
DECOUPLING THE LAYERS IN RESIDUAL NETWORKS

Ricky Fok∗, Aijun An, Zana Rashidi
Department of Electrical Engineering and Computer Science
York University
4700 Keele Street, Toronto, M3J 1P3, Canada
ricky.fok3@gmail.com, aan@cse.yorku.ca, zrashidi@cse.yorku.ca

Xiaogang Wang
Department of Mathematics and Statistics
York University
4700 Keele Street, Toronto, M3J 1P3, Canada
stevenw@mathstat.yorku.ca

ABSTRACT

We propose a Warped Residual Network (WarpNet) using a parallelizable warp
operator for forward and backward propagation to distant layers that trains faster
than the original residual neural network. We apply a perturbation theory on resid-
ual networks and decouple the interactions between residual units. The resulting
warp operator is a first order approximation of the output over multiple layers. The
first order perturbation theory exhibits properties such as binomial path lengths
and exponential gradient scaling found experimentally by Veit et al. (2016). We
demonstrate through an extensive performance study that the proposed network
achieves comparable predictive performance to the original residual network with
the same number of parameters, while achieving a significant speed-up on the to-
tal training time. As WarpNet performs model parallelism in residual network
training in which weights are distributed over different GPUs, it offers speed-up
and capability to train larger networks compared to original residual networks.

1 INTRODUCTION

Deep Convolution Neural Networks (CNN) have been used in image recognition tasks with great
success. Since AlexNet (Krizhevsky et al., 2012), many other neural architectures have been pro-
posed to achieve start-of-the-art results at the time. Some of the notable architectures include,
VGG (Simonyan & Zisserman, 2015), Inception (Szegedy et al., 2015) and Residual networks
(ResNet)(He et al., 2015).

Training a deep neural network is not an easy task. As the gradient at each layer is dependent upon
those in higher layers multiplicatively, the gradients in earlier layers can vanish or explode, ceasing
the training process. The gradient vanishing problem is significant for neuron activation functions
such as the sigmoid, where the gradient approaches zero exponentially away from the origin on both
sides. The standard approach to combat vanishing gradient is to apply Batch Normalization (BN)
(Ioffe & Szegedy, 2015) followed by the Rectified Linear Unit (ReLU) (Hahnloser et al., 2000)
activation. More recently, skip connections (Srivastava et al., 2015) have been proposed to allow
previous layers propagate relatively unchanged. Using this methodology the authors in (Srivastava
et al., 2015) were able to train extremely deep networks (hundreds of layers) and about one thousand
layers were trained in residual networks (He et al., 2015).

As the number of layers grows large, so does the training time. To evaluate the neural network’s
output, one needs to propagate the input of the network layer by layer in a procedure known as
forward propagation. Likewise, during training, one needs to propagate the gradient of the loss
function from the end of the network to update the model parameters, or weights, in each layer of
the network using gradient descent. The complexity of forward and propagation is O(K), where

∗Corresponding Author

1

K is the number of layers in the network. To speed up the process, one may ask if there exist a
shallower network that accurately approximates a deep network so that training time is reduced.
In this work we show that there indeed exists a neural network architecture that permits such an
approximation, the ResNet.

Residual networks typically consist of a long chain of residual units. Recent investigations suggest
that ResNets behave as an ensemble of shallow networks (Veit et al., 2016). Empirical evidence sup-
porting this claim includes one that shows randomly deactivating residual units during training (sim-
ilar to drop-out (Srivastava et al., 2014)) appears to improve performance (Huang et al., 2016). The
results imply that the output of a residual unit is just a small perturbation of the input. In this work,
we make an approximation of the ResNet by using a series expansion in the small perturbation. We
find that merely the first term in the series expansion is sufficient to explain the binomial distribution
of path lengths and exponential gradient scaling experimentally observed by Veit et al. (2016). The
approximation allows us to effectively estimate the output of subsequent layers using just the input
of the first layer and obtain a modified forward propagation rule. We call the corresponding operator
the warp operator. The backpropagation rule is obtained by differentiating the warp operator. We
implemented a network using the warp operator and found that our network trains faster on image
classification tasks with predictive accuracies comparable to those of the original ResNet.

Our contributions in this work include

• We analytically investigate the properties of ResNets. In particular, we show that the first
order term in the Taylor series expansion of the layer output across K residual units has a
binomial number of terms, which are interpreted as the number of paths in Veit et al. (2016),
and that for ReLU activations the second and higher order terms in the Taylor series vanish
almost exactly.

• Based on the above-mentioned analysis, we propose a novel architecture, WarpNet, which
employs a warp operator as a parallelizable propagation rule across multiple layers at a
time. The WarpNet is an approximation to a ResNet with the same number of weights.

• We conduct experiments with WarpNet skipping over one and two residual units and show
that WarpNet achieves comparable predictive performance to the original ResNet while
achieving significant speed-up. WarpNet also compares favorably with data parallelism
using mini-batches with ResNet. As opposed to data parallelized ResNet where nearly all
the weights are copied to all GPUs, the weights in WarpNet are distributed over various
GPUs which enables training of a larger network.

The organization of this paper is as follow. In Section 2 we analyze the properties of ResNet and
show that the binomial path length arises from a Taylor expansion to first order. In Section 3 we
describe Warped Residual Networks. In Section 4 we show that WarpNet can attain similar perfor-
mence as the original ResNet while offering a speed-up.

2 PROPERTIES OF RESNETS

In this section we show that recent numerical results (Veit et al., 2016) is explained when the per-
turbation theory is applied to ResNets. Consider the input xi of the i-th residual unit and its output
xi+1, where

xi+1 = hi(xi) + Fi(xi,Wi). (1)

Typically, h(xi) is taken to be an identity mapping, hi(xi) = xi. When the feature maps are down
sampled, h is usually taken to be an 1 × 1 convolution layer with a stride of 2. The functions Fi
is a combination of convolution, normalization and non-linearity layers, so that Wi collectively
represents the weights of all layers in Fi. In this work we only consider the case where the skip
connection is the identity, hi(xi) = xi.

Perturbative feature map flow First, we show that the interpretation of ResNets as an ensemble
of subnetworks is accurate up to the first order in F with identity mapping. One can approximate
the output of a chain of residual units by a series expansion. For instance, the output of two residual
units x3 is related to the input of the first unit by the following (we call the process where xk is

2

expressed in terms of xk−1 an iteration. The following equations show two iterations).
x3 = x2 + F2(x2,W

∗
2)

= x1 + F1(x1,W
∗
1) + F2(x1 + F1(x1,W

∗
1),W∗

2)

= x1 + F1(x1,W
∗
1) + F2(x1,W

∗
2) + F1(x1,W

∗
1)F′2(x1,W

∗
2) +O(ε2), (2)

where F′2(x1,W
∗
2) denotes the partial derivative of F2 with respect to x1 and W∗

i denotes the
weights at the loss minimum. A Taylor series expansion in powers of F1 was performed on F2 in
the second line above.1 The O(ε2) term arises from the Taylor series expansion, representing higher
order terms. Equation (2) can be interpreted as an ensemble sum of subnetworks.

Below we show that the second and higher order terms are negligible, that is, the first order Taylor
series expansion is almost exact, when ReLU activations are used. The second order perturbation
terms all contain the Hessian F′′(x). But after the network is trained, the only non-linear function in
F, ReLU, is only non-linear at the origin2. Therefore all second order terms vanish almost exactly.
The same argument applies to higher orders.

Theorem 1: Binomial Path Length Let the set of indices σc = {c(1), c(2), . . . c(k)} obtained by
choosing any subset of SK = {1, 2, · · · ,K}, k < K, and then ordering such that c(k) > c(k−1) >
· · · > c(1). The output across K residual units with ReLU non-linearity is

xK+1 = x1 +
∑

σc∈P(SK)\{∅}

(k∏
i=2

F′c(i)(x1,W
∗
c(i))

)
Fc(1)(x1,W

∗
c(1)), (3)

where the sum is over all subsets σc and P(SK) denotes the power set of SK . We have omitted the
O(ε2) term because the first order approximation is almost exact when ReLU is used as discussed
above. The right hand side of Equation (3) is interpreted as the sum over subnetworks or paths in
the sense of Veit et al. (2016). The identity path corresponding to σc = {∅} gives x1 in the first
term. If there is only one element in σc, such that its cardinality |σc| = 1, the product on the right
hand side in parentheses is absent and only terms proportional to Fc(1) appears in the sum, where
c(1) ∈ {1, . . . ,K}. We provide the proof of Equation (3) in Appendix A.

We can make the equation simpler, solely for simplicity, by setting all weights to be the same such
that Fc(i) = F and W∗

c(i) = W∗ for all i,

xK+1 = x1 +

K∑
k=1

(
K

k

)
(F′(x1,W

∗))k−1F(x1,W
∗). (4)

The binomial coefficients appear because the number of subsets of SK with cardinality k is
(
K
k

)
.

Note that the implementations of our proposed method (described in Section 3) do not use this
simplification.

Exponential gradient scaling Similarly, one observes that the gradient is the sum from all sub-
network contributions, including the identity network. The magnitudes of subnetwork gradients for
an 110 layer ResNet have been measured by (Veit et al., 2016). If one takes F to have ReLU non-
linearity, then F′′(x,W∗) = 0 except at the origin. The non-trivial gradient can be expressed almost
exactly as

(
K
k

)
(F′(x,W∗))k. This validates the numerical results that the gradient norm decreases

exponentially with subnetwork depth as reported in (Veit et al., 2016). Their experimental results
indicate that the average gradient norm for each subnetwork of depth k is given by ||F′(x,W∗)||k.

All aforementioned properties apply only after the ResNets are trained. However, if an approxima-
tion in the network is made, it would still give similar results after training. We show in the following
sections that our network can attain similar performances as the original ResNet, validating our ap-
proximation.

3 WARPED RESIDUAL NETWORK

The Warped Residual Network (WarpNet) is an approximation to the residual network, where K
consecutive residual units are compressed into one warp layer. The computation in a warp layer is

1The Taylor expansion for multivariate functions is f(x+ a) = f(x) + a · ∇xf(x) + · · ·
2Batch normalization layers are non-linear during training, due to the scaling by the sample variance.

3

different from that in a conventional neural network. It uses a warp operator to compute the output
(i.e., xK+1) of the layer directly from the input (i.e., x1), as shown in Equation (4). The number of
weights in a warped layer is the same of the one in the original residual network for K consecutive
residual units. For instance, the weights W1,W2 up to WK are present in a warped layer. But
these weights can be used and updated in parallel due to the use of the warp operator. Below we first
describe the forward and backward propagation rules used in warped residual network.

3.1 FORWARD PROPAGATION ACROSS WARP OPERATORS

This section shows the propagation rules of the Warped Residual Network using the warp operator
Twarp.

The expression for Twarp is derived from Equation 3, that is, by using the Taylor series expansion
to the first order:

xK+1 = x1 +
∑

σc∈P(SK)\{∅}

(k∏
i=2

F′c(i)(x1,W
∗
c(i))

)
Fc(1)(x1,W

∗
c(1)),

Note that Twarp can be calculated in a parallelizable manner for all K. This is shown in Figure 1
with K = 2, where 3

x3 = TK=2
warp(x1,W1,W2)

= x1 + F1(x1,W1) + F2(x1,W2) + F′2(x1,W2)F1(x1,W1), (5)

and Wi corresponds to the weights in the i-th residual unit in the original ResNet. The formula for
the K = 3 case is shown in Appendix A.

3.2 WARPED BACK-PROPAGATION

Now we derive the backpropagation rules. Suppose that the upstream gradient ∂L/∂x5 is known
and we wish to compute ∂L/∂W1 for gradient descent. We first back propagate the gradient down
from x5 to x3. With x5 = Twarp(x3), we can derive the backpropagated gradient

∂L

∂x3
=

∂L

∂x5
· ∂x5

∂x3

=
∂L

∂x5
·
[
I +

∂F3(x3,W3)

∂x3
+
∂F4(x3,W4)

∂x3
+
∂F4(x3,W4)

∂x3

∂F3(x3,W3)

∂x3

]
,

where I is the identity matrix and we have set the derivative of F′4 to zero for ReLU non-linearities.
Note that we have removed all BN layers from F′4 in our implementation. One sees that the same
kind of parallelism in the warp operator is also present for back propagation. Now we can evaluate
the weight gradient for updates

∂L

∂W1
=

∂L

∂x3
· ∂x3

∂W1
=

∂L

∂x3
·
[
∂F1(x1,W1)

∂W1
+
∂F2(x1,W2)

∂x1

∂F1(x1,W1)

∂W1

]
.

Similarly for the update rule for W2. Rules for the all other weights in WarpNet can be obtained in
the same way,

∂L

∂W2
=

∂L

∂x3
· ∂x3

∂W2
=

∂L

∂x3
·
[
∂F2(x1,W2)

∂W2
+
∂2F2(x1,W2)

∂x1∂W2
F1(x1,W1)

]
.

The weights W1 and W2 can be updated in parallel independently. The derivative
∂F2(x1,W2)/∂x1 (in ∂L/∂W1) is already computed in the forward pass which could be saved
and reused. Furthermore, derivatives other than F′3 needed in ∂L/∂x3 can also be computed in the
forward pass. For higher warp factors K, only the derivative F′K+1 is not available after the forward
pass.

3This equation is from Equation (2) after dropping the negligible O(ε2) terms.

4

Figure 1: Forward propagation in WarpNet. Left, the original residual network where each block
corresponds to a residual unit. Middle, the corresponding Warped Network with indices determined
by the architecture ofM . The diagram on the right shows the parallelism allowed in the forward pass
of WarpNet. Note that F2 shares the same weights with F′2, as they come from the same residual
unit in the original network M .

4 EXPERIMENTS

In this section we discuss our implementation of the WarpNet architecture and the experimental
results. In order to ensure the validity of the series expansion we replace the 1 × 1 convolution
layers on skip connections by an average pooling layer and a concatenate layer before the residual
unit to reduce the spatial dimensions of feature maps and multiply their channels. In this way all
skip connections are identity mappings. We adopt a wide residual architecture (WRN) (Zagoruyko
& Komodakis, 2016). The convolution blocks F comprised of the following layers, from input
to output, BN-Conv-BN-ReLU-Conv-BN (Han et al., 2016). The neural architecture of Warped
Residual Networks is shown in Table 1. The layers [T (K)

warp] ×Nwarp represent forward propagating
Nwarp times, such that xi+K = T

(K)
warp(xi,Wi,Wi+1, . . . ,Wi+K−1) and the indices i correspond

to the indices in the original residual network.

Using Tensorflow, we implemented a WarpNet with various parameters, kw, K and Nwarp. The
widening factor (Zagoruyko & Komodakis, 2016) is kw, K is the warp factor and with the scheme
shown in Figure 1. We employ Tensorflow’s automatic differentiation for backpropagation, where
the gradients are calculated by sweeping through the network through the chain rule. Although the
gradients computed in the forward pass can be re-used in the backward pass, we do not do so in
our experiment and leave it to future work to potentially further speed up our method. Even so,
the experimental results indicate that WarpNet can be trained faster than WRN with comparable
predictive accuracy.

Consider the case K = 2, we found that the computation bottleneck arises from the BN layers in
F′2. The reason being the gradient of BN layers contains an averaging operation that is expensive
to compute. In our final implementation we removed all BN layers in F′2 from our network. This
results in a departure from our series approximation but it turns out the network still trains well. This
is because the normalizing layers are still being trained in F1,2. To further improve the speed-up we
replace the F1 block in the derivative term F′2F1 with the input x1 so that the term becomes F′2x1.
Similar approximations are made in cases where K > 2. We have conducted extensive experiments
of this modification and found that it has similar predictive accuracies while improving speed-up.
In the following, we refer to this modification of WarpNet as WarpNet1 and the one with F′2F1 as
WarpNet2. For K = 3 we replace all F′jFi by F′jx1 in WarpNet1. We also drop the term F′3F

′
2F1

in computing x4 in both versions of WarpNet due to the limited GPUs we have in the expriements.

To investigate the speed-up provided by WarpNet and its predictive performance with various ap-
proximations on the warp operators, we define the relative speed-up, RS, compared to the corre-
sponding wide residual network (WRN) as

RS =
tres − twarp

tres
,

where twarp is the total time to process a batch for WarpNet during training, and tres is that for the
baseline WRN.

5

Table 1: Network architecture of WarpNet.
H ×W × C Conv blocks
32× 32× 3 Input
32× 32× 16 Conv-BN-ReLU
Stage 1 Concatenate
32× 32× 16kw [T (K)

warp] ×Nwarp
Stage 2 Avg pool(2x2)-Concatenate
16× 16× 32kw [T (K)

warp] ×Nwarp
Stage 3 Avg pool(2x2)-Concatenate
8× 8× 64kw [T (K)

warp] ×Nwarp
1× 1× 64kw BN-ReLU-Average Pooling(8,8)

Fully Connected(# of classes)

4.1 RESULTS ON CIFAR-10 AND CIFAR-100

For the CIFAR-10 and CIFAR-100 data sets, we trained for 80000 iterations, or 204 epochs. We
took a training batch size of 128. Initial learning rate is 0.1. The learning rate drops by a factor of
0.1 at epochs 60, 120, and 160, with a weight decay of 0.0005. We use common data augmentation
techniques, namely, whitening, flipping and cropping.

We study the performance of WarpNet with K = 2 and K = 3. The averaged results over two runs
each are shown in Tables 2 and 3. The first column in the Tables represents the methods including
two versions of WarpNet with different modifications we have made in the warp operator. A wide
ResNet (WRN) is obtained by replacing [T (K)

warp] ×Nwarp with K × Nwarp residual units in Table
1. The total number of convolution layers (represented by n in WRN-n-kw) is 6KNwarp+1, where
the factor of 6 arise from two convolution layers in each residual unit and 3 stages in the network,
plus 1 convolution layer at the beginning. The number of layers in WRN is always odd as we do not
use the 1× 1-convolution layer across stages.

We see that in most cases, WarpNet can achieve similar, if not better, validation errors than the cor-
responding wide ResNet while offering speed-up. The experiments also show that the modification
of replacing F′F by F′x1, where x1 is the input of the warp operator, achieves better accuracy most
of the time while improving the speed-up. We observe that increasing from K = 2 to K = 3, using
only one more GPU, significantly improves speed-up with only a slight drop in validation accuracy
compared to the K = 2 case.

We have also performed experiments on the speed-up as the widening factor kw increases. We found
that the speed-up increases as the WarpNet gets wider. For kw = 4, 8 and 16, the speed-up in total
time forK = 2 is 35%, 40% and 42% respectively. The speed-up also increases with the warp factor
K, for K = 3 using the F′x modification, the speed-ups are 44%, 48% and 50% respectively.

4.2 RESULTS ON IMAGENET

We also tested WarpNet on a down-sampled (32x32) ImageNet data set (Chrabaszcz & Hutter,
2017). The data set contains 1000 classes with 1281167 training images and 50000 validation im-
ages with 50 images each class. The training batch size is 512, initial learning rate is 0.4 and drops
by a factor of 0.1 at every 30 epochs. The weight decay is set to be 0.0001. We use the overall best
performing warp operator in the CIFAR experiments, namely, the one containing F′x.

The results are shown in Table 4 and Figure 2. First, we show directly that for a given ResNet there
exists a WarpNet that obtains a higher validation accuracy with shorter training time. We increase
K from 2 to 3 and keep everything else fixed. This corresponds to WarpNet-109-2. The network
has more residual units than WRN-73-2. We observed that WarpNet-109-2 trains 12% faster than
WRN-73-2 while resulting in a better validation accuracy. Second, WarpNet can achieve close to
the benchmark validation error of 18.9% with WRN-28-10 in (Chrabaszcz & Hutter, 2017). Note
that we were not able to train the corresponding WRN-73-4 on the dataset as the model requires too
much memory on a single GPU. This shows that the weight distribution of WarpNet across GPUs

6

Table 2: Validation error and relative speed-up in parentheses (· · ·) of WarpNet with K = 2.
Brackets [· · ·] under ”GPU assignment” indicates a GPU is used to compute (and store the weights
needed by) the operation enclosed. 3 GPUs are used in this experiment. The corresponding WRN
with the same number of parameters is listed in the last row in each block.

CIFAR-10, Nwarp = 3 GPU assignment kw = 4 kw = 6
WarpNet1-37-kw [F1], [F2], [F′2x1] 5.18 (33%) 4.79 (36%)
WarpNet2-37-kw [F1], [F2], [F′2F1] 5.15 (23%) 4.92 (26%)
WRN-37-kw [F1,F2] 4.97 (0%) 5.01 (0%)
CIFAR-10, Nwarp = 6 GPU assignment kw = 4 kw = 6
WarpNet1-73-kw [F1], [F2], [F′2x1] 4.51 (34%) 4.76 (36%)
WarpNet2-73-kw [F1], [F2], [F′2F1] 4.86 (24%) 4.91 (26%)
WRN-73-kw [F1,F2] 4.80 (0%) 4.71 (0%)
CIFAR-100, Nwarp = 3 GPU assignment kw = 4 kw = 6
WarpNet1-37-kw [F1], [F2], [F′2x1] 22.4 (33%) 21.6 (36%)
WarpNet2-37-kw [F1], [F2], [F′2F1] 22.8 (23%) 22.0 (26%)
WRN-37-kw [F1,F2] 22.8 (0%) 21.6 (0%)
CIFAR-100, Nwarp = 6 GPU assignment kw = 4 kw = 6
WarpNet1-73-kw [F1], [F2], [F′2x1] 21.4 (34%) 21.1 (36%)
WarpNet2-73-kw [F1], [F2], [F′2F1] 21.7 (24%) 21.4 (26%)
WRN-73-kw [F1,F2] 21.8 (0%) 21.9 (0%)

Table 3: Validation error and relative speed-up in parentheses (· · ·) of WarpNet with K = 3.
Brackets [· · ·] under ”GPU assignment” indicates a GPU is used to compute (and store the weights
needed by) the operation enclosed. 4 GPUs are used in this experiment. The corresponding WRN
with the same number of parameters is listed in the last row.

CIFAR-10, Nwarp = 2 GPU assignment kw = 4 kw = 6
WarpNet1-37-kw [F1], [F2], [F3], [F′2x1,F

′
3x1] 5.39 (43%) 5.35 (47%)

WarpNet2-37-kw [F1], [F2], [F3], [F′2F1,F
′
3F1,F

′
3F2] 5.52 (34%) 5.22 (33%)

WRN-37-kw [F1,F2,F3] 4.97 (0%) 5.01 (0%)
CIFAR-10, Nwarp = 4 GPU assignment kw = 4 kw = 6
WarpNet1-73-kw [F1], [F2], [F3], [F′2x1,F

′
3x1] 4.66 (45%) 4.64 (46%)

WarpNet2-73-kw [F1], [F2], [F3], [F′2F1,F
′
3F1,F

′
3F2] 4.81 (34%) 4.77 (34%)

WRN-73-kw [F1,F2,F3] 4.80 (0%) 4.71 (0%)
CIFAR-100, Nwarp = 2 GPU assignment kw = 4 kw = 6
WarpNet1-37-kw [F1], [F2], [F3], [F′2x1,F

′
3x1] 22.8 (43%) 22.2 (47%)

WarpNet2-37-kw [F1], [F2], [F3], [F′2F1,F
′
3F1,F

′
3F2] 23.0 (34%) 23.1 (33%)

WRN-37-kw [F1,F2,F3] 22.8 (0%) 21.6 (0%)
CIFAR-100, Nwarp = 4 GPU assignment kw = 4 kw = 6
WarpNet1-73-kw [F1], [F2], [F3], [F′2x1,F

′
3x1] 22.0 (45%) 21.4 (46%)

WarpNet2-73-kw [F1], [F2], [F3], [F′2F1,F
′
3F1,F

′
3F2] 21.9 (34%) 21.2 (35%)

WRN-73-kw [F1,F2,F3] 21.8 (0%) 21.9 (0%)

allows a bigger network to be trained. Remarkably, the validation error curve for WRN-73-2 and
its approximation WarpNet 73-2 (K = 2, Nwarp = 6) lie almost exactly on top of each other. This
suggests that our implementation of WarpNet is a good approximation of the corresponding WRN
throughout training.

4.3 COMPARISON WITH DATA PARALLELISM

WarpNet offers model parallelism to ResNet learning, in which different sets of weights are learned
in parallel. In comparison, a popular way to parallelize deep learning is to split the batch in each
training iteration into subsets and allow a different GPU to compute gradients for all weights based
on a different subset and synchronization can be done, e.g., by averaging the gradients from all
GPUs and updating the weights based on the average. We refer to such methods as data parallelism
methods. Below we compare WarpNet with a data parallelism method on 2 or 4 GPUs on CIFAR-10

7

Table 4: Top-5 validation errors (%) on ImageNet32×32 and the relative speed-up compared to
WRN-73-2 in parentheses for kw = 2. The warp operator containing F′x is used for WarpNet.

of parameters ImageNet32× 32
WRN-73-2 4.8M 23.0 (0%)
WarpNet1-73-2 (K = 2, Nwarp = 6) 4.8M 23.0 (27%)
WarpNet1-73-2 (K = 3, Nwarp = 4) 4.8M 23.5 (41%)
WarpNet1-109-2(K = 3, Nwarp = 6) 7.1M 22.1 (12%)
WarpNet1-73-4 (K = 2, Nwarp = 6) 18.9M 19.5
WRN-28-10 (Chrabaszcz & Hutter, 2017) 37.1M 18.9

Figure 2: Top-5 validation error of the down-sampled ImageNet data set for kw = 2.

for which we divide each batch into 2 or 4 mini-batches, respectively, and synchronization is done
right after all GPUs finish their job on their mini-batch to avoid harming the accuracy. Table 5 shows
the average result over 2 runs for each method. All methods see the same volume of data during
training, which means that the number of epochs is the same for all methods. We chose the warp
operators containing F′x in this experiment, that is, WarpNet1 whose operations are specified in the
first rows of each block in Tables 2 and 3. We use the GPU assignment [F1], [F2,F

′
2x1], [F3,F

′
3x1]

for the case with 3 GPUs.

The results show that WarpNet is more accurate than data parallelism in both 2-GPU and 4-GPU
cases. When 3 or 4 GPUs are used, WarpNet is much faster than data-parallelized ResNet with 4
GPUs. We believe this is because the data parallelism method needs to store all the weights of the
model in all GPUs and its speed is slowed by the need to update all the weights across all GPUs at
the time of synchronization. In comparison, WarpNet splits the weights among GPUs and each GPU
only maintains and updates a subset of weights. Such weight distributions in WarpNet require less
GPU memory, which allows it to train larger networks. Furthermore, data parallelism can be applied
to WarpNet as well to potentially further speed up WarpNet, which is a topic beyond the scope of
this paper.

5 CONCLUDING REMARKS

In this paper, we proposed the Warped Residual Network (WarpNet) that arises from the first order
Taylor series expansion with ReLU non-linearity. We showed analytically that the first order ex-
pansion is sufficient to explain the ensemble behaviors of residual networks (Veit et al., 2016). The
Taylor series approximation has the structure that allows WarpNet to train consecutive residual units
in parallel while ensuring that the performance is similar to the corresponding ResNet. The weights
of different residual units are distributed over the vairous GPUs which enables the training of bigger
networks compared to ResNets given limited GPU memory. Experimental results show that Warp-
Net can provide a significant speed-up over wide ResNets with similar predictive accuracy, if not

8

Table 5: Comparison with data parallelism.
of GPUs Validation error (%) Relative Speed-up

WRN-73-4 1 4.80 0%
WRN-73-4 2 4.86 29.6%
WRN-73-4 4 4.67 32.4%
WarpNet1-73-4, K = 2, Nwarp = 6 2 4.51 23.0%
WarpNet1-73-4, K = 3, Nwarp = 4 3 4.66 44.1%
WarpNet1-73-4, K = 3, Nwarp = 4 4 4.66 44.6%

better. We also show that WarpNet outperforms a data parallelism method on ResNet, achieving
better predictive accuracies and a much better speed up when more than 2 GPUs are used.

ACKNOWLEDGMENTS

We thank Wenxin Xu for providing his code for ResNet at https://github.com/wenxinxu/
resnet_in_tensorflow.

REFERENCES

Loshchilov I. Chrabaszcz, P. and F. Hutter. A downsampled variant of imagenet as an alternative to
the cifar datasets. 2017. https://arxiv.org/abs/1707.08819.

R. Hahnloser et al. Digital selection and analogue amplification coexist in a cortex-inspired silicon
circuit. Nature, 405:947–951, 2000.

D. Han, J. Kim, and J. Kim. Deep pyramidal residual networks. 2016. https://arXiv.org/
abs/1610.02915.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR, 2015.
https://arxiv.org/abs/1512.03385.

G. Huang et al. Deep networks with stochastic depth. CoRR, 2016. https://arXiv.org/
abs/1603.09382.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning
(ICML-15), pp. 448–456, 2015.

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural
networks. NIPS, 2012.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. ICLR, 2015.

N. Srivastava et al. Dropout: a simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. 2015. https://arxiv.
org/abs/1512.03385.

C. Szegedy et al. Going deeper with convolutions. CVPR, 2015.

A. Veit, Wilber M., and S. Belongie. Residual networks behave like ensembles of relatively shallow
networks. 2016. https://arXiv.org/abs/1605.06431.

S. Zagoruyko and N. Komodakis. Wide residual networks. 2016. https://arXiv.org/abs/
1605.07146.

9

https://github.com/wenxinxu/resnet_in_tensorflow
https://github.com/wenxinxu/resnet_in_tensorflow
 https://arxiv.org/abs/1707.08819
https://arXiv.org/abs/1610.02915
https://arXiv.org/abs/1610.02915
https://arxiv.org/abs/1512.03385
https://arXiv.org/abs/1603.09382
https://arXiv.org/abs/1603.09382
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
 https://arXiv.org/abs/1605.06431
https://arXiv.org/abs/1605.07146
https://arXiv.org/abs/1605.07146

A BINOMIAL PATH LENGTH

In this section we explicitly work out the expressions for x3 and x4 using the Taylor expansion and
show that in the general case the path lengths k corresponds to the binomial number of terms with
power k in F and F′ together in the first order Taylor expansion. The terms of order O(ε2) will be
omitted in this section. The expression for x3 is

x3 = x2 + F2(x2,W
∗
2)

= x1 + F1(x1,W
∗
1) + F2(x1 + F1(x1,W

∗
1),W∗

2).

(6)

Taylor expanding the last term in powers of F1 gives

x3 = x1 + F1(x1,W
∗
1) + F2(x1,W

∗
2) +

∂F2(x,W∗
2)

∂x

∣∣∣∣
x=x1

F1(x1,W
∗
1)

= x1 + F1(x1,W
∗
1) + F2(x1,W

∗
2) + F′2(x1,W

∗
2)F1(x1,W

∗
1), (7)

where in the last equality we simplified the notation for the partial derivative, where ∂/∂x =
(∂/∂x1, . . . , ∂/∂xD) and D is the dimensionality of x. Counting the powers of F and F′ reveals
that there are (1,2,1) terms for each power 0, 1 and 2, respectively. The same (1,2,1) coefficients can
also be obtained by setting the weights to be the same W∗

i = W∗
j for all i, j.

For x4,

x4 = x3 + F3(x3,W
∗
3)

= x2 + F2(x2,W
∗
2) + F3(x2 + F2(x2,W

∗
2),W∗

3)

= x2 + F2(x2,W
∗
2) + F3(x2,W

∗
3) + F′3(x2,W

∗
3)F2(x2,W

∗
2). (8)

This is similar to x3 but with indices on the right hand side increased by 1. One more iteration of
Taylor expansion gives x4 in terms of x1

x4 = x1

+ F1(x1,W
∗
1) + F2(x1,W

∗
2) + F3(x1,W

∗
3)

+ F′2(x1,W
∗
3)F1(x1,W

∗
1) + F′3(x1,W

∗
3)F1(x1,W

∗
1) + F′3(x1,W

∗
3)F2(x1,W

∗
2)

+ F′3(x1,W
∗
3)F′2(x1,W

∗
2)F1(x1,W

∗
1). (9)

where we have organized all terms having the same power of F and F′ together to be in the same
row. We also assume ReLU is used so that F′′3 = 0 almost exactly. We say that a term in the first
order expansion has power k if the term is proportional to (F′)k−1F. Then there are (1,3,3,1) terms
for each power k ∈ {1, 2, 3, 4}. A pattern begins to emerge that the number of terms for each power
of F satisfy

(
K
k

)
, where K is the number skipped, i.e. K = 3 for the x4 to x1 case above.

Now we show that the number of terms in the first order expansion is the binomial coefficient for all
k. We aim to derive a recursion relationship between each iteration of index reduction. We define the
index reduction as operations that reduce the index of the outputs xi by one. For instance, residual
unit formula xi = xi−1 + Fi−1 is an index reduction, where the index is reduced from i to i − 1.
Note that this operation generates a term of power 1, Fi−1, from a power 0 term xi. The first order
Taylor expansion generates a term of an additional power with a derivative,

Fi(xi) = Fi(xi−1 + Fi−1(xi−1)) = Fi(xi−1) + F′i(xi−1)Fi−1(xi−1),

where an index reduction is used in the first equality and the Taylor expansion is used in the second.
The dependence on F upon the weights and higher order corrections are omitted to avoid clutter.
We see the the combination of an index reduction and Taylor expansion generate terms of powers k
and k + 1 with index i− 1 from a term of power k of index i. Let C(K, k) be the number of terms
of K index reduction operations and power k. For instance, K = 3 corresponds to expressing x4 in
terms of x1 as in Equation 9 with C(3, 1) = C(3, 2) = 3 and C(3, 0) = C(3, 3) = 1.

A.1 FIRST PROOF OF THEOREM 1, RECURSION RELATIONS

We now derive a relationship between the number of terms of power k + 1 after K + 1 index
reductions with those after K index reductions. Consider the terms corresponding to K + 1 with

10

power k + 1. There are two sources of such terms. First, those generated by an additional index
reduction after K operations and the zeroth order Taylor expansion in terms of power k + 1, there
are C(K, k+ 1) such terms. Second, those generated by the first order Taylor expansion in terms of
power k, there are C(K, k) such terms. Therefore the total number of terms with power k + 1 after
K + 1 index reductions is

C(K + 1, k + 1) = C(K, k + 1) + C(K, k).

This is precisely the recursion formula satisfied by the binomial coefficients. We have explicitly
shown earlier that for K = 3 and K = 4 the coefficients are binomial coefficients. Therefore the
number of terms at any K and power k are the binomial coefficients, C(K, k) =

(
K
k

)
.

Note that the order of the indices in [ΠK
i=2F

′
c(i)]Fc(1) must be ordered, such that c(k) > c(k− 1) >

· · · > c(1). Where the indices c(i, k) are given by any subset of the integers SK = {1, 2, . . . ,K}.
Of course, the number of unordered subsets with cardinality k from a set of cardinality K is

(
K
k

)
.

To write down a term of power k explicitly in the first order Taylor expansion, we first choose a
unordered subset of k indices from SK then we order the indices to form σc = {c(k), . . . , c(1)}.
Then the output after K residual units with input xi is the sum over all these subsets

xK+1 =
∑

σc∈P(SK)

(k∏
i=2

F′c(i)(x1,W
∗
c(i))

)
Fc(1)(x1,W

∗
c(1)), (10)

where P(SK) denotes the power set of SK . Note that when σc is empty, the right hand side gives
the identity mapping. This is the same as Equation (3). Setting all weights to be the same gives the
form in Equation 4. �

A.2 SECOND PROOF OF THEOREM 1, BERNOULLI PROCESS

The series of index reduction operations can be identified with a Bernoulli process with parameters
K and p = 0.5. Each term in Equation (3) arises from a realization of the Bernoulli process.
Summing over terms from all possible realizations results in Equation (3). Recall that to express
xK+1 in terms of x1 similar to Equation (3), we need K index reduction operations. Let XK:1 :=
{XK , XK−1, . . . , X1} be a Bernoulli process, where Xi ∼ B(K, p = 0.5). Then the realizations
Xi = 0 represents the power of a term remains the same after an index reduction, and Xi = 1
denotes an increase in the power of a term by one. For example, consider K = 2, the terms
corresponding to the realizations of the Bernoulli process X2:1 = {X2, X1} are

{0, 0} → x1

{1, 0} → F2

{0, 1} → F1

{1, 1} → F′2F1

One sees that x3 can be obtained by summing over all terms corresponding to all realizations ofX3:1.
This generalizes to XK:1 for xK+1. The probability of a term having power k is 2−K

(
K
k

)
. Since the

total number of terms is 2K , the number of terms having power k is the binomial coefficient
(
K
k

)
. If

we let σc to be the term corresponding to a realization of XK:1, then consecutive Taylor expansions
corresponds to summing over all σc and Equation (3) follows. �

11

	Introduction
	Properties of ResNets
	Warped Residual Network
	Forward Propagation Across Warp Operators
	Warped Back-Propagation

	Experiments
	Results on CIFAR-10 and CIFAR-100
	Results on ImageNet
	Comparison with Data Parallelism

	Concluding Remarks
	Binomial path length
	First Proof of Theorem 1, Recursion Relations
	Second Proof of Theorem 1, Bernoulli Process

