VISUAL IMITATION LEARNING
WITH RECURRENT SIAMESE NETWORKS

Anonymous authors
Paper under double-blind review

Abstract

People are incredibly skilled at imitating others by simply observing them. They achieve this even in the presence of significant morphological differences and capabilities. Further, people are able to do this from raw perceptions of the actions of others, without direct access to the abstracted demonstration actions and with only partial state information. People therefore solve a difficult problem of understanding the salient features of both observations of others and the relationship to their own state when learning to imitate specific tasks. However, we can attempt to reproduce a similar demonstration via trial and error and through this gain more understanding of the task space. To reproduce this ability an agent would need to both learn how to recognize the differences between itself and some demonstration and at the same time learn to minimize the distance between its own performance and that of the demonstration. In this paper we propose an approach using only visual information to learn a distance metric between agent behaviour and a given video demonstration. We train a Recurrent Neural Network (RNN)-based Siamese model to compute distances in space and time between motion clips while training an Reinforcement Learning (RL) policy to minimize this distance. Furthermore, we examine a particularly challenging form of this problem where the agent must learn an imitation based task given a single demonstration. We demonstrate our approach in the setting of deep learning based control for physical simulation of humanoid walking in both 2D with 10 degrees of freedom (DoF) and 3D with 38 DoF.

1 INTRODUCTION

Often in RL the designer formulates a reward function to elicit some desired behaviour in the policy. However, people often modify or refine their objectives as they learn. For example, a gymnast that is learning how to perform a flip can understand the overall motion from a few demonstrations. However, over time the gymnast, along with their previous experience, will learn to understand the less obvious but significant state features that determine a good flipping motion. In this same vein we want to gradually learn a distance function where as the agent explores and gets better, it refines its state space understanding it observes and therefore the distance metric can further refine its accuracy.

Robots and people may plan using an internal pose space understanding; however, typically when people observe others performing tasks only visual information is available. In order to understand how to perform tasks from visual observation some mapping/ transformation is used \(\text{pose} = \phi(image) \), which allows for the minimization of \(\phi(image) - \text{agent_pose} \). Even with a method to transform observations to a similar pose every person has different capabilities. Because of this people must learn how to transform demonstrations into a representation where they can reproduce the behaviour to the best of their ability. In our work here we construct a distance metric derived from the agent’s visual perceptions without the need for an intermediate pose representation by allowing the agent to observe itself externally and compare that perception with a demonstration.

Searching for a distance function has been an active topic of research (Abbeel & Ng, 2004; Argall et al., 2009). Given some vector of features the goal is to find an optimal transformation of these features such that when differences are computed in this transformed space there exists a strong contextual meaning. For example, if we wanted a transformation that computed the distance between
an agent’s standing pose and its current pose, a good schema may prioritize the joint angles of the legs and torso while ignoring momentum. With a meaningful transformation function $\phi(\cdot)$ a distance can be computed between an agent and a demonstration. Previous work has explored the area of state-based distance functions, but many rely pose based metrics (Ho & Ermon, 2016; Merel et al., 2017a) that come from an expert. Few use image based inputs and none consider the importance of learning a distance function in time as well as space (Sermanet et al., 2017; Finn et al., 2017). In this work we use a recurrent siamese network to learn the distance metric (Chopra et al., 2005).

An important detail of imitating demonstrations is their sequential and causal nature. There is both an ordering and speed in which the demonstration is performed. It is important to match the demonstrations state distribution, however, similarity between states may force the agent to imitate the same timing as the demonstration. This can be very effective and lead to learning rather smooth motions but it also constrains the result to have similar timing as the demonstration. However, when the agent’s motion becomes desynchronized with the demonstration the agent will receive low reward. Consider the case when a robot has learned to stand, before it can walk, this pose exists inside the demonstration and should be encouraged. Therefore we learned an RNN-based distance function that can give reward for out of sync but similar behaviour. Considering the data sparsity of the problem we include data from other tasks in order to learn a more robust distance function in visual sequence space.

Our method has similarities to both Inverse Reinforcement Learning (IRL) (Abbeel & Ng, 2004) and Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016). The process of learning a cost function that will understand the space of policies in order to find an optimal given a demonstration is fundamentally IRL. While using positive examples from the expert and negative examples from the policy is similar to the method GAIL used to train a discriminator to understand the desired distribution. In this work we build upon these techniques by constructing a method that can learn policies using only noisy partially observable visual data. We also construct a cost function that takes into account the demonstration timing as well as pose by using a recurrent Siamese network. Our contribution rests in proposing and exploring this form of recurrent Siamese network as a way to address the key problem of defining the reward structure for imitation learning for deep RL agents.

2 Preliminaries

In this section we outline some key details of the general RL framework and specific specialized formulations for RL that we rely upon when developing our method in Section:.

2.1 Reinforcement Learning

Using the RL framework formulated with a Markov Dynamic Processes (MDP): at every time step t, the world (including the agent) exists in a state $s_t \in S$, wherein the agent is able to perform actions $a_t \in A$, sampled from a policy $\pi(s_t, a_t)$ which results in a new state $s_{t+1} \in S$ according to the transition probability function $T(s_t, a_t, s_{t+1})$. Performing action a_t from state s_t produces a reward r_t from the environment; the expected future discounted reward from executing a policy π is:

$$J(\pi) = \mathbb{E}_{r_0, \ldots, r_T} \left[\sum_{t=0}^{T} \gamma^t r_t \right]$$

where T is the max time horizon, and γ is the discount factor, indicating the planning horizon length. The agent’s goal is to optimize its policy, π, by maximizing $J(\pi)$. Given policy parameters θ_{π}, the goal is reformulated to identify the optimal parameters θ^*_{π}:

$$\theta^*_{\pi} = \arg \max_{\theta_{\pi}} J(\pi(\cdot | \theta_{\pi}))$$

(2)

Using a Gaussian distribution to model the stochastic policy $\mu_{\theta_{\pi}}(s_t)$. Our stochastic policy is formulated as follows:

$$a_t \sim \pi(a_t | s_t, \theta_{\pi}) = \mathcal{N}(\mu(s_t | \theta_{\pi}), \Sigma) \quad \Sigma = \text{diag}\{\sigma^2_t\}$$

(3)
where Σ is a diagonal covariance matrix with entries σ^2 on the diagonal, similar to (7).

For policy optimization we employ stochastic policy gradient methods (Sutton et al., 2000). The gradient of the expected future discounted reward with respect to the policy parameters, $\nabla_{\theta_{\pi}} J(\pi(\cdot|\theta_{\pi}))$, is given by:

$$
\nabla_{\theta_{\pi}} J(\pi(\cdot|\theta_{\pi})) = \int_{\mathcal{S}} d_{\theta}(s) \int_{A} \nabla_{\theta_{\pi}} \log(\pi(a,s|\theta_{\pi})) A_{\pi}(s,a) \, da \, ds
$$

where $d_{\theta} = \int_{\mathcal{S}} \sum_{t=0}^{T} \gamma^t p_0(s_0) (s_0 \rightarrow s \mid t, \pi_0) \, ds_0$ is the discounted state distribution, $p_0(s)$ represents the initial state distribution, and $p_0(s_0) (s_0 \rightarrow s \mid t, \pi_0)$ models the likelihood of reaching state s by starting at state s_0 and following the policy $\pi_{t}(a,s|\theta_{\pi})$ for T steps (Silver et al., 2014). $A_{\pi}(s,a)$ represents an advantage function (Schulman et al., 2016).

3 Our Approach

Imitation learning is the process of training a new policy to reproduce the behaviour of some expert policy. Behavioural Cloning (BC) is a fundamental method for imitation learning. Given an expert policy π_{E} possibly represented as a collection of trajectories $\tau < (s_0, a_0), \ldots, (s_T, a_T) >$ a new policy π can be learned to match this trajectory using supervised learning.

$$
\max_{\theta} \mathbb{E}_{\pi_{E}} \sum_{t=0}^{T} \log(\pi_{t}(a_{t}|s_{t}, \theta_{\pi}))
$$

While this simple method can work well, it often suffers from distribution mismatch issues leading to compounding errors as the learned policy deviates from the expert’s behaviour.

Similar to BC, IRL also learns to replicate some desired behaviour however, IRL makes use of the environment, using the RL environment without a defined reward function. Here we describe maximal entropy IRL (Ziebart et al., 2008). Given an expert trajectory $\tau < (s_0, a_0), \ldots, (s_T, a_T) >$ a new model can be learned to match this trajectory using some distance metric between the expert trajectories and trajectories produced by the policy π.

$$
\max_{\pi} \min_{c \in C} \left[\mathbb{E}_{c}[c(s,a)] - H(\pi) - \mathbb{E}_{\pi_{E}}[c(s,a)] \right]
$$

where c is some learned cost function and $H(\pi)$ is a causal entropy term. π_{E} is the expert policy that is represented by a collection of trajectories. IRL is searching for a cost function c that is low for the expert π_{E} and high for other policies. Then a policy can be optimized by maximizing the reward function $r_{t} = -c(s_{t}, a_{t})$.

GAIL uses a Generative Adversarial Network (GAN)-based (Goodfellow et al., 2014) framework where the discriminator is trained with positive examples from the expert trajectories and negative examples from the policy. The generator is a combination of the environment and the current state visitation probability induced by the policy $p_{\pi}(s)$.

$$
\min_{\theta_{\phi}} \max_{\theta_{E}} \mathbb{E}_{\pi_{E}} \left[\log(D(s,a|\theta_{\phi})) \right] + \mathbb{E}_{\pi_{\phi}} \left[\log(1 - D(s,a|\theta_{\phi})) \right]
$$

In this framework the discriminator provides rewards for the RL policy to optimize, as the probability of a state generated by the policy being in the distribution $r_{t} = D(s-t, a_{t}|\theta_{\phi})$.

3.1 Partial Observable Imitation Learning Without Actions

For many problems we want to learn how to replicate the behaviour of some expert π_{E} without access to the experts actions. Instead, we may only have access to an actionless noisy observation of the expert that we call a demonstration. Recent work uses BC to learn a new model to estimate the actions used via maximum-likelihood estimation (Torabi et al., 2018). Work in (Merel et al., 2017b) proposes a system based on GAIL that can learn a policy from a partial observation of the demonstration. In this work the state input to the discriminator is a customized version of the expert’s pose and does not take into account the demonstration’s sequential nature. The work
in (Wang et al., 2017) provides a more robust GAIL framework along with a new model to encode motions for few-shot imitation. This model uses an RNN to encode a demonstration but uses expert state and action observations. In our work we limit the agent to only a partial visual observation as a demonstration. Additional works learn implicit models of distance (Yu et al., 2018; Pathak et al., 2017; Finn et al., 2017; Sermanet et al., 2017), none of these explicitly learn a sequential model to use the demonstration timing. In contrast, here we train a recurrent siamese model that can be used to enable curriculum learning and allow for reasonable distances to be computed even when the agent and demonstration are out of sync or have different capabilities.

3.2 Distance-Based Reinforcement Learning

Given a distance function \(d(s)\) that indicates how far away the agent is from some desired behaviour a reward function over states can be constructed \(r(s) = -d(s)\). In this framework there is no reward signal coming from the environment instead fixed rewards produced by the environment are replaced by the agent’s learned model that is used to compare itself to some desired behaviour.

\[
J(\pi) = \mathbb{E}_{d(s_0),...,d(s_T)} \left[\sum_{t=0}^{T} \gamma^t (-d(s_t)) \right]
\]

(8)

Using the policy gradient formulation

\[
\nabla J(\pi) = \int_p(s) \int_a d\pi(a) \log(\pi(a)) Q_{\pi}(a, s) - b(s))
\]

With

\[
Q(\pi(s_t, s) = (\gamma V_t(s_{t+1}) + r_t) - V_t(s_t) = (\gamma V_t(s_{t+1}) + r(s_{t+1})) - V_t(s_t)
\]

(11)

where the state distribution \(p(s)\) is dependant on the policy \(\pi(a|s)\). Here \(d(s)\) can take many forms, in IRL it is some learned cost function, in GAIL it is the discriminator probability. In this work we consider this function more general and it can be interpreted as distance from desired behaviour.

Many different methods can be used to learn a distance function in state-space. We use a triplet loss over time and task data. The triplet loss is used to minimize the distance between two example that are positive, very similar or are from the same class, and maximize the distance between a pair of examples that are known to be un related.

Data used to train the siamese network is a combination of trajectories \(\tau = (s_0, ..., s_T)\) generated from simulating the agent in the environment as well as the demonstration.

\[
\mathcal{L}(s_i, s_p, s_n) = \max(d(s_i, s_p) - d(s_i, s_n) + \rho, 0)
\]

\[
\mathcal{L}(s_i, s_p, s_n) = y \ast \|f(s_i) - f(s_p)\| + ((1 - y) \ast (\max(\rho - (f(s_i) - f(s_n)), 0)))
\]

(11)

Where \(y = 1\) is a positive example \(s_p\), pair where the distance should be minimal and \(y = 0\) is a negative example \(s_n\), pair where the distance should be maximal. The margin \(\rho\) is used as an attractor or anchor to pull the negative example output away from \(s_i\). \(f()\) computes the output from the underlying network. A diagram of this image-based training process and design is shown in Figure 1a. The distance between two states is calculated as \(d(s, s') = ||f(s) - f(s')||\) and the reward as \(r(s, s') = -d(s, s')\).

3.3 Sequence Imitation

Using a distance function in the space of states can allow us to find advantageous policies. The hazard with using a state only distance metric when you are given demonstrations as sequences to imitate is that the RL agent can suffer from phase-mismatch. In this situation the agent may be performing the desired behaviour but at a different speed. As the demonstration timing and agent diverge the agent receives less reward, even though it is visiting states that exist elsewhere in the demonstration. If instead we consider the current state conditioned on the previous states we can learn to give reward for visiting states that are only out of sync with the demonstration motion.

This distance metric is formulated in a recurrent style where the distance is computed from the current state and conditioned on all previous states \(d(s_t|s_{t-1}, ..., s_0)\). The loss function remains the same as in Eq. 11 but the overall learning process changes to use an RNN based method. A
diagram of the method is shown in Figure 1b. This model uses a time distributed RNN. A single convolutional network $conv^a$ is first used to transform images of the agent and demonstration to encoding vectors e^a_t. After the sequence of images is distributed through $conv^a$ there is an encoded sequence $<e^a_0, \ldots, e^a_T>$, this sequence is fed into the RNN $lstm^a$ until a final encoding is produced h^a_T. This same process is done for a copy of the RNN $lstm_b$ producing h^b_T for the demonstration. The loss is computed in a similar fashion to [Mueller & Thayagarajan, 2016] using the sequence outputs of images from the agent and another from the demonstration. The reward at each timestep is computed as $r_t = ||h^a_t - h^b_t||$. At the beginning of ever episode the RNN’s internal state is reset. The policy and value function use a 2 layer neural network with 512 and 256 units respectively.

Figure 1: Siamese network network structure. The convolutional portion of the network includes 3 convolution layers of 16 filters with size 10×10 and stride 5×5, 32 filters of size 5×5 and stride 2×2 and 32 filters of size 3×3 and stride 1×1. The features are then flattened and followed by two dense layers of 256 and 128 units. The majority of the network uses ReLU activations except the last layer that uses a sigmoid activation. Dropout is used between the convolutional layers. The RNN-based model uses a GRU layer with 128 hidden units, followed by a dense layer of 128 units.

3.4 **The RL Simulation Environment**

Our simulation environment is similar to the OpenAIGym robotics environments ([Plappert et al., 2018]). The demonstration M the agent is learning to imitate is generated from a clip of mocap data. The mocap data is used to animate a second robot in the simulation. Frames from the simulation are captured and used as video input to train the distance metric. The policy is trained on pose data, as link distances and velocities relative to the robot’s Centre of Mass (COM) of the simulated robot. This is a new simulation environment that has been created to take motion capture data and produce multi-view video data that can be used for training RL agents or generating data for computer vision tasks. The environment also includes new challenging and dynamic tasks for humanoid robots. The simulation and rendering have been optimized and efficient EGL-based off-screen rendering is used to capture video data.

3.5 **Data Augmentation**

In a manner similar to how a person may learn to understand and reproduce a behaviour ([Council et al., 2000]; Gentner & Stevens, 2014) we apply a number of data augmentation methods to produce additional data used to train the distance metric. Using methods analogous to the cropping and warping methods popular in computer vision ([He et al., 2015]) we randomly crop sequences and randomly warp the demonstration timing. The cropping is performed by both initializing the agent to random poses from the demonstration motion and terminating episodes when the agent’s head, hands or torso contact the ground. The motion warping is done by replaying the demonstration motion at different speeds. We also make use of time information in a similar way to ([Sermanet et al., 2017]), where observations at similar times in the same sequence are often correlated and observations at different times may have little similarity. To this end we generate more training samples using randomly cropped sequences from the same trajectory as well as reversed and out of sync versions. Imitation data for other tasks is also used to help condition the distance metric learning process. Motion clips for running, backflips and frontflips are used along with the desired walking motion.

The algorithm used to train the distance metric and policy is outlined in Algorithm 1. Importantly the RL environment generates two different state representations for the agent. The first state s_{t+1}
is the internal robot pose. The second state s_{t+1}^v is the agent’s rendered view. The rendered view is used with the distance metric to compute the similarity between the agent and the demonstration. We attempted to use the visual features as the state input for the policy as well, this resulted in poor policy quality.

Algorithm 1 Visual Imitation Learning Algorithm

1: Randomly initialize model parameters θ_π and θ_d
2: Create experience memory $D \leftarrow \{\}$
3: Given a demonstration $M = \langle m_0, \ldots, m_T \rangle$
4: \textbf{while} not done \textbf{do}
5: \hspace{1em} \textbf{for} $i \in \{0, \ldots N\}$ \textbf{do}
6: \hspace{2em} $\tau_i \leftarrow \{\}$
7: \hspace{3em} \textbf{for} $t \in \{0, \ldots, T\}$ \textbf{do}
8: \hspace{4em} $a_t \leftarrow \pi(\cdot|s_t, \theta_\pi)$
9: \hspace{4em} $s_{t+1}, s_{t+1}^v \leftarrow \text{env}(a_t)$
10: \hspace{4em} $r_t \leftarrow r(s_{t+1}^v, m_{t+1}|\theta_d)$
11: \hspace{4em} $\tau_{i,t} \leftarrow <s_t, a_t, r_t>$
12: \hspace{3em} $s_t \leftarrow s_{t+1}$
13: \hspace{2em} \textbf{end for}
14: \textbf{end for}
15: $D \leftarrow D \cup \{\tau_0, \ldots, \tau_N\}$
16: Update the distance metric $d(\cdot)$ parameters θ_d using D
17: Update the policy parameters θ_π using $\{\tau_0, \ldots, \tau_N\}$
18: \textbf{end while}

4 EXPERIMENTS AND RESULTS

This section contains a collection of experiments and results produced to investigate the capabilities of the method.

4.1 2D HUMANOID IMITATION

The first experiment performed uses the method to learn a cyclic walking gait for a simulated humanoid walking robot similar to [Peng & van de Panne, 2017]. In this simulated robotics environment the agent is learning to imitate a given reference motion of a walk. The agent’s goal is to learn how to actuate Proportional Derivative (PD) controllers at 30 fps to mimic the desired motion. The simulation environment provides a hard coded reward function based on the robot’s pose that is used to evaluate the policies quality. The images captured from the simulation are converted to grey-scale with 128×128 pixels. In between control timesteps the simulation collects images of the agent and the rendered demonstration motion. The agent is able to learn a robust walking gate even though it is only given noisy partial observations of a demonstration. We find it extremely helpful to normalize the distance metric outputs using $r = \exp(r^2 \cdot w_d)$ where $w_d = -5.0$ scales the filtering width. The improvement of using this normalize reward is shown in Figure 3a. Example motion of the agent after learning is shown in Figure 3 and in the supplemental Video.

![Figure 2: Still frame shots from trained policy in the humanoid2d environment.](image)
4.2 RL Algorithm Analysis

It is not clear which RL algorithm would work best for this type of problem. A number of RL algorithms were evaluated on the humanoid2d environment Figure 4a. Surprisingly, Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) did not work well in this framework, considering it has a controlled policy gradient step, we thought it would reduce the overall variance. We found that Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015) worked rather well. This could be related to having a changing reward function, in that if the changing rewards are considered off-policy data it can be easier to learn. This can be seen in Figure 4b where DDPG is best at estimating the future discounted rewards in the environment. We tried also Continuous Actor Critic Learning Automaton (CACLA) (Van Hasselt, 2012) and Proximal Policy Optimization (PPO) (Schulman et al., 2017), we found that PPO did not work particularly well on this task, this could also be related to added variance.

4.3 3D Humanoid Robot Imitation

In this simulated robotics environment the agent is learning to imitate a given reference motion of a walk. The imitation motion demonstration is provided by the simulation environment as a cyclic walking motion, similar to (Peng et al., 2018). The agent controls and observes frames at 30 fps. During learning, additional data is included from other tasks: walking-dynamic-speed, running, frontflips and backflips) that are used to train the distance metric. We also include data from a modified version of the tasks that has a randomly generated speed modifier \(\omega \in [0.5, 2.0] \) walking-dynamic-speed, that warps the demonstration timing. This additional data is used to provide a richer understanding of distances in space and time. The input to the distance metric is a pair of frames from the simulation per control step, see Algorithm 1.

We find that using the RNN-based distance metric makes the learning process more gradual and smoother. Some example trajectories using the policy learned using the method are shown in Figure 5 and in the supplemental Video.

Sequence Encoding Using the learned sequence encoder a collection of motions from different classes are processed to create a TSNE embedding of the encodings (Maaten & Hinton, 2008). In Figure 4c we plot motions both generated from the learned policy \(\pi \) and the expert trajectories.
Interestingly, there are clear overlaps in specific areas of the space for similar classes across learned π and expert π_E data. There is also a separation between motion classes in the data.

5 Discussion and Conclusion

Learning a distance metric is imperfect, the distance metric can compute inaccurate distances in areas of the state space it has not yet been trained on. This could imply that when the agent explores and finds truly new and promising trajectories the distance metric will produce bad results. We attempt to mitigate this affect by including training data from different tasks while training the distance metric. We believe the method will benefit greatly from a larger collection of multitask data and increased variation of each task. Additionally, if the distance metric confidence is modelled we could use this data to reduce variance and overconfidence during policy optimization.

It appears DDPG works the well for this type of problem. Our hypothesis is that because the reward function is changing between data collection phases it is better to view this as off-policy data. Learning a reward function while training also adds additional variance to the policy gradient. This may indicate that the bias of off-policy methods could be preferred over the added variance of on-policy methods. We also find it important to have a small learning rate for the distance metric Figure 3b. This reduces the reward variance between data collection phases and allows learning a more accurate value function. Training the distance metric could benefit from additional regularization such as constraining the kl-divergence between updates to reduce variance.

We tried using GAIL but we found it has limited temporal consistency. This led to learning very jerky and overactive policies. The use of a recurrent discriminator for GAIL may mitigate some of these issues. It is challenging to produce result better than the carefully manually crafted reward functions used by some of the RL simulation environments. Still as environment become increasing more realistic and grow in complexity we will need more complex reward functions to describe the designer’s desired behaviour.

Training the distance metric is a complex balancing game. One might expect that the model should be trained early and fast so that it quickly understands the difference between a good and bad demonstration. However, this fast learning confuses the agent, rewards can change quickly which can cause the agent to diverge off toward an unrecoverable policy space. Thus far slower has been better, as the distance metric my not be accurate but it could be locally or relatively reasonable which is enough to begin to learn a reasonable policy. As learning continues these two optimizations can converge together.
REFERENCES

6 APPENDIX

6.1 DATA SETS

The mocap used in the created environment come from the CMU mocap database and the SFU mocap database.

6.2 TRAINING DETAILS

The learning simulations are trained using Graphics Processing Unit (GPU)s. The simulation is not only simulating the interaction physics of the world but also rendering the simulation scene in order to capture video observations. On average it takes 3 days to execute one of these training simulations. The process of rendering and copying the images from the GPU is one of the most expensive operations with the method.

6.3 DISTANCE FUNCTION TRAINING

In Figure 6b we show the training curve for the recurrent siamese network. The model learns smoothly considering that the training data used is constantly changing as the RL agent explores. The single step siamese distance loss is also shown in Figure 6a. This indicates that even without a direct training loss applied to comparing a pair of images the model is learning a good model for this part of the problem.

![Figure 6: Training losses for the siamese distance metric. Higher is better as it indicates the distance between sequences from the same class are closer.](image-url)