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ABSTRACT

Despite the state-of-the-art accuracy of Deep Neural Networks (DNN) in various
classification problems, their deployment onto resource constrained edge comput-
ing devices remains challenging due to their large size and complexity. Several
recent studies have reported remarkable results in reducing this complexity through
quantization of DNN models. However, these studies usually do not consider
the changes in the loss function when performing quantization, nor do they take
the different importances of DNN model parameters to the accuracy into account.
We address these issues in this paper by proposing a new method, called adap-
tive quantization, which simplifies a trained DNN model by finding a unique,
optimal precision for each network parameter such that the increase in loss is
minimized. The optimization problem at the core of this method iteratively uses
the loss function gradient to determine an error margin for each parameter and
assigns it a precision accordingly. Since this problem uses linear functions, it
is computationally cheap and, as we will show, has a closed-form approximate
solution. Experiments on MNIST, CIFAR, and SVHN datasets showed that the
proposed method can achieve near or better than state-of-the-art reduction in model
size with similar error rates. Furthermore, it can achieve compressions close to
floating-point model compression methods without loss of accuracy.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved incredible accuracies in applications ranging from
computer vision (Simonyan & Zisserman, 2014) to speech recognition (Hinton et al., 2012) and natural
language processing (Devlin et al., 2014). One of the key enablers of the unprecedented success of
DNNs is the availability of very large model sizes. While the increase in model size improves the
classification accuracy, it inevitably increases the computational complexity and memory requirement
needed to train and store the network. This poses challenges in deploying these large models in
resource-constrained edge computing environments, such as mobile devices. These challenges
motivate neural network compression, which exploits the redundancy of neural networks to achieve
drastic reductions in model sizes. The state-of-the-art neural network compression techniques include
weight quantization (Courbariaux et al., 2015), weight pruning (Han et al., 2015), weight sharing
(Han et al., 2015), and low rank approximation (Zhao et al., 2017). For instance, weight quantization
has previously shown good accuracy with fixed-point 16-bit and 8-bit precisions (Suda et al., 2016;
Qiu et al., 2016). Recent works attempt to push that even further towards reduced precision and have
trained models with 4-bit, 2-bit, and 1-bit parameters using quantized training methods (Hubara et al.,
2016; Zhou et al., 2016; Courbariaux & Bengio, 2016; Courbariaux et al., 2015).

Although these quantization methods can significantly reduce model complexity, they generally have
two key constraints. First, they ignore the accuracy degradation resulting from quantization, during
the quantization, and tend to remedy it, separately, through quantized learning schemes. However,
such schemes have the disadvantage of converging very slowly compared to full-precision learning
methods. Second, they treat all network parameters similarly and assign them the same quantization
width1. This is while previous works (Courbariaux & Bengio, 2016; Hubara et al., 2016; Han et al.,
2015) have shown different parameters do not contribute to the model accuracy equally. Disregarding
this variation limits the maximum achievable compression.

1Number of bits used to store the fixed-point quantized value.
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In this paper, we address the aforementioned issues by proposing adaptive quantization. To take
the different importances of network parameters into account, this method quantizes each network
parameter of a trained network by a unique quantization width. This way, parameters that impact
the accuracy the most can be represented using higher precisions (larger quantization widths), while
low-impact parameters are represented with fewer bits or are pruned. Consequently, our method
can reduce the model size significantly while maintaining a certain accuracy. The proposed method
monitors the accuracy by incorporating the loss function into an optimization problem to minimize
the models. The output of the optimization problem is an error margin associated to each parameter.
This margin is computed based on the loss function gradient of the parameter and is used to determine
its precision. We will show that the proposed optimization problem has a closed-form approximate
solution, which can be iteratively applied to the same network to minimize its size. We test the
proposed method using three classification benchmarks comprising MNIST, CIFAR-10, and SVHN.
We show that, across all these benchmarks, we can achieve near or better compressions compared to
state-of-the-art quantization techniques. Furthermore, we can achieve compressions similar to the
state-of-the-art pruning and weight-sharing techniques which inherently require more computational
resources for inference.

2 PROPOSED QUANTIZATION ALGORITHM

Despite their remarkable classification accuracies, large DNNs assimilate redundancies. Several
recent works have studied these redundancies by abstracting the network from different levels
and searching for, in particular, redundant filters (DenseNets [Huang et al., 2016]) and redundant
connections (Deep Compression [Han et al., 2015]). In this work, we present an even more fine-
grained study of redundancy and extend it to fixed-point quantization of network parameters. That
is, we approximate the minimum size of the network when each parameter is allowed to have a
distinct number of precision bits. Our goal here is to represent parameters with high precisions
only when they are critical to the accuracy of the network. In this sense, our approach is similar
to weight pruning (Han et al., 2015) which eliminates all but the essential parameters, producing a
sparse network. In the rest of this section, we first formally define the problem of minimizing the
network size as an optimization problem. Then, we propose a trust region technique to approximately
solve this problem. We will show that, in each iteration of the trust region method, our approach has
a straightforward, closed-form solution. Finally, we will explain how the hyper parameters in the
algorithm are chosen and discuss the implications of the proposed technique.

It is also important to discuss the benefits of this fine-grained quantization for performance. In
particular, besides its storage advantages, we argue that this method can reduce the computation,
if the target hardware can take advantage of the non-standard, yet small quantization depths that
our approach produces. We note that there exist techniques on CPU and GPU for fixed-point
arithmetics with non-standard quantization widths (e.g. SWAR [Cameron & Lin, 2009]). But, we
believe our proposed quantization is ideal for FPGAs and specialized hardware. The flexibility of
these platforms allows for design of efficient computation units that directly process the resulting
fixed-point quantized parameters. This was recently explored by Albericio et al. (2017), who
designed specialized computation units for variable bit-width parameters that eliminated ineffectual
computations. By minimizing the overall number of bits that need to be processed for a network, the
proposed quantization achieves the same effect.

2.1 PROBLEM DEFINITION

A formal definition of the optimization problem that was discussed previously is presented here.
Then, key characteristics of the objective function are derived. We will use these characteristics later
when we solve the optimization problem.

We minimize the aggregate bit-widths of all network parameters while monitoring the training loss
function. Due to the quantization noise, this function deviates from its optimum which was achieved
through training. This noise effect can be controlled by introducing an upper bound on the loss
function in order to maintain it reasonably close to the optimum. Consequently, the solution of this
minimization problem represents critical parameters with high precision to sustain high accuracy and
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assigns low precisions to ineffectual ones or prunes them. The problem described here can be defined
in formal terms as below.

min
W

NQ(W ) =

n∑
i=1

Nq(ωi) (1)

L(W ) ≤ ` (2)

Here, n is the number of model parameters, W = [ω1...ωn]T is a vector of all model parameters,
ωi is the i-th model parameter, and the function Nq(ωi) is the minimum number of bits required to
represent ωi in its fixed-point format. As a result, NQ(W ) is the total number of bits required to
represent the model. In addition, L(W ) is the loss function value of the model W over the training
set (or a minibatch of the training set). Finally, ` (≥ L(W0)) is a constant upper bound on the loss of
the neural network, which is used to bound the accuracy loss, and W0 is the vector of initial model
parameters before quantization.

The optimization problem presented in Equations 1 and 2 is difficult to solve because of its non-
smooth objective function. However, a smooth upper limit can be found for it. In the lemma below
we derive such a bound. To our knowledge, this is the first time such a bound has been developed in
the literature.
Lemma 2.1. Given a vector of network parameters W , a vector of tolerance values T = [τ1...τn]T ,
and a vector of quantized network parameters Wq = [ωq1...ω

q
n]T , such that each ωqi , i ∈ [1, n] has a

quantization error of at most τi, meaning it solves the constrained optimization function:

min
ωq

Nq(ω
q
i ) (3)

|ωqi − ωi| ≤ τi (4)

We have that:
NQ(W ) ≤ Φ(T ) (5)

Where Φ(T ) is a smooth function, defined as:

Φ(T ) = −
n∑
i=1

log2 τi (6)

Proof. In Equation 3, we allow each parameter ωi to be perturbed by at most τi to generate the
quantized parameter ωqi . The problem of Equation 3 can be easily solved using Algorithm 1, which
simply checks all possible solutions one-by-one. Here, we allocate at most 32 bits to each parameter.
This should be more than enough as previous works have demonstrated that typical DNNs can be
easily quantized to even 8 bits without a significant loss of accuracy.

Algorithm 1 Quantization of a parameter

procedure QUANTIZE_PARAMETER(ωi, τi)
ωqi ← 0

N i
q ← 0

while N i
q ≤ 32 do

if |ωqi − ωi| ≤ τi then
break

end if
ωqi ← round(2N

i
qωi)/2

Ni
q

N i
q ← N i

q + 1

end while
return N i

q, ω
q
i

end procedure
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Algorithm 1 estimates ωi with a rounding error of up to 1

2
Ni

q+1
. Thus, for the worst case to be

consistent with the constraint of Equation 3, we need:

1

2Nq(ωi)+1
≤ τi ⇒ Nq(ωi) + 1 ≥ − log2 τi (7)

In this case the minimization guarantees that the smallest Nq(ωi) is chosen. This entails:

Nq(ωi) ≤ −dlog2 τie − 1 ≤ − log2 τi (8)

In general, we can expect Nq(ωi) to be smaller than this worst case. Consequently:

NQ(W ) =

n∑
i=1

Nq(ωi) ≤ −
n∑
i=1

log2 τi = Φ(T ) (9)

We should note that for simplicity Algorithm 1 assumes that parameters ωi are unsigned and in the
range [0, 1]. In practice, for signed values, we quantize the absolute value using the same method,
and use one bit to represent the sign. For models with parameters in a range larger than [−1, 1],
say [−r, r] with r > 1, we perform the quantization similarly. The only difference is that we first
scale the parameters and their tolerances by 1

r to bring them to [−1, 1] range and then quantize the
parameters. When computing the output of a quantized layer, then, we multiply the result by r to
account for the scale. Following this, the same equations as above will hold.

2.2 SOLVING THE OPTIMIZATION PROBLEM

The optimization problem of Equations 1 and 2 presents two key challenges. First, as was mentioned
previously, the objective function is non-smooth. Second, not only is the constraint (Equation 2)
non-linear, but also it is unknown. In this section, we present a method that circumvents these
challenges and provides an approximate solution for this problem.

We sidestep the first challenge by using the upper bound of the objective function, Φ(T ). Particularly,
we approximate the minimum of NQ(W ) by first finding the optimal T for Φ(T ) and then calculating
the quantized parameters using Algorithm 1. This optimization problem can be defined as: minimize
Φ(T ) such that if each ωi is perturbed by, at most, τi, the loss constraint of Equation 2 is not violated:

min
T

Φ(T ) (10)

L(W0 + ∆W ) ≤ ` (11)

∀∆W = [∆ω1...∆ωn]T such that ∀i ∈ [1, n] : |∆ωi| ≤ τi (12)

It is important to note that although the upper bound Φ(T ) is smooth over all its domain, it can be
tight only when ∀i ∈ [1, n] : τi = 2−k, k ∈ N. This difference between the objective function and
Φ(T ) means that it is possible to iteratively reduce NQ(W ) by repeating the steps of the indirect
method, described above, and improve our approximation of the optimal quantization.

Such an iterative algorithm would also help address the second challenge. Specifically, it allows
us to use a simple model of the loss function (e.g. a linear or quadratic model) as a stand-in for
our complex loss function. If in some iteration of the algorithm the model is inaccurate, it can be
adjusted in the following iteration. In our optimization algorithm, we will use a linear bound of the
loss function and adopt a Trust Region method to monitor its accuracy.

Trust region optimization methods iteratively optimize an approximation of the objective function. In
order to guarantee the accuracy of this approximation, they further define a neighborhood around
each point in the domain, called a trust region, inside which the model is a "sufficiently good"
approximation of the objective function. The quality of the approximation is evaluated each iteration
and the size of the trust region is updated accordingly. In our algorithm we adopt a similar technique,
but apply it to the constraint instead of the objective function.
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Lemma 2.2. We refer to m` : Rn → R as an accurate estimation of L(W ) in a subdomain of L
like D ⊂ Rn, if:

∀W ∈ D : m`(W ) ≤ `⇒ L(W ) ≤ ` (13)

Now, let the radius ∆ specify a spherical trust region around the point W0 where the loss function L
is accurately estimated by its first-order Taylor series expansion. Then, the constraint of Equation 16,
when ‖T‖2 ≤ ∆, is equivalent to:

m`(T ) = L(W0) +GTT ≤ ` (14)

Where G = [g1...gn]T and gi = |[∇WL(W0)]i|,∀i ∈ [1, n].

Proof. Since ‖T‖2 ≤ ∆, then for ∆W as defined in Equation 12, W0 + ∆W ∈ D. Therefore, we
can write:

L(W0) +∇WL(W0)T∆W ≤ L(W0) +GTT = m`(T ) ≤ `⇒ L(W0 + ∆W ) ≤ ` (15)

We note that we did not make any assumptions regarding the point W0 and the result can be extended
to any point inRn. Consequently, if we define such a trust region, we can simply use the following
problem as a subproblem that we repeatedly solve in successive iterations. We will present the
solution for this subproblem in the next section.

min
T

Φ(T ) (16)

m`(T ) ≤ ` (17)

Algorithm 2 summarizes the proposed method of solving the original optimization problem (Equation
1). This algorithm first initializes the initial trust region radius ∆0 and the loss function bound `. It
also quantizes the input floating-point parameters W0 with 32 bits to generate the initial quantized
parameters W 0. Here the function Quantize(.,.) refers to a pass of Algorithm 1 over all parameters.
Thus, using 0 tolerance results in quantization with 32 bits.

Subsequently, Algorithm 2 iteratively solves the subproblem of Equation 16 and calculates the
quantized parameters. In iteration k, if the loss function corresponding to the quantized parameters
W k violates the loss bound of Equation 2, it means that the linear estimation was inaccurate over the
trust region. Thus, we reduce ∆k in the following iteration and solve the subproblem over a smaller
trust region. In this case, the calculated quantized parameters are rejected. Otherwise, we update the
parameters and enlarge the trust region. But we also make sure that the trust region radius does not
grow past an upper bound like ∆.

We use two measures to examine convergence of the solution: the loss function and the trust region
radius. We declare convergence, if the loss function of the quantized model converges to the loss
bound ` or the trust region radius becomes very small, indicated by values ε and η, respectively. Note
that the protocol to update the trust region radius as well as the trust region convergence condition
used in this algorithm are commonly used in trust region methods.
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Algorithm 2 Adaptive Quantization

k ← 0

Initialize ∆0,∆, and `
W 0 = Quantize(W0, 0)

while `− L(W k) ≥ ε and ∆k ≥ η do
Define Gk = [gk1 ...g

k
n]T for gki = |[∇WL(W k)]i|

Define mk
` (T ) = L(W k) +Gk

T

T

Find T k by solving the Trust Region Subproblem (Equation 16) with m`(T ) = mk
` (T )

following section 2.3
W̃ = Quantize(W k, T k)

if L(W̃ ) ≤ ` then
W k+1 ← W̃

∆k+1 ← min(2∆k,∆)

else
∆k+1 ← 1

2∆k

end if
k ← k + 1

end while

2.3 TRUST REGION SUBPROBLEM

In each iteration k, we can directly solve the subproblem of Equation 16 by writing its KKT
conditions:

∇Φ + ψk∇mk
` = 0 (18)

ψk(mk
` − `) = 0 (19)

The gradient of the objective function, ∇Φ = − 1
ln 2 [ 1

τ1
... 1
τn

] cannot be zero. Hence, ψk > 0 and
mk
` − ` = 0. We can use this to calculate T k, the solution of the subproblem.

∇Φ + ψk∇mk
` = 0⇒ ∀i ∈ [1, n] : − 1

τki ln 2
+ ψkgki = 0⇒ ∀i ∈ [1, n] : τki g

k
i =

1

ψk ln 2
(20)

⇒ Gk
T

T k =
n

ψk ln 2
(21)

Therefore, we can write:

mk
` − ` = 0⇒ L(W k) +

n

ψk ln 2
− ` = 0⇒ n

ψk ln 2
=
`− L(W k)

n
(22)

⇒ ∀i ∈ [1, n] : τki =
`− L(W k)

ngki
(23)

If the resulting tolerance vector ‖T k‖2 > ∆k, we scale T k so that its norm would be equal to ∆k.

This solution is correct only when gki > 0 for all i. It is possible, however, that there exists some i for
which gki = 0. In this case, we use the following equation to calculate the solution T k.

τki =

{
`−L(Wk)

ngki
gki > 0

|ωki | gki = 0
(24)

We treat singular points this way for three reasons. First, a gradient of zero with respect to ωki means
that the loss is not sensitive to parameter values. Thus, it might be possible to eliminate it quickly.
Second, this insensitivity of the loss L to ωki means that large deviations in the parameter value would
not significantly affect L. Finally, setting the value of τki to a large value relative to other tolerances
reduces their values after normalization to the trust region radius. Thus, the effect of a singularity on
other parameters is reduced.
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2.4 CHOOSING THE HYPER-PARAMETERS

The hyper-parameters, ∆, and `, determine the speed of convergence and the final classification
accuracy. Smaller trust regions result in slower convergence, while larger trust regions produce higher
error rates. For ∆, since remaining values could ultimately be represented by 0 bits (pruned), we
choose 20

√
n. Similarly, the higher the loss bound `, the lower the accuracy, while small values of

loss bound prevent effective model size reduction. We choose this value in our algorithm on the
fly. That is, we start off by conservatively choosing a small value for ` (e.g. ` = L(W0)) and then
increase it every time Algorithm 2 converges. Algorithm 3 provides the details of this process. At the
beginning the loss bound is chosen to be the loss of the floating-point trained model. After quantizing
the model using this bound, the bound value is increased by Scale. These steps are repeated Steps
times. In our experiments in the next section Scale and Steps are set to 1.1 and 20, respectively.

Algorithm 3 Choosing hyper-parameters

Initialize Steps and Scale
`← L(W0)

while Steps > 0 do
Quantize model using Algorithm 2.
Steps← Steps− 1

`← ` ∗ Scale
end while

3 EVALUATION AND DISCUSSION

We evaluate adaptive quantization on three popular image classification benchmarks. For each,
we first train a neural network in the floating-point domain, and then apply a pass of algorithm
3 to compress the trained model. In both these steps, we use the same batchsize to calculate the
gradients and update the parameters. To further reduce the model size, we tune the accuracy of the
quantized model in the floating-point domain and quantize the tuned model by reapplying a pass of
algorithm 3. For each benchmark, we repeat this process three times, and experimentally show that
this produces the smallest model. In the end we evaluate the accuracy and the size of the quantized
models. Specifically, we determine the overall number of bits (quantization bits and the sign bits),
and evaluate how much reduction in the model size has been achieved.

We note that it is also important to evaluate the potential overheads of bookkeeping for the quantization
widths. However, we should keep in mind that bookkeeping has an intricate relationship with the
target hardware, which may lead to radically different results on different hardware platforms. For
example, our experiments show that on specialized hardware, such as the one designed by Albericio
et al. (2017) for processing variable bit-width CNN, we can fully offset all bookkeeping overheads
of storing quantization depths, while CPU/GPU may require up to 60% additional storage. We
will study this complex relationship separately, in our future work, and in the context of hardware
implementation. In this paper, we limit the scope to algorithm analysis, independent of the underlying
hardware architecture.

3.1 BENCHMARKS

We use MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky & Hinton, 2009), and SVHN (Netzer
et al., 2011) benchmarks in our experiments. MNIST is a small dataset containing 28× 28 images of
handwritten digits from 0 to 9. For this dataset, we use the LeNet-5 network (Lecun et al., 1998). For
both CIFAR-10, a dataset of 32× 32 images from 10 object classes, and SVHN, a large dataset of
32× 32 real-world images of digits, we employ the same organization of convolution layers and fully
connected layers as networks used in BNN (Courbariaux & Bengio, 2016). These networks are based
on VGG (Simonyan & Zisserman, 2014) but have parameters in full precision. The only difference is
that in the case of CIFAR-10, we use 4096 neurons instead of the 1024 neurons used in BNN, and we
do not use batch normalization layers. We train these models using a Cross entropy loss function. For
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CIFAR-10, we also add an L2 regularization term. Table 1 shows the specifications of the baseline
trained models.

Table 1: Baseline models

Dataset Model Model Size Error Rate

MNIST LeNet-5 (Lecun et al., 1998) 12Mb 0.65%

CIFAR-10 (Courbariaux & Bengio, 2016) 612Mb 9.08%

SVHN (Courbariaux & Bengio, 2016) 110Mb 7.26%

3.2 EXECUTION TIME

The key contributors to the computational load of the proposed technique are back propagation (to
calculate gradients) and quantization (Algorithm 2). Both these operations can be completed in
O(n) complexity. We implement the proposed quantization on Intel Core i7 CPU (3.5 GHz) with
Titan X GPU performing training and quantization. The timing results of the algorithm have been
summarized in Table 2.

Table 2: Timing results for training and quantization of the benchmark models in seconds

Dataset Training Quantization

MNIST 120 300

CIFAR-10 4560 4320

SVHN 1920 2580

3.3 QUANTIZATION RESULTS

We evaluate the performance of the quantization algorithm by analyzing the compression rate of
the models and their respective error rates after each pass of quantization excluding retraining. As
discussed in section 2, the quantization algorithm will try to reduce parameter precisions while
maintaining a minimum classification accuracy. Here we present the results of these experiments.

Figure 1a depicts the error rate of LeNet trained on the MNIST dataset as it is compressed through
three passes of adaptive quantization and retraining. As this figure shows, the second and third passes
tend to have smaller error rates compared to the first pass. But, at the end of the second pass the
error rate is higher than the first one. This can be improved by increasing the number of epochs for
retraining or choosing a lower cost bound (`). By the end of the third pass, the highest compression
rate is achieved. However, due to its small difference in compression rate compared to its preceding
pass, we do not expect to achieve more improvements by continuing the retraining process.

We also evaluate the convergence speed of the algorithm by measuring the compression rate (1−
size of quantized model
size of original model ) of the model after each iteration of the loop in Algorithm 2. The results of this

experiment for one pass of quantization of Algorithm 3 have been depicted in Figure 1b. As shown
in the figure, the size of the model is reduced quickly during the initial iterations. This portion
of the experiment corresponds to the part of Figure 1a where the error rate is constant. However,
as quantization continues, the model experiences diminishing returns in size reduction. After 25
iterations, little reduction in model size is achieved. The lower density of data points, past this point,
is due to the generated steps failing the test on the upper bound on the loss function in Algorithm 2.
Consequently, the algorithm reduces the trust region size and recalculates the tolerance steps.
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(a) Error rate increases as the model is compressed
when retraining is applied

(b) Convergence of quantization. Iterations refers to
iterations of the loop in algorithm 2.

Figure 1: Quantization of LeNet-5 model trained on MNIST dataset

4 COMPARISON WITH RELATED APPROACHES

The generality of the proposed technique makes it adaptable to other model compression techniques.
In this section, we review some of the most notable of these techniques and examine the relationship
between their approaches and ours. Specifically, we will explain how the proposed approach subsumes
previous ones and how it can be specialized to implement them in an improved way.

Pruning: In pruning, small model parameters in a trained network are set to zero, which means that
their corresponding connections are eliminated from the network. Han et al. (2015) showed that by
using pruning, the number of connections in the network can be reduced substantially. Adaptive
Quantization confirms similar observations, that in a DNN most parameters can be eliminated. In fact,
Adaptive Quantization eliminates 5.6×, 5.6×, and 5.3× of the parameters in the networks trained
for MNIST, CFAR, and SVHN, respectively. These elimination rates are lower compared to their
corresponding values achieved by Deep Compression. The reason for this difference is that Deep
Compression amortizes for the loss of accuracy due to pruning of a large number of parameters
by using full precision in the remaining ones. In contrast, Adaptive Quantization eliminates fewer
parameters and instead quantizes the remaining ones.

While Adaptive Quantization identifies connections that can be eliminated automatically, Deep
Compression identifies them by setting parameters below a certain threshold to zero. However, this
technique might not be suitable in some cases. For an example, we consider the network model
trained for CIFAR-10. This network has been trained using L2 regularization, which helps avoid
overfitting. As a result, the trained model has a large population of small-value parameters. Looking
at Figure 2a, which shows the distribution of parameter values in the CIFAR-10 model, we see that
most populate a small range around zero. Such cases can make choosing a good threshold for pruning
difficult.

Weight Sharing: The goal of weight-sharing is to create a small dictionary of parameters (weights).
The parameters are grouped into bins whose members will all have the same value. Therefore,
instead of storing parameters themselves, we can replace them with their indexes in the dictionary.
Deep Compression (Han et al., 2015) implements weight-sharing by applying k-means clustering to
trained network parameters. Similarly, Samragh et al. (2017) implement weight sharing by iteratively
applying k-means clustering and retraining in order to find the best dictionary . In both of these
works, the number of dictionary entries are fixed in advance. Adaptive Quantization, on the other
hand, produces the bins as a byproduct and does not make assumptions on the total number of bins.

Deep Compression also identifies that the accuracy of the network is less sensitive to the fully
connected layers compared to the convolution layers. Because of that, it allocates a smaller dictionary
for storing them. Looking at Figure 2b and Figure 2c, we can see that results of Adaptive Quantization
are consistent with this observation. These figures show the distribution of quantization widths for one
convolution layer and one fully connected layer in the quantized CIFAR-10 network. It is clear from
these figures that parameters in the fully connected layer, on average require smaller quantization
widths.

Binarization and Quantization: Binarized Neural Networks (Courbariaux et al., 2015; Courbariaux
& Bengio, 2016) and Quantized Neural Networks (Hubara et al., 2016) can reduce model size by
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(a) Distribution of parameter val-
ues after quantization.

(b) Distribution of quantization
widths in the first convolution
layer.

(c) Distribution of quantization
widths in the first fully connected
layer.

Figure 2: Distributions of parameter values and quantization widths for the CIFAR-10 network.
Pruned parameters have been depicted using a hatch pattern and their populations have been reported
besides their corresponding bars.

(a) MNIST (b) CIFAR-10 (c) SVHN

Figure 3: Trade-off between accuracy and error rate for benchmark datasets. The optimal points
for MNIST, CIFAR-10, and SVHN (highlighted red) achieve 64×, 35×, and 14× compression and
correspond to 0.12%, -0.02%, and 0.7% decrease in accuracy, respectively. BNN-2048, BNN-24096,
BNN-Theano are from (Courbariaux & Bengio, 2016); BinaryConnect is from (Courbariaux et al.,
2015); and Deep Compression is from (Han et al., 2015)

assuming the same quantization precision for all parameters in the network or all parameters in a layer.
In the extreme case of BNNs, parameters are quantized to only 1 bit. In contrast, our experiments
show that through pruning and quantization, the proposed approach quantizes parameters of the
networks for MNIST, CIFAR-10, and SVHN by equivalent of 0.03, 0.27, and 1.3 bits per parameter
with 0.12%, −0.02%, and 0.7% decrease in accuracy, respectively. Thus, our approach produces
competitive quantizations. Furthermore, previous quantization techniques often design quantized
training algorithms to maintain the same parameter precisions throughout training. These techniques
can be slower than full-precision training. In contrast, Adaptive Quantization allows for unique
quantization precisions for each parameter. This way, for a trained model, it can find a notably
smaller network, indicating the limits of quantization. In addition, it does not require quantized
training.

Next, we compare Adaptive Quantization with previous works on compressing neural network models,
in reducing the model size. The results for these comparisons have been presented in Figure 3, which
shows the trade-offs that Adaptive Quantization offers between accuracy and model size. As this
figure shows, Adaptive Quantization in many cases outperforms previous methods and consistently
produces compressions better than or comparable to state-of-the-art. In particular, we mark an optimal
trade-off for each model in Figure 3 (red highlight). In these points, the proposed method achieves
64×, 35×, and 14× compression and correspond to 0.12%, -0.02%, and 0.7% decrease in accuracy,
respectively. This always improves or is comparable to the state-of-the-art of Quantization (BNN
and BinaryConnect) and Pruning and Weight-Sharing (Deep Compression). Below, we discuss these
trade-offs in more details.
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In both MNIST and CIFAR-10, Adaptive Quantization produces curves below the results achieved in
BNN (Courbariaux & Bengio, 2016) and BinaryConnect (Courbariaux et al., 2015), and it shows a
smaller model size while maintaining the same error rate or, equivalently, the same model size with a
smaller error rate. In the case of SVHN, BNN achieves a slightly better result compared to Adaptive
Quantization. This is due in part to the initial error rate of our full-precision model being higher than
the BNN model.

Comparison of Adaptive Quantization against Deep Compression (when pruning is applied) for
MNIST shows some similarity between the two techniques, although deep compression achieves
a slightly smaller error rate for the same model size. This difference stems from the different
approaches of the two techniques. First, Deep Compression uses full-precision, floating-point
parameters while Adaptive Quantization uses fixed-point quantized parameters which reduce the
computational complexity (fixed-point operation vs. floating-point operation). Second, after pruning
the network, Deep Compression performs a complete retraining of the network. In contrast, Adaptive
Quantization performs little retraining.

Furthermore, Adaptive Quantization can be used to identify groups of parameters that need to
be represented in high-precision formats. In a more general sense, the flexibility of Adaptive
Quantization allows it to be specialized for more constrained forms of quantization. For example,
if the quantization requires that all parameters in the same layer have the same quantization width,
Adaptive Quantization could find the best model. This could be implemented by solving the same
minimization problem as in Equation 16, except the length of T would be equal to the number of
layers. In such a case, Gk in Algorithm 2 will be defined as Gk = [gk1 ...g

k
m]T assuming a total of m

layers where gki would be
∑
j∈Ji |

∂L
∂ωj

(W k)|, and Ji the set of parameter indexes belonging to layer
i. Then, each of the resulting m tolerance values of the subproblem of section 2.3 will be applied to
all parameters of one layer. The rest of the solution would be the same.

5 CONCLUSION

In this work, we quantize neural network models such that only parameters critical to the accuracy are
represented with high precision. The goal is to minimize data movement and simplify computations
needed for inference in order to accelerate implementations on resource constrained hardware.
To achieve acceleration, the proposed technique prunes unnecessary parameters or reduces their
precisions. Combined with existing fixed-point computation techniques such as SWAR (Cameron &
Lin, 2009) or Bit-pragmatic computation (Albericio et al., 2017), we expect these small fixed-point
models to achieve fast inference with high accuracies. We have confirmed the effectiveness of this
technique through experiments on several benchmarks. Through this technique, our experiments
show, DNN model sizes can be reduced significantly without loss of accuracy. The resulting models
are significantly smaller than state-of-the-art quantization technique. Furthermore, the proposed
Adaptive Quantization can provide similar results to floating-point model compression techniques.

6 ACKNOWLEDGMENTS

We would like to express our gratitude to Professor Stephen J. Wright, Professor Jerry Zhu, and
Professor Dimitris Papailiopoulos from UW-Madison for their helpful discussions throughout the
process of writing this paper. We also want to thank Yue Zha for helping improve the writing quality
of the manuscript.

REFERENCES

Jorge Albericio, Alberto Delmás, Patrick Judd, Sayeh Sharify, Gerard O’Leary, Roman Genov, and
Andreas Moshovos. Bit-pragmatic deep neural network computing. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-50 ’17, pp. 382–394,
New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4952-9. doi: 10.1145/3123939.3123982.
URL http://doi.acm.org/10.1145/3123939.3123982.

Robert D. Cameron and Dan Lin. Architectural support for swar text processing with parallel
bit streams: The inductive doubling principle. SIGPLAN Not., 44(3):337–348, March 2009.

11

http://doi.acm.org/10.1145/3123939.3123982


Published as a conference paper at ICLR 2018

ISSN 0362-1340. doi: 10.1145/1508284.1508283. URL http://doi.acm.org/10.1145/
1508284.1508283.

Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep neural networks with weights
and activations constrained to +1 or -1. CoRR, abs/1602.02830, 2016. URL http://arxiv.
org/abs/1602.02830.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. CoRR, abs/1511.00363, 2015. URL
http://arxiv.org/abs/1511.00363.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz, and John Makhoul.
Fast and robust neural network joint models for statistical machine translation. In In Proceedings
of ACL2014, pp. 1370–1380, 2014.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149, 2015. URL
http://arxiv.org/abs/1510.00149.

Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian Kingsbury. Deep
neural networks for acoustic modeling in speech recognition: The shared views of four research
groups. IEEE Signal Processing Magazine, 29(6):82–97, Nov 2012. ISSN 1053-5888. doi:
10.1109/MSP.2012.2205597.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks.
CoRR, abs/1608.06993, 2016. URL http://arxiv.org/abs/1608.06993.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
neural networks: Training neural networks with low precision weights and activations. CoRR,
abs/1609.07061, 2016. URL http://arxiv.org/abs/1609.07061.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Master’s thesis, Department of Computer Science, University of Toronto, 4 2009.

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998. ISSN 0018-9219.
doi: 10.1109/5.726791.

Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten digits,
1998. URL http://yann.lecun.com.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning
and unsupervised feature learning, volume 2011, pp. 5, 2011.

Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi Tang,
Ningyi Xu, Sen Song, Yu Wang, and Huazhong Yang. Going deeper with embedded fpga
platform for convolutional neural network. In Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’16, pp. 26–35, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-3856-1. doi: 10.1145/2847263.2847265. URL http://doi.
acm.org/10.1145/2847263.2847265.

Mohammad Samragh, Mohammad Ghasemzadeh, and Farinaz Koushanfar. Customizing neural
networks for efficient fpga implementation. In 2017 IEEE 25th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pp. 85–92, April 2017. doi:
10.1109/FCCM.2017.43.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014. URL http://arxiv.org/abs/1409.1556.

12

http://doi.acm.org/10.1145/1508284.1508283
http://doi.acm.org/10.1145/1508284.1508283
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1511.00363
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1609.07061
http://yann.lecun.com
http://doi.acm.org/10.1145/2847263.2847265
http://doi.acm.org/10.1145/2847263.2847265
http://arxiv.org/abs/1409.1556


Published as a conference paper at ICLR 2018

Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma, Sarma Vrudhula,
Jae-sun Seo, and Yu Cao. Throughput-optimized opencl-based fpga accelerator for large-scale
convolutional neural networks. In Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, FPGA ’16, pp. 16–25, New York, NY, USA, 2016. ACM.
ISBN 978-1-4503-3856-1. doi: 10.1145/2847263.2847276. URL http://doi.acm.org/10.
1145/2847263.2847276.

Liang Zhao, Siyu Liao, Yanzhi Wang, Jian Tang, and Bo Yuan. Theoretical properties for neural
networks with weight matrices of low displacement rank. CoRR, abs/1703.00144, 2017. URL
http://arxiv.org/abs/1703.00144.

Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients. CoRR, abs/1606.06160,
2016. URL http://arxiv.org/abs/1606.06160.

13

http://doi.acm.org/10.1145/2847263.2847276
http://doi.acm.org/10.1145/2847263.2847276
http://arxiv.org/abs/1703.00144
http://arxiv.org/abs/1606.06160

	Introduction
	Proposed Quantization Algorithm
	Problem Definition
	Solving the Optimization Problem
	Trust Region Subproblem
	Choosing the Hyper-parameters

	Evaluation and Discussion
	Benchmarks
	Execution Time
	Quantization Results

	Comparison with Related Approaches
	Conclusion
	Acknowledgments

