LEARNING TO DESCRIBE SCENES WITH PROGRAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Human scene perception goes beyond recognizing a collection of objects and their pairwise relations. We are able to understand the higher-level, abstract regularities within the scene such as symmetry and repetition. Current vision recognition modules and scene representations fall short in this dimension. In this paper, we present scene programs, representing a scene via a symbolic program for its objects and their attributes. We also propose a model that infers such scene programs by exploiting a hierarchical, object-based scene representation. Experiments demonstrate that our model works well on synthetic data and is able to transfer to real images with such compositional structure. The use of scene programs has enabled a number of applications, such as complex visual analogy-making and scene extrapolation.

1 INTRODUCTION

When examining the image in Figure 1a, we instantly recognize the shape, color, and material of the objects it depicts. We can also effortlessly imagine how we may extrapolate the set of objects in the scene while preserving object patterns (Figure 1b). Our ability to imagine unseen objects arises from holistic scene perception: we not only recognize individual objects from an image, but naturally perceive how they should be organized into higher-level structure (Rock & Palmer, 1990).

Recent AI systems for scene understanding have made impressive progress on detecting, segmenting, and recognizing individual objects (He et al., 2017). In contrast, the problem of understanding high-level, abstract relations among objects is less studied. While a few recent papers have attempted to produce a holistic scene representation for scenes with a variable number of objects (Ba et al., 2015; Huang & Murphy, 2015; Eslami et al., 2016; Wu et al., 2017), the relationships among these objects are not captured in these models.

The idea of jointly discovering objects and their relations has been explored only very recently, where the learned relations are often in the form of interaction graphs (van Steenkiste et al., 2018; Kipf et al., 2018) or semantic scene graphs (Johnson et al., 2015), both restricted to pairwise, local relations. However, our ability to imagine extrapolated images as in Figure 1 relies on our knowledge of long-range, hierarchical relationships between objects, such as how objects are grouped and what patterns characterize those groups.

In this paper, we aim to tackle the problem of understanding higher-level, abstract regularities such as repetition and symmetry. We propose to represent scenes as scene programs. We define a domain-specific language for scenes, capturing both objects with their geometric and semantic attributes, as well as program commands such as loops to enforce higher-level structural relationships. Given an image of a complex scene, we propose to infer its scene program via a hierarchical bottom-up approach. First, we parse the image into individual objects and infer their attributes, resulting in the object representation. Then, we organize these objects into different groups, i.e. the group representation, where objects in each group fall into the same program block. Finally, we describe each group with a program, and combine these programs to get the program representation for the entire scene.

Our model applies deep neural networks for each stage of this process and is able to generate programs describing the input image with high accuracy. When testing on scenes that are more complex than those used for training, our hierarchical inference process achieves better generalization performance than baseline methods that attempt to infer a program directly from the image. Our model is also able to handle ambiguity, generating multiple possible programs when there is more than one way to describe the scene. Furthermore, our method generalizes to real-world images without any additional
Figure 1: High-level scene understanding. Given original image (a), we are able to imagine unseen objects based on the structural relations among existing objects, resulting in extrapolated image (b).

supervised training programs; only the low-level object detection module must be re-trained. Finally, we demonstrate how our model facilitates high-level image editing, as users can change parameters in the inferred program to achieve the editing effects they want more efficiently. We show examples of such image edits, including extrapolations such as the one in (Figure 1b), on both synthetic and photographic images.

Our contributions are therefore three-fold:

1. We propose scene programs: a new representation for scenes, drawing insights from classic findings in cognitive science and computer graphics.

2. We present a method for inferring scene programs from images using a hierarchical object ∈ group → program approach.

3. We demonstrate that our model can achieve high accuracy on describing both synthetic and constrained real scenes with programs. Combined with modern image-to-image translation methods, our model generates realistic images of extrapolated scenes, capturing both high-level scene structure and low-level object appearance.

2 Related Work

Describing Images with Programs Ellis et al. (2017) performs a similar task as ours where hand-drawn images of 2D geometry primitives are converted to high-level programs. This work uses a constraint-based SAT solver to perform program search and is much slower than neural network models. IM2LATEX (Deng et al., 2016) derenders images into low-level \LaTeX markup using a neural network, while our work discovers high-level programs from an image of objects. SPIRAL (Ganin et al., 2018) uses reinforcement learning to infer a sequence of a low-level drawing commands that can reproduce an image. Different from these works, our model performs program induction in 3D and infers high-level structural patterns both in object layout and color.

Describing the Structure of 3D Shapes and Scenes Beyond 2D images, prior work in vision and graphics has attempted to infer high-level structure from 3D objects and 3D scenes. The most relevant to our approach are those that extract a so-called symmetry hierarchy, in which 3D geometry is hierarchically grouped by either attachment or symmetric relationships (Wang et al., 2011). This representation has been used to train generative models of 3D shapes (Li et al., 2017) and indoor 3D scenes (Li et al., 2018), as well as to infer a hierarchical bounding box structure from a single image of a 3D shape (Niu et al., 2018). Our program representation bears some resemblance to the symmetry hierarchy, but it generalizes to repetitive patterns beyond symmetries and also models patterns in object visual attributes (e.g. color).

Neural Program Synthesis In general, a program synthesis model outputs an explicit program by learning from examples. Recent works on neural program synthesis include R3NN (Parisotto et al., 2016) and RobustFill (Devlin et al., 2017), which perform end-to-end program synthesis from examples. These models synthesize programs based on input-output pairs, which is different from our setting, where a program is generated to describe an input image.
Figure 2: Our model for visual program synthesis. (a) The input is an image consisting of multiple objects with ordered arrangements. We also perform instance segmentation to get masks. (b) We use two vision models to extract object attributes and predict object groups, respectively. (c) These representations are then sent to a sequence model to predict the program.

Table 1: Grammar of the scene program. Primitive commands (cube, sphere, cylinder) can be placed inside loop structures, where the position and color of each object are determined by the loop indices.

3 Method

Our model combines vision and sequence models via structured representations. An object parser predicts the segmentation mask and attributes for each object in the image. A group recognizer predicts the group that each object belongs to. Finally, a program synthesizer generates a program block for each object group. Figure 2 shows an example of synthesizing programs from an input image, where a sphere is selected at random (highlighted) and the group that this object belongs to is predicted, which consists of six spheres. Then the program for this group (highlighted) is synthesized.

3.1 A DSL for Scenes

In order to constrain the program space to make it tractable for our models, we introduce human prior on scene regularities that can be described as programs. More specifically, we introduce a Domain Specific Language (DSL) which explicitly defines the space of our scene programs. We present the grammar of our DSL in Table 1, which contains 3 primitive commands (cube, sphere, cylinder) and 2 loop structures (for, rotate). The positions for each object are defined as affine transformations of loop indices, while the colors are more complicated functions of the loop indices, displaying alternating (modular) and repeating (division) patterns.

Furthermore, since the DSL allows unbounded program depth, we define program blocks to further reduce complexity. Each type of program block is an interpretation instance of the Statement token, and objects that belong to the same block form a group. For example, in this work the program blocks include single objects, layered for loops of depth ≤ 3, and single-layer rotations of ≤ 4 objects.

3.2 Object Parsing

Following the spirit of The Trace Hypothesis (Ellis et al., 2017), we use object attributes as an intermediate representation between image space and structured program space. Parsing individual objects from the input image consists of two steps: mask prediction and attribute prediction. For each object, its instance segmentation mask is predicted by a Mask R-CNN (He et al. 2017). Next, the mask is concatenated with the original image, and sent to a ResNet-34 (He et al. 2015) to predict
object attributes. In our work, object attributes include shape, size, material, color and 3D coordinates. Each attribute is encoded as a one-hot vector, except for coordinates. The overall representation of an object is a vector of length 18. The networks are trained with ground truth masks and attributes, respectively. For the attribute network, we minimize the mean-squared error between output and ground truth attributes.

3.3 Group Detection

When we identify a distinct visual pattern, we first know which objects in the image form the pattern before we can tell what the pattern is. Motivated by this idea, we develop a group recognizer that tells us which objects form a group that can be described by a single program block. The group recognizer works after mask prediction is performed, and answers the following specific question: given an input object, which objects are in the same group with this object?

The input to the model consists of three parts: the original image, the mask of the input object, and the mask of all objects. These three parts are concatenated and sent to a ResNet-152 followed by fully connected layers. The output contains two parts: a binary vector g where $g[i] = 1$ denotes object i in the same group with the input object, and the category c of the group, denoting the type of program block that this group belongs to. The network is trained to minimize the binary cross entropy loss for group recognition, and the cross entropy loss for category classification.

3.4 Neural Program Synthesis

With the object attributes and groups obtained from the vision models, the final step in our model is to generate program sequences describing the input image. Since we have already detected object groups, what remains is to generate a program for each group. For this goal we train a sequence to sequence (seq2seq) LSTM with an encoder-decoder structure and attention mechanism [Luong et al., 2015; Bahdanau et al., 2015]. The input sequence is a set of object attributes that form a group, which are sorted by the 3D coordinates. The output program consists of two parts: program tokens are predicted as a sequence as in neural machine translation, and program parameters are predicted by a MLP from the hidden state at each time step. At each step, we predict a token t as well as a parameter matrix P, which contains predicted parameters for all possible tokens. Then we use $P[t]$ as the output parameter for this step.

Since the program synthesizer only works for a single group, a method for combining the group prediction with program synthesis is needed. Consider the simplest case where we randomly choose an object and describe the group it belongs to. This procedure is described in Algorithm 1. In practice, by default we sample 10 times and stop when a correct program is generated, meaning that we can recover the scene successfully by executing the program.

Algorithm 1: Combining group prediction with program synthesis

Result: a program sequence P

Input: a set of object attributes O

while O is not empty **do**

- randomly choose $o_i \in O$;
- predict the group that contains o_i, indexed by G;
- also predict the group category c;
- get attributes of objects that belong to the group, $A = \{o_j | j \in G\}$;
- send A, c to program synthesizer, get program p;
- add p to P;

end

4 Experiments

We perform several experiments on synthetic scene images, including quantitative comparison with baseline methods and further extensions and applications. We also demonstrate our model’s ability to generalize to real images with a small amount of hand-labeled supervision. We also apply our method to other tasks, specifically image extrapolation and visual analogy-making, on both synthetic and real images.

4.1 Dataset

We create a synthetic dataset of images rendered from complex scenes with rich program structures. Figure [3] displays some examples drawn from the dataset. These images are generated by first
Figure 3: Qualitative results for visual program synthesis. (a) Results on the original test set. (b) Results on the generalization test set which contains more complex scenes.

Table 2: Comparing program synthesis with baseline methods. Evaluation metrics include program token accuracy and parameter loss and scene reconstruction accuracy on original and generalization test sets.

<table>
<thead>
<tr>
<th>Model</th>
<th>Token Acc. (%)</th>
<th>Param Loss (MSE)</th>
<th>Test Acc. (%)</th>
<th>Generalization Acc. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ours (full)</td>
<td>99.5</td>
<td>0.014</td>
<td>96.6</td>
<td>70.0</td>
</tr>
<tr>
<td>derender-LSTM</td>
<td>97.5</td>
<td>0.080</td>
<td>87.6</td>
<td>14.0</td>
</tr>
<tr>
<td>CNN-LSTM</td>
<td>98.9</td>
<td>0.043</td>
<td>92.3</td>
<td>48.0</td>
</tr>
</tbody>
</table>

We compute program token accuracy and parameter loss, defined as the percentage of correctly predicted tokens and the mean-squared error of parameter prediction, respectively. To evaluate the global performance of the generated program, we also compute reconstruction accuracy of the programs, defined as the percentage of programs that correctly reconstruct the original image. The reconstruction accuracy is evaluated on both the original and the generalization test set. We present the test results in Table 2 where our model outperforms baseline methods in each of the metrics, and achieves good performance on generalization.

Tacking ambiguous input While our model can generate program representations for images with high accuracy, it can also generate multiple possible programs when the input is ambiguous. Figure 4 shows an example where the red group can be described by either a two-layer for loop or a rotation of 4 objects. Our hierarchical method allows explicit specification of group category. When executing Algorithm 1 instead of selecting the most confident group category, we search top 3 proposals, and...
cube(pos=(0,4,0),color=8)
rotate(i<4, s=0, c=(2,1,0))
cube(pos=(1,0,0),color=7)
cube(pos=(1,1,0),color=7)
cube(pos=(2,0,0),color=7)
cube(pos=(2,1,0),color=7)

cube(pos=(0,4,0),color=8)
for(i<4)
for(j<4)
cube(pos=(1+i,j,0),color=7)

Figure 4: Generating multiple possible programs.

for(i<4)
for(j<4-i)
for(k<4-i-j)
cylinder(
pos=(j,3-k,i),color=5+i
)
Input Image Partial Observation Program

for(i<3)
for(j<3-i)
for(k<3-i-j)
cylinder(
pos=(4-j,2-k,i),color=7-2i
)

for(i<3)
for(j<3-i)
for(k<3-i-j)
cylinder(
pos=(j,2-k,i),color=2+i
)

for(i<3)
for(j<3-i)
for(k<3-i-j)
cylinder(
pos=(j,4-k,i),color=4+2i
)

Program Input Image Partial Observation Program

Figure 5: Inferring programs from partial observations.
Input Image The input image contains objects that are fully or mostly occluded.
Partial Observation Output of Mask R-CNN where we discard mask proposals that are too small. The highlighted objects form the observation of our model.
Program Despite the noisy and incomplete input, our model can accurately predict programs that describe the image.

execute the synthesized program block to decide if each proposal corresponds to a possible correct program. Figure 4 demonstrates programs generated by our model, while the baseline methods tend to collapse to one possible answer and is unable to generate others.

Program synthesis from partial observations Our model can also handle scenes where there are invisible (or hardly visible) objects. Figure 5 demonstrates how our model operates on these scenes. Given an input image, we generate object instance masks and remove those with area below a certain threshold, so that the remaining objects can be correctly recognized. These objects form the partial observation of our model, from which the program synthesizer generates a program block which correctly describes the scene, including (partially) occluded objects. The flexibility of the neural program synthesizer allows us to recognize the same program pattern given different partial observations. Consider the two examples at the bottom of Figure 5. They have different set of observations (8 and 6 objects on bottom left and right, respectively) due to the different distances, and our model is able to correctly recognize both of them.

4.3 **Image Editing**

Image editing via program representation With the expressive power of the program representation, our model can be applied to tasks that require a high-level structural knowledge of the scene. For example, when an image lies within the space defined by our DSL, it can be efficiently edited using the program representation generated by our model. Figure 6 shows some examples of image editing, where the input image (Figure 6a) is represented by a program. Users can then edit the program to achieve the preferred editing effects. The edited program is sent to a graphics engine to render the new image. The structural form of our program representation allows various types of high-level editing, including spatial extrapolation (Figure 6b, c), changing color patterns (Figure 6d) and shapes (Figure 6e). Each of the four examples requires only one edit in the program, while using the traditional object representation, users have to change objects one at a time, averaging 6.25 edits per image.

Real image extrapolation An advantage of our method which uses object attributes as a connection between vision and program synthesis is to generalize to real images. Since our neural program synthesizer is independent from visual recognition, only the vision systems need to be retrained for our entire model to work on real images.
Figure 6: Image Editing. Our model can be applied to edit images by inferring programs (a) and then operate on program space. Examples include image extrapolation (b, c) and attribute editing (d, e).

Figure 7: Generalizing to real images. (a) Input image which is described by a program generated by our model. (b) The object patches in the original image are extracted using Mask R-CNN, while new objects are inferred by modifying the program iteration number and added as masks. (c) The edited image is rendered by pix2pix.

Figure 7a shows images of LEGO blocks shot from a camera in real-world settings. We create a dataset of 120 real images, where we use 90 for training, 10 for validation, and 20 for testing. To adapt our model to generate programs for these images, we first pretrain on a synthetic dataset of 4,000 images rendered by a graphics engine. Then we fine-tune the model on 90 real images with labeled masks and attributes. The vision system is then linked with the pretrained program synthesizer which does not require any fine-tuning. Even with a small amount of real data for fine-tuning, our model generalizes well and correctly predicts the programs for each test image.

Furthermore, the image editing techniques introduced above can also be applied such real images. Here we present an experiment on real image extrapolation. Given an input image, we generate the program describing the image and also extract object patches with Mask R-CNN. The program is extended by increasing the iteration number, which is a simple way of “imagining” what could be the next given a sequence of observations.

Our original method uses a graphics engine to render new images from edited programs, which is not applicable for real images. For this purpose, we use pix2pix (Isola et al., 2017) as an approximate neural renderer. After program inference, we execute the edited program and retrieve newly added object masks. These masks can be computed using camera parameters and 3D coordinates, while here we use retrieval for simplicity. All of the patches are pasted on a white background, and then sent to pix2pix to generate realistic background and lighting. Figure 7c displays the editing results. The edited images preserve object appearances in the original images, and also fix the errors made by mask prediction (small white gaps in Figure 7b) and contain realistic-looking shadows.

4.4 VISUAL ANALOGY MAKING

Besides representing images for efficient editing, scene programs can also be used as encoded images. For example, the distance in program space can also be applied to model similarity between images, which is already introduced by (Ellis et al., 2017). Motivated by this idea, we consider visual analogy making (Reed et al., 2015), where an input image is converted to a new image given other reference images. We introduce a setting where the reference is an image pair and ask the intuitive question, if B follows A, then what should follow C?
Figure 8: Visual Analogy Making. Given example image pairs (a), (b), the input image (c) is encoded with a representation, which is edited according to the example image pair. The edited representation is then decoded into a new image by our model (e) and an autoencoder (f), respectively. (d) shows analogy making result made by human.

Table 3: Average L2 distance between ground truth image and model output.

<table>
<thead>
<tr>
<th>Model</th>
<th>synthetic</th>
<th>real</th>
</tr>
</thead>
<tbody>
<tr>
<td>autoencoder</td>
<td>5.17</td>
<td>10.19</td>
</tr>
<tr>
<td>ours</td>
<td>3.87</td>
<td>7.05</td>
</tr>
</tbody>
</table>

Here we use a simple solution based on representation distance. More specifically, for an encoder R and an input image c with reference pair (a, b), we set $R(d) = R(c) + R(b) - R(a)$ and decode $R(d)$ to get the output. In our case, the encoder is our program synthesis model, while we use pix2pix as a neural decoder. In order to perform arithmetic operations, the program is represented as a matrix, where each line starts with a token followed by parameters. We compare our model with an autoencoder (Hinton & Salakhutdinov 2006). The autoencoder we adopt takes an input image of 256*256, encodes the input into a 256 dimensional vector and then decodes the encoded vector back to original image size. Figure 8 shows some qualitative results, where the output image is shown in Figure 8e, f, respectively. Using our program representation, we are able to generate perceptually plausible results. While the autoencoder can sometimes correctly change the number of objects, it fails to preserve the layout arrangements. We also compute average L2 distance between model output and ground truth image made by human. The results are shown in Table 3, where our model generates images that are closer to the ground truth.

5 CONCLUSION

We propose scene program as a structural representation of complex scenes with high-level regularities. We also present a novel method which can infer scene programs from 2D images through a hierarchical bottom-up approach. Our model achieves high accuracy on a synthetic dataset and can also generalize to real image. The representation power of programs allows our model to be applied to other tasks in computer vision, such as image editing and analogy making, on both synthetic and photographic images.
REFERENCES

