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ABSTRACT

As people learn to navigate the world, autonomic nervous system (e.g., “fight or
flight”) responses provide intrinsic feedback about the potential consequence of
action choices (e.g., becoming nervous when close to a cliff edge or driving fast
around a bend.) Physiological changes are correlated with these biological prepara-
tions to protect one-self from danger. We present a novel approach to reinforcement
learning that leverages a task-independent intrinsic reward function trained on pe-
ripheral pulse measurements that are correlated with human autonomic nervous
system responses. Our hypothesis is that such reward functions can circumvent the
challenges associated with sparse and skewed rewards in reinforcement learning
settings and can help improve sample efficiency. We test this in a simulated driving
environment and show that it can increase the speed of learning and reduce the
number of collisions during the learning stage.

1 INTRODUCTION

The human autonomic nervous system (ANS) is composed of two branches. One of these, the
sympathetic nervous system (SNS), is “hard-wired” to respond to potentially dangerous situations
often reducing, or by-passing, the need for conscious processing. The ability to make rapid decisions
and respond to immediate threats is one way of protecting oneself from danger. Whether one is in the
African savanna or driving in Boston traffic.

The SNS regulates a range of visceral functions from the cardiovascular system to the adrenal
system (Jansen et al., 1995). The anticipatory response in humans to a threatening situation is for the
heart rate to increase, heart rate variability to decrease, blood to be diverted from the extremities and
the sweat glands to dilate. This is the body’s “fight or flight” response.

While the primary role of these anticipatory responses is to help one prepare for action, they also
play a part in our appraisal of a situation. The combination of sensory inputs, physiological re-
sponses and cognitive evaluation form emotions that influence how humans learn, plan and make
decisions (Loewenstein & Lerner, 2003). Intrinsic motivation refers to being moved to act based on
the way it makes one feel. For example, it is generally undesirable to be in a situation that causes fear
and thus we might choose to take actions that help avoid these types of contexts in future. This is
contrasted with extrinsic motivation that involves explicit goals (Chentanez et al., 2005).

Driving is an everyday example of a task in which we commonly rely on both intrinsic and extrinsic
motivations and experience significant physiological changes. When traveling in a car at high-
speed one may experience a heightened state of arousal. This automatic response is correlated with
the body’s reaction to the greater threats posed by the situation (e.g., the need to adjust steering
more rapidly to avoid a pedestrian that might step into the road). Visceral responses are likely to
preempt accidents or other events (e.g., a person will become nervous before losing control and
hitting someone). Therefore, these signals potentially offer an advantage as a reward mechanism
compared to extrinsic rewards based on events that occur in the environment, such as a collision.
This paper provides a reinforcement learning (RL) framework that incorporates reward functions
for achieving task-specific goals and also minimizes a cost trained on physiological responses to
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Figure 1: We present a novel approach to reinforcement learning that leverages an artificial network
trained on physiological signals correlated with autonomic nervous system responses.

the environment that are correlated with stress. We ask if such a reward function with extrinsic and
intrinsic components is useful in a reinforcement learning setting. We test our approach by training a
model on real visceral human responses in a driving task.

The key challenges of applying RL in the real-world include the amount of training data required
and the high-cost associated with failure cases. For example, when using RL in autonomous driving,
rewards are often sparse and skewed. Furthermore, bad actions can lead to states that are both
catastrophic and expensive to recover from. While much of the work in RL focuses on mechanisms
that are task or goal dependent, it is clear that humans also consider the feedback from the body’s
nervous system for action selection. For example, increased arousal can help signal imminent danger
or failure to achieve a goal. Such mechanisms in an RL agent could help reduce the sample complexity
as the rewards are continually available and could signal success or failure before the end of the
episode. Furthermore, these visceral signals provide a warning mechanism that in turn could lead to
safer explorations.

Our work is most closely related to that in intrinsically motivated learning (Chentanez et al., 2005;
Zheng et al., 2018; Haber et al., 2018; Pathak et al., 2017) that uses a combination of intrinsic and
extrinsic rewards and shows benefits compared to using extrinsic rewards alone. The key distinction
in our work is that we specifically aim to build intrinsic reward mechanisms that are visceral and
trained on signals correlated with human affective responses. Our approach could also be considered
a form of imitation learning (Ross et al., 2011; Ross & Bagnell, 2014; Ho & Ermon, 2016; Chang
et al., 2015) as we use the signal from a human expert for training. However, a difference is that our
signal is an implicit response from the driver versus an explicit instruction or action which might
commonly be the case in imitation learning.

The structural credit assignment problem, or generalization problem, aims to address the challenge
posed by large parameter spaces in RL and the need to give the agent the ability to guess, or have
some intuition about new situations based on experience (Lin, 1992). A significant advantage of our
proposed method is the reduced sparsity of the reward signal. This makes learning more practical in
a large parameter space. We conduct experiments to provide empirical evidence that this can help
reduce the number of epochs required in learning. In a sense, the physiological response could be
considered as an informed guess about new scenarios before the explicit outcome is known. The
challenge with traditional search-based structured prediction is the assumptions that must be made
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in the search algorithms that are required (Daumé et al., 2009). By training a classifier using a loss
based on the human physiological response this problem can potentially be simplified.

The core contributions of this paper are to: (1) present a novel approach to learning in which the
reward function is augmented with a model learned directly from human nervous system responses,
(2) show how this model can be incorporated into a reinforcement learning paradigm and (3) report
the results of experiments that show the model can improve both safety (reducing the number of
mistakes) and efficiency (reducing the sample complexity) of learning.

In summary, we argue that a function trained on physiological responses could be used as an
intrinsic reward or value function for artificially intelligent systems, or perhaps more aptly artificially
emotionally intelligent systems. We hypothesize that incorporating intrinsic rewards with extrinsic
rewards in an RL framework (as shown in Fig 1) will both improve learning efficiency as well as
reduce catastrophic failure cases that occur during the training.

2 BACKGROUND

2.1 SYMPATHETIC NERVOUS SYSTEM

The SNS is activated globally in response to fear and threats. Typically, when threats in an environment
are associated with a “fight of flight" response the result is an increase in heart rate and perspiration
and release of adrenaline and cortisol into the circulatory system. These physiological changes act
to help us physically avoid danger but also play a role in our appraisal of emotions and ultimately
our decision-making. A large volume of research has found that purely rational decision-making
is sub-optimal (Lerner et al., 2015). This research could be interpreted as indicating that intrinsic
rewards (e.g., physiological responses and the appraisal of an emotion) serve a valuable purpose in
decision-making. Thus, automatic responses both help people act quickly and in some cases help
them make better decisions. While these automatic responses can be prone to mistakes, they are
vital for keeping us safe. Logical evaluation of a situation and the threat it presents is also important.
Ultimately, a combination of intrinsic emotional rewards and extrinsic rational rewards, based on the
goals one has, is likely to lead to optimal results.

2.2 REINFORCEMENT LEARNING

We consider the standard RL framework, where an agent interacts with the environment (described
by a set of states S), through a set of actions (A). An action at at a time-step t leads to a distribution
over the possible future state p(st+1|st, at), and a reward r : S × A → R. In addition, we start
with a distribution of initial states p(s0) and the goal of the agent is to maximize the discounted
sum of future rewards: Rt =

∑∞
i=t γ

i−tri, where γ is the discount factor. Algorithms such as Deep
Q-Networks (DQN) learn a Neural-Network representation of a deterministic policy π : S → A that
approximates an optimal Q-function: Q∗(s, a) = Es′∼p(·|s,a)[r(s, a) + γmaxa′∈AQ

∗(s′, a′)].

The application of RL techniques to real-world scenarios, such as autonomous driving, is challenging
due to the high sample complexity of the methods. High-sample complexity arises due to the credit-
assignment problem: it is difficult to identify which specific action from a sequence was responsible
for a success or failure. This issue is further exacerbated in scenarios where the rewards are sparse.
Reward shaping (Ng et al., 1999; Russell, 1998) is one way to deal with the sample complexity
problem, in which heuristics are used to boost the likelihood of determining the responsible action.

We contrast sparse episodic reward signals in RL agents with physiological responses in humans.
We conject that the sympathetic nervous system (SNS) responses for a driver are as informative and
useful, and provide a more continuous form of feedback. An example of one such SNS response is
the volumetric change in blood in the periphery of skin, controlled in part through vasomodulation.
We propose to use a reward signal that is trained on a physiological signal that captures sympathetic
nervous system activity. The key insight being that physiological responses in humans indicate
adverse and risky situations much before the actual end-of-episode event (e.g. an accident) and even
if the event never occurs. By utilizing such a reward function, not only is the system able to get a
more continuous and dense reward but it also allows us to reason about the credit assignment problem.
This is due to the fact that an SNS response is often tied causally to the set of actions responsible for
the eventual success or failure of the episode.
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Figure 2: An example of the blood volume pulse wave during driving in the simulated environment.
A zoomed in section of the pulse wave with frames from the view of the driver are shown. Note how
the pulse wave pinches between seconds 285 and 300, during this period the driver collided with a
wall while turning sharply to avoid another obstacle. The pinching begins before the collision occurs
as the driver’s anticipatory response is activated.

Our work is related, in spirit, to a recent study that used facial expressions as implicit feedback to
help train a machine learning systems for image generation (Jaques et al., 2018). The model produced
sketches that led to significantly more positive facial expressions when trained with input of smile
responses from an independent group. However, this work was based on the idea of Social Learning
Theory (Bandura & Walters, 1977) and that humans learn from observing the behaviors of others,
rather than using their own nervous system response as a reward function.

3 THE PROPOSED FRAMEWORK

Our proposal is to consider a reward function that has both an extrinsic component r and an intrinsic
component r̃. The extrinsic component rewards behaviors that are task specific, whereas the intrinsic
component specifically aims to predict a human physiological response to SNS activity and reward
actions that lead to states that reduce stress and anxiety. The final reward r̂ then is a function that
considers both the extrinsic as well as intrinsic components r̂ = f(r, r̃). Theoretically, the function
f(·, ·) can be fairly complex and one possibility would be to parameterize it as a neural network.
For simplicity, we consider linear combinations of the extrinsic and intrinsic rewards in this paper.
Formally, lets consider an RL framework based on a DQN with reward r. We propose to use a
modified reward r̂ that is a convex combination of the original reward r and a component that mirrors
human physiological responses r̃:

r̂ = λr + (1− λ)r̃ (1)

Here λ is a weighting parameter that provides a trade-off between the desire for task completion
(extrinsic motivation) and physiological response (intrinsic motivation). For example, in an au-
tonomous driving scenario the task dependent reward r can be the velocity, while r̃ can correspond
to physiological responses associated with safety. The goal of the system then is to complete the
task while minimizing the physiological arousal response. The key challenge now is to build a
computational model of the intrinsic reward r̃ given the state of the agent.
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Figure 3: We used an eight-layer CNN (seven convolutional layers and a fully connected layer) to
estimate the normalized pulse amplitude derived from the physiological response of the driver. The
inputs were the frames from the virtual environment, AirSim.

In the rest of the paper we focus on the autonomous driving scenario as a canonical example and
discuss how we can model the appropriate physiological responses and utilize them effectively in
this framework. One of the greatest challenges in building a predictive model of SNS responses is
the collection of realistic ground truth data. In this work, we use high-fidelity simulations (Shah
et al., 2018) to collect physiological responses of humans and then train a deep neural network to
predict SNS responses that will ultimately be used during the reinforcement learning process. In
particular, we rely on the photoplethysmographic (PPG) signal to capture the volumetric change
in blood in the periphery of the skin (Allen, 2007). The blood volume pulse waveform envelope
pinches when a person is startled, fearful or anxious, which is the result of the body diverting blood
from the extremities to the vital organs and working muscles to prepare them for action, the “fight
or flight” response. Use of this phenomenon in affective computing applications is well established
and has been leveraged to capture emotional responses in marketing/media testing (Wilson & Sasse,
2000), computer tasks (Scheirer et al., 2002) and many other psychological studies (L. Fredrickson &
Levenson, 1998; Gross, 2002). The peripheral pulse can be measured unobtrusively and even without
contact (Poh et al., 2010; Chen & McDuff, 2018), making it a good candidate signal for scalable
measurement. We leverage the pulse signal to capture aspects of the nervous system response and our
core idea is to train an artificial network to mimic the pulse amplitude variations based on the visual
input from the perspective of the driver.

To design a reward function based on the nervous system response of the driver in the simulated
environment we collected a data set of physiological recordings and synchronized first person video
frames from the car. Using this data we trained a convolutional neural network (CNN) to mimic
the physiological response based on the input images. Fig 2 shows a section of the recorded blood
volume pulse signal with pulse peaks highlighted, notice how the waveform envelope changes.

Reinforcement Learning Environments: We performed our experiments in AirSim (Shah et al.,
2018) where we instantiated an autonomous car in a maze. The car was equipped with an RGB
camera and the goal for the agent was to learn a policy that maps the camera input to a set of controls
(discrete set of steering angles). The agent’s extrinsic reward can be based on various driving related
tasks, such as keeping up the velocity, making progress towards a goal, traveling large distances, and
can be penalized heavily for collisions. Fig 2 shows example frames captured from the environment.
The maze consisted of walls and ramps and was designed to be non-trivial to navigate for the driver.

Intrinsic Reward Architecture: We used a CNN to predict the normalized pulse amplitude derived
from the physiological response of the driver. The image frames from the camera sensor in the
environment served as an input to the network. The input frames were downsampled to 84 × 84
pixels and converted to grayscale format. They were normalized by subtracting the mean pixel value
(calculated on the training set). The network architecture is illustrated in Fig 3. A dense layer of 128
hidden units preceded the final layer that had linear activation units and a mean square error (MSE)
loss, so the output formed a continuous signal from 0 to 1.

Training the Reward Network: We recruited four participants (2 male, 2 female) to drive a vehicle
around the maze and to find the exit point. All participants were licensed drivers and had at least seven
years driving experience. For each participant we collected approximately 20 minutes (∼24,000
frames at a resolution of 256 × 144 pixels and frame rate of 20 frames-per-second) of continuous
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Figure 4: Frames from the environment ordered by the predicted pulse amplitude from our CNN
intrinsic reward model. A lower value indicates a higher SNS/“fight or flight” response. This is
associated with more dangerous situations (e.g., driving close to walls and turning in tight spaces).

driving in the virtual environment (for a summary of the data see Table 1). In addition, the PPG signal
was recorded from the index finger of the non-dominant hand using a Shimmer31 GSR+ with an
optical pulse sensor. The signal was recorded at 51.6Hz. The physiological signals were synchronized
with the frames from the virtual environment using the same computer clock. A standard custom
peak detection algorithm (McDuff et al., 2014) was used to recover the systolic peaks from the pulse
waveform. The amplitudes of the peaks were normalized, to a range 0 to 1, across the entire recording.
Following the experiment the participants reported how stressful they found the task (Not at all, A
little, A moderate amount, A lot, A great deal). The participants all reported experiencing some stress
during the driving task. The frames and pulse amplitude measures were then used to train the CNN
(details in the next section). The output of the resulting trained CNN (the visceral machine) was used
as the reward (r̃ = CNN Output) in the proposed framework.

4 EXPERIMENTS AND RESULTS

We conducted experiments to answer: (1) if we can build a deep predictive model that estimates
a peripheral physiological response associated with SNS activity and (2) if using such predicted
responses leads to sample efficiency in the RL framework. We use DQN as a base level approach
and build our proposed changes on top of it. We consider three different tasks in the domain of
autonomous driving: (a) keeping the velocity high (r is instantaneous velocity), (b) traveling long
straight-line distances from the origin (r is absolute distance from origin) without any mishaps and (c)
driving towards a goal (r = 10 if the goal is achieved). While the velocity and distance task provides
dense rewards, the goal directed task is an example where the rewards are sparse and episodic. Note
that in all three cases we terminate the episode with a high negative reward (r = -10) if a collision
happens.

4.1 HOW WELL CAN WE PREDICT BVP AMPLITUDE?

We trained five models, one for each of the four participants independently and one for all the
participants combined. In each case, the first 75% of frames from the experimental recordings were

1http://www.shimmersensing.com/
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Part. Gender Age Driving Exp. Was the Task # Frames Testing Loss Testing Loss Improve.
(Yrs) (Yrs) Stressful? (RMSE) over Random (RMSE)

P1 M 31 8 A lot 28,968 .189 .150
P2 F 37 20 A lot 23,005 .100 .270
P3 F 33 7 A little 23,789 .102 .234
P4 M 31 15 A little 25,972 .116 .194

All P. 101,734 .115 .210

Table 1: Summary of the Data and Testing Loss of our Pulse Amplitude Prediction Algorithm. We
Compare the Testing Loss from the CNN Model with a Random Baseline. In All Cases the CNN
Gave a Significantly Lower RMSE.
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Figure 5: The graph plots average extrinsic reward per episode as the system evolves over time
for different values of λ. For all three tasks we observe that using appropriately balanced visceral
rewards with the extrinsic reward leads to better learning rates when compared to either vanilla DQN
(magenta triangle λ = 1) or DQN that only has the visceral component (red circle λ = 0). The error
bars in the plots correspond to standard error- non-overlapping bars indicate significant differences
(p<0.05).

taken as training examples and the latter 25% as testing examples. The data in the training split was
randomized and a batch size of 128 examples was used. Max pooling was inserted between layers 2
and 3, layers 4 and 5, and layers 7 and 8. To overcome overfitting, a dropout layer (Srivastava et al.,
2014) was added after layer 7 with rate d1 = 0.5. The loss during training of the reward model was the
mean squared error. Each model was trained for 50 epochs after which the training root mean squared
error (RMSE) loss was under 0.1 for all models. The RMSE was then calculated on the independent
test set and was between 0.10 and 0.19 for all participants (see Table 1). As a naive baseline the
testing loss for a random prediction was 0.210 greater on average. In all cases the CNN model loss
was significantly lower than the random prediction loss (based on unpaired T-Tests). Fig 4 illustrates
how a trained CNN associates different rewards to various situations. Specifically, we show different
examples of the predicted pulse amplitudes on an independent set of the frames from the simulated
environment. A lower value indicates a higher stress response. Quantitatively and qualitatively these
results show that we could predict the pulse amplitude and that pinching in the peripheral pulse
wave, and increased SNS response, was associated with approaching (but not necessarily contacting)
obstacles. The remaining results were calculated using the model from P1; however, similar data
were obtained from the other models indicating that the performance generalized across participants.

4.2 DOES THE VISCERAL REWARD COMPONENT IMPROVE PERFORMANCE?

We then used the trained CNN as the visceral reward component in a DQN framework and used
various values of λ to control the relative weight when compared to the task dependent reward
component. Fig 5 shows the mean extrinsic reward per episode as a function of training time. The
plots are averaged over 10 different RL runs and we show plots for different values of λ. When
λ = 1 that RL agent is executing vanilla DQN, whereas λ = 0 means that there is no extrinsic reward
signal. For all three tasks, we observe that the learning rate improves significantly when λ is either
non-zero or not equal to 1. The exact value of the optimal λ varies from task to task, due to the
slightly different final reward structures in the different tasks. One of the main reasons is that the
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Figure 6: The graph plots average length per episode as the system evolves over time. For all
three tasks we observe that using visceral reward components leads to better longer episodes when
compared to vanilla DQN (λ = 1). This implies that the agent with the visceral reward component
becomes more cautious about collisions sooner. The error bars in the plots correspond to standard
error- non-overlapping bars indicate significant differences (p<0.05).

rewards are non-sparse with the visceral reward component contributing effectively to the learning.
Low values of λ promote a risk-averse behavior in the agent and higher values λ train an agent with
better task-specific behavior, but require longer periods of training. It is the mid-range values of λ
(e.g. 0.25) that lead to optimal behavior both in terms of the learning rate and the desire to accomplish
the mission.

4.3 DOES THE VISCERAL REWARD COMPONENT HELP REDUCE COLLISIONS?

Fig 6 plots how the average length of an episode changes with training time for different values of λ.
Note that we consider an episode terminated when the agent experiences a collision, so the length
of the episode is a surrogate measure of how cautious an agent is. We observed that a low value
of λ leads to longer episodes sooner while high values do not lead to much improvement overall.
Essentially, a low value of λ leads to risk aversion without having the desire to accomplish the task.
This results in a behavior where the agent is happy to make minimal movements while staying safe.
Fig 6 (Distance) shows that the average length of the episodes does not increase with the number of
episodes. This is because with increasing numbers of episodes the car travels further but also faster.
These two factors cancel one another out resulting in episodes with similar lengths (durations).

4.4 WHAT IS THE EFFECT OF A DECAYING VISCERAL REWARD?

What happens if we introduce a time varying intrinsic reward that decays over time? We also ran
experiments with varying λ:

λ = 1− 1

NEpisode
(2)

Where, NEpisode is the current episode number. As before, the reward was calculated as in Eqn. 1.
Therefore, during the first episode λ is equal to zero and the reward is composed entirely of the
intrinsic component. As the number of episodes increases the contribution of the intrinsic reward
decreases. By episode 95 the intrinsic reward contributes to less than 2% of the total reward. Fig 7
plots the average velocity (left) and average length (right) per episode as the system evolves over time.
The blue lines show the performance with a time decaying contribution from the intrinsic reward.
These are compared with the best λ (= 0.25) (red lines) from the previous velocity experiments (see
Figs 5 and 6). The episode length is quite superior with the time decaying intrinsic reward. This is
because we are directly optimizing for safety initially and the agent quickly learns not to crash. This
highlights the value of the intrinsic reward in increasing the safety of the vehicle and extending the
length of episodes, especially initially, when the vehicle has little knowledge of how to behave.
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Figure 7: Average velocity (left) and average length (right) per episode as the system evolves over
time. Blue) Performance with a time decaying contribution from the intrinsic reward (decaying at
1/(No. of Episodes)). Red) Performance of the best λ at each episode (red lines) from the previous
velocity experiments (see Fig. 5 and 6). The episode length is superior with the time decaying
intrinsic reward because we are directly optimizing for safety initially and the agent quickly learns
not to crash.
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4.5 HOW DOES THE PERFORMANCE COMPARE TO REWARD SHAPING?

Something we question is, is the CNN predicting the SNS responses doing more than predicting
distances to the wall and if there are ways in which the original reward can be shaped to include that
information? We did RL experiments where we compared the proposed architecture (λ = 0.25) with
an agent that replaced the intrinsic reward component with the reward 1− exp[−|distance to wall|].
Note that such distance measures are often available through sensors (such as sonar, radar etc.);
however, given the luxury of the simulation we chose to use the exact distance for simplicity. Fig 8
shows both the average reward per episode as well as average length per episode, for the velocity task,
as a function of training time. We observed that the agent that had used the CNN for the intrinsic
reward component performs better than the heuristic. We believe that the trained CNN is far richer
than the simple distance-based measure and is able to capture the context around the task of driving
the car in confined spaces (e.g., avoiding turning at high speeds and rolling the car).

5 CONCLUSION AND FUTURE WORK

Heightened arousal is an key part of the “fight or flight” response we experience when faced with risks
to our safety. We have presented a novel reinforcement learning paradigm using an intrinsic reward
function trained on peripheral physiological responses and extrinsic rewards based on mission goals.
First, we trained a neural architecture to predict a driver’s peripheral blood flow modulation based on
the first-person video from the vehicle. This architecture acted as the reward in our reinforcement
learning step. A major advantage of training a reward on a signal correlated with the sympathetic
nervous system responses is that the rewards are non-sparse - the negative reward starts to show
up much before the car collides. This leads to efficiency in training and with proper design can
lead to policies that are also aligned with the desired mission. While emotions are important for
decision-making (Lerner et al., 2015), they can also detrimentally effect decisions in certain contexts.
Future work will consider how to balance intrinsic and extrinsic rewards and include extensions to
representations that include multiple intrinsic drives (such as hunger, fear and pain).
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We must emphasize that in this work we were not attempting to mimic biological processes or model
them explicitly. We were using a prediction of the peripheral blood volume pulse as an indicator of
situations that are correlated with high arousal.
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