_mask, to_display=['error', 'histo'])
DisplayWhere(L1_mask.where)

Training the ConvMP Layer with homeostasis

In [ ]: fname = 'cache_dir_CNN/CHAMP_low_HAP.pkl'
try:
    L1_mask = LoadNetwork(loading_path=fname)
except:

    # Learning Parameters
    eta_homeo = 0.0025
    L1_mask = CHAMP_Layer(l0_sparseness=l0, nb_dico=nb_dico,
                          dico_size=dico_size, mask=mask, verbose=1
)
    dico_mask = L1_mask.TrainLayer(
        Filtered_L_TrSet, eta=eta, eta_homeo=eta_homeo, nb_epoch=nb
_epoch, seed=seed)
    SaveNetwork(Network=L1_mask, saving_path=fname)

DisplayDico(L1_mask.dictionary)
DisplayConvergenceCHAMP(L1_mask, to_display=['error', 'histo'])
DisplayWhere(L1_mask.where)

Reconstructing the input image

In [ ]: from CHAMP.DataTools import Rebuilt
import torch
rebuilt_image = Rebuilt(torch.FloatTensor(L1_mask.code), L1_mask.di
ctionary)
DisplayDico(rebuilt_image[0:10, :, :, :])



Training the ConvMP Layer with higher-level filters
We train higher-level feature vectors by forcing the network to :

learn bigger filters,
represent the information using a bigger dictionary (higher sparseness)
represent the information with less features (higher sparseness)

In [ ]: fname = 'cache_dir_CNN/CHAMP_high_None.pkl'
try:
    L1_mask = LoadNetwork(loading_path=fname)
except:

    nb_dico = 60
    width = 19
    dico_size = (width, width)
    l0 = 5
    mask = GenerateMask(full_size=(nb_dico, 1, width, width), sigma
=0.8, style='Gaussian')
    # Learning Parameters
    eta_homeo = 0.0
    eta = .05
    nb_epoch = 500
    # learn
    L1_mask = CHAMP_Layer(l0_sparseness=l0, nb_dico=nb_dico,
                          dico_size=dico_size, mask=mask, verbose=0
)
    dico_mask = L1_mask.TrainLayer(
        Filtered_L_TrSet, eta=eta, eta_homeo=eta_homeo, nb_epoch=nb
_epoch, seed=seed)
    SaveNetwork(Network=L1_mask, saving_path=fname)

DisplayDico(L1_mask.dictionary)
DisplayConvergenceCHAMP(L1_mask, to_display=['error'])#, 'histo'])
DisplayWhere(L1_mask.where)



fname = 'cache_dir_CNN/CHAMP_MNIST_HAP.pkl' try: L1_mask = LoadNetwork(loading_path=fname)
except: path = os.path.join(datapath, "MNISTtorch") TrSet, TeSet = LoadData('MNIST', data_path=path)
N_TrSet, _, _, _ = LocalContrastNormalization(TrSet) Filtered_L_TrSet = FilterInputData( N_TrSet, sigma=0.25,
style='Custom', start_R=15) nb_dico = 60 width = 7 dico_size = (width, width) l0 = 15 # Learning Parameters
eta_homeo = 0.0025 eta = .05 nb_epoch = 500 # learn L1_mask = CHAMP_Layer(l0_sparseness=l0,
nb_dico=nb_dico, dico_size=dico_size, mask=mask, verbose=2) dico_mask = L1_mask.TrainLayer(
Filtered_L_TrSet, eta=eta, eta_homeo=eta_homeo, nb_epoch=nb_epoch, seed=seed)
SaveNetwork(Network=L1_mask, saving_path=fname) DisplayDico(L1_mask.dictionary)
DisplayConvergenceCHAMP(L1_mask, to_display=['error', 'histo']) DisplayWhere(L1_mask.where)

In [ ]: fname = 'cache_dir_CNN/CHAMP_high_HAP.pkl'
try:
    L1_mask = LoadNetwork(loading_path=fname)
except:

    nb_dico = 60
    width = 19
    dico_size = (width, width)
    l0 = 5
    mask = GenerateMask(full_size=(nb_dico, 1, width, width), sigma
=0.8, style='Gaussian')
    # Learning Parameters
    eta_homeo = 0.0025
    eta = .05
    nb_epoch = 500
    # learn
    L1_mask = CHAMP_Layer(l0_sparseness=l0, nb_dico=nb_dico,
                          dico_size=dico_size, mask=mask, verbose=0
)
    dico_mask = L1_mask.TrainLayer(
        Filtered_L_TrSet, eta=eta, eta_homeo=eta_homeo, nb_epoch=nb
_epoch, seed=seed)
    SaveNetwork(Network=L1_mask, saving_path=fname)

DisplayDico(L1_mask.dictionary)
DisplayConvergenceCHAMP(L1_mask, to_display=['error'])#, 'histo'])
DisplayWhere(L1_mask.where)

Training on MNIST database

Computational details

caching simulation data
A convenience script to run and cache most learning items in this notebooks:



In [ ]: !ls -l {shl.cache_dir}/{tag}*
#!rm {shl.cache_dir}/{tag}*lock*
#!rm {shl.cache_dir}/{tag}*
#!ls -l {shl.cache_dir}/{tag}*

In [ ]: %%writefile model.py
#!/usr/bin/env python3
# -*- coding: utf-8 -*
tag = 'ICLR'
from shl_scripts.shl_experiments import SHL, prun
# pre-loading data
datapath = '../../SparseHebbianLearning/database'
# different runs
#opts = dict(cache_dir='cache_dir_ICLR', datapath=datapath, verbose
=0)
#opts = dict(cache_dir='cache_dir_cluster', datapath=datapath, verb
ose=0)
opts = dict(datapath=datapath, verbose=0)

shl = SHL(**opts)
data = shl.get_data(matname=tag)

# running main simulations
# Figure 1 & 3
N_cv = 10
homeo_methods = ['None', 'OLS', 'HEH', 'HAP', 'EMP']
seed = 42

# running in parallel on a multi-core machine
import sys
try:
    n_jobs = int(sys.argv[1])
    print('n_jobs=', n_jobs)
except:
    n_jobs = 4
    n_jobs = 9
    n_jobs = 10
    n_jobs = 1
    n_jobs = 35

    
if n_jobs>0:

    list_figures = []

    from shl_scripts.shl_experiments import SHL_set
    for homeo_method in homeo_methods:
        opts_ = opts.copy()
        opts_.update(homeo_method=homeo_method)
        experiments = SHL_set(opts_, tag=tag + '_' + homeo_method, 
N_scan=N_cv)
        experiments.run(variables=['seed'], n_jobs=n_jobs, verbose=
0)

    # Figure 2-B
    variables = ['eta', 'alpha_homeo', 'eta_homeo']



    variables = ['eta', 'eta_homeo', 'l0_sparseness', 'n_dictionary
']
    bases = [10, 10, 2, 2]

    for homeo_method, base in zip(homeo_methods, bases):
        opts_ = opts.copy()
        opts_.update(homeo_method=homeo_method)
        experiments = SHL_set(opts_, tag=tag + '_' + homeo_method, 
base=base)
        experiments.run(variables=variables, n_jobs=n_jobs, verbose
=0)

    # Annex X.X

    shl = SHL(**opts)
    dico = shl.learn_dico(data=data, list_figures=list_figures, mat
name=tag + '_vanilla')
    
    for algorithm in ['lasso_lars', 'lasso_cd', 'lars', 'elastic', 
'omp', 'mp']: # 'threshold',
        opts_ = opts.copy()
        opts_.update(homeo_method='None', learning_algorithm=algori
thm, verbose=0)
        shl = SHL(**opts_)
        dico= shl.learn_dico(data=data, list_figures=[],
                       matname=tag + ' - algorithm={}'.format(algor
ithm))

    for homeo_method in ['None', 'HAP']:
        for algorithm in ['lasso_lars', 'lars', 'elastic', 'omp', '
mp']: # 'threshold', 'lasso_cd', 
            opts_ = opts.copy()
            opts_.update(homeo_method=homeo_method, learning_algori
thm=algorithm, verbose=0)
            shl = SHL(**opts_)
            dico= shl.learn_dico(data=data, list_figures=[],
                           matname=tag + ' - algorithm={}'.format(a
lgorithm) + ' - homeo_method={}'.format(homeo_method))
    
    shl = SHL(one_over_F=False, **opts)
    dico_w = shl.learn_dico(data=data, matname=tag + '_WHITE', list
_figures=[])
    shl = SHL(one_over_F=True, **opts)
    dico_1oF = shl.learn_dico(data=data, matname=tag + '_OVF', list
_figures=[])

    shl = SHL(beta1=0., **opts)
    dico_fixed = shl.learn_dico(data=data, matname=tag + '_fixed', 
list_figures=[])
    shl = SHL(**opts)
    dico_default = shl.learn_dico(data=data, matname=tag + '_defaul
t', list_figures=[])

In [ ]: %run model.py 0



Version used

In [ ]: %load_ext version_information
%version_information numpy, shl_scripts

version control

In [ ]: !git status

In [ ]: !git pull

In [ ]: !git commit -am' {tag} : re-running notebooks' 

In [ ]: !git push

exporting the notebook

In [ ]: !jupyter nbconvert Annex.ipynb

In [ ]: #!jupyter-nbconvert --template report --to pdf Annex.ipynb

In [ ]: !pandoc Annex.html -o Annex.pdf

In [ ]: !zip Annex.zip Annex.html

Done. Thanks for your attention!
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