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Abstract

The backpropagation of error algorithm (BP) is
often said to be impossible to implement in a
real brain. The recent success of deep networks
in machine learning and AI, however, has in-
spired proposals for understanding how the brain
might learn across multiple layers, and hence
how it might implement or approximate BP. As
of yet, none of these proposals have been rigor-
ously evaluated on tasks where BP-guided deep
learning has proved critical, or in architectures
more structured than simple fully-connected net-
works. Here we present the first results on scaling
up biologically motivated models of deep learn-
ing on datasets which need deep networks with
appropriate architectures to achieve good perfor-
mance. We present results on the MNIST, CIFAR-
10, and ImageNet datasets and explore variants
of target-propagation (TP) and feedback align-
ment (FA) algorithms, and explore performance
in both fully- and locally-connected architectures.
We also introduce weight-transport-free variants
of difference target propagation (DTP) modified
to remove backpropagation from the penultimate
layer. Many of these algorithms perform well for
MNIST, but for CIFAR and ImageNet we find that
TP and FA variants perform significantly worse
than BP, especially for networks composed of lo-
cally connected units, opening questions about
whether new architectures and algorithms are re-
quired to scale these approaches. Our results and
implementation details help establish baselines
for biologically motivated deep learning schemes
going forward.
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1. Introduction
The suitability of the backpropagation of error (BP) algo-
rithm (Rumelhart et al., 1986) for explaining learning in the
brain was questioned soon after it was popularized (Gross-
berg, 1987; Crick, 1989). Weaker objections included un-
desirable characteristics of artificial networks in general,
such as their violation of Dale’s Law, their lack of cell-type
variability, and the need for the gradient signals to be both
positive and negative. More serious objections were: (1)
The need for the feedback connections carrying the gradi-
ent to have the same weights as the corresponding feed-
forward connections and (2) The need for a distinct form
of information propagation (error feedback) that does not
influence neural activity, and hence does not conform to
known biological feedback mechanisms underlying neural
communication. Researchers have long sought biologically
plausible and empirically powerful learning algorithms that
avoid these flaws (Almeida, 1990; Pineda, 1987; 1988; Ack-
ley et al., 1985; O’Reilly, 1996; Xie & Seung, 2003; Hinton
& McClelland, 1988; Körding & König, 2001; Guergiuev
et al., 2016b; Bengio et al., 2015; Lillicrap et al., 2016).
Recent work has demonstrated that the first objection may
not be as problematic as often supposed (Lillicrap et al.,
2014): the feedback alignment (FA) algorithm uses random
weights in backward pathways to successfully deliver error
information to earlier layers. At the same time, FA still
suffers from the second objection: it requires the delivery
of signed error vectors via a distinct pathway.

Another family of promising approaches to biologically
motivated deep learning – such as Contrastive Hebbian
Learning (Movellan, 1991), and Generalized Recircula-
tion (O’Reilly, 1996) – use top-down feedback connections
to influence neural activity, and differences in feedfoward-
driven and feedback-driven activities (or products of activi-
ties) to locally approximate gradients (Ackley et al., 1985;
Pineda, 1988; O’Reilly, 1996; Xie & Seung, 2003; Ben-
gio & Fischer, 2015; Scellier & Bengio, 2017; Whittington
& Bogacz, 2017). Since these activity propagation meth-
ods don’t require explicit propagation of gradients through
the network, they go a long way towards answering the
second serious objection noted above. However, many of
these methods require long “positive” and “negative” set-
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tling phases for computing the activities whose differences
provide the learning signal. Proposals for shortening the
phases (Hinton, 2007; Bengio et al., 2016) are not entirely
satisfactory as they still fundamentally depend on a settling
process, and, in general, any settling process will likely be
too slow for a brain that needs to quickly compute hidden
activities.

Perhaps the most practical among this family of “activity
propagation” algorithms is target propagation (TP) and its
variants (LeCun, 1986; 1987; Hinton, 2007; Bengio, 2014;
Lee et al., 2015). TP avoids the weight transport problem
by training a distinct set of connections that define the back-
ward activity propagation. These connnections are trained
to approximately invert the computation of the feedforward
connections in order to be able to compute target activities
for each layer by successively inverting the desired output
target. Another appealing property of TP is that the errors
guiding weight updates are computed locally along with
backward activities.

While TP and its variants are promising as biologically-
motivated algorithms, there are lingering questions about
their applicability to the brain. First, the only variant ex-
plored empirically (i.e. DTP) still depends on explicit gradi-
ent computation via backpropagation for learning the penul-
timate layer’s outgoing synaptic weights (see Algorithm
Box 1 in Lee et al. (2015)). Second, they have not been
rigorously tested on datasets more difficult than MNIST.
And third, they have not been incorporated into architec-
tures more complicated than simple multi-layer perceptrons
(MLPs).

On this second point, it might be argued that an algorithm’s
inability to scale to difficult machine learning datasets is a
red herring when assessing whether it could help us under-
stand learning in the brain. Performance on isolated machine
learning tasks using a model that lacks other adaptive neural
phenomena – e.g., varieties of plasticity, evolutionary priors,
etc. – makes a statement about the lack of these phenom-
ena as much as it does about the suitability of an algorithm.
Nonetheless, we argue that there is a need for behavioural
realism, in addition to physiological realism, when gathering
evidence to assess the overall biological realism of a learn-
ing algorithm. Given that human beings are able to learn
complex tasks that bear little relationship to their evolution,
it would appear that the brain possesses a powerful, general-
purpose learning algorithm for shaping behavior. As such,
researchers can, and should, seek learning algorithms that
are both more plausible physiologically, and scale up to the
sorts of complex tasks that humans are capable of learning.
Augmenting a model with adaptive capabilities is unlikely to
unveil any truths about the brain if the model’s performance
is crippled by an insufficiently powerful learning algorithm.
On the other hand, demonstrating good performance with

even a vanilla artificial neural network provides evidence
that, at the very least, the learning algorithm is not limiting.
Ultimately, we need a confluence of evidence for: (1) the
sufficiency of a learning algorithm, (2) the impact of bio-
logical constraints in a network, and (3) the necessity of
other adaptive neural capabilities. This paper focuses on
addressing the first two.

In this work our contribution is threefold: (1) We exam-
ine the learning and performance of biologically-motivated
algorithms on MNIST, CIFAR, and ImageNet. (2) We in-
troduce variants of DTP which eliminate significant linger-
ing biologically implausible features from the algorithm.
(3) We investigate the role of weight-sharing convolutions,
which are key to performance on difficult datasets in artifi-
cial neural networks, by testing the effectiveness of locally
connected architectures trained with BP and variants of FA
and TP.

Overall, our results are largely negative. That is, we find
that none of the tested algorithms are capable of effectively
scaling up to training large networks on ImageNet. There
are three possible interpretations from these results: (1)
Existing algorithms need to be modified, added to, and/or
optimized to account for learning in the real brain, (2) re-
search should continue into new physiologically realistic
learning algorithms that can scale-up, or (3) we need to ap-
peal to other adaptive capacities to account for the fact that
humans are able to perform well on this task. Ultimately,
our negative results are important because they demonstrate
the need for continued work to understand the power of
learning in the human brain. More broadly, we suggest that
behavioural realism, as judged by performance on difficult
tasks, should increasingly become one of the metrics used in
evaluating the biological realism of computational models
and algorithms.

2. Learning in Multilayer Networks
Consider the case of a feed-forward neural network with
L layers {hl}Ll=1, whose activations hl are computed by
elementwise-applying a non-linear function σl to an affine
transformation of previous layer activations hl−1:

hl = f(hl−1; θl) = σl(Wlhl−1 + bl), θl = {Wl, bl},
(1)

with input to the network denoted as h0 = x and the last
layer hL used as output.

In classification problems the output layer hL parametrizes a
predicted distribution over possible labels p(y|hL), usually
using the softmax function. The learning signal is then
provided as a loss L(hL) incurred by making a prediction
for an input x, which in the classification case can be cross-
entropy between the ground-truth label distribution q(y|x)
and the predicted one: L(hL) = −

∑
y q(y|x) log p(y|hL).
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Figure 1. In BP and DTP, the final layer target is used to compute a loss, and the gradients from this loss are shuttled backwards (through
all layers, in BP, or just one layer, in DTP) in error propagation steps that do not influence actual neural activity. SDTP never transports
gradients using error propagation steps, unlike DTP and BP.

The goal of training is then to adjust the parameters Θ =
{θl}Ll=1 in order to minimize a given loss over the training
set of inputs.

2.1. Backpropagation

Backpropagation (Rumelhart et al., 1986) was popularized
as a method for training neural networks by computing
gradients with respect to layer parameters using the chain
rule:

dL
dhl

=

(
dhl+1

dhl

)T
dL
dhl+1

,
dL
dθl

=

(
dhl
dθl

)T
dL
dhl

,

dhl+1

dhl
= Wl+1diag(σ′l+1(Wl+1hl + bl+1)).

Thus, gradients are obtained by first propagating activations
forward to the output layer via eq. 1, and then recursively
applying these backward equations. These equations im-
ply that gradients are propagated backwards through the
network using weights symmetric to their feedforward coun-
terparts. This is biologically problematic because it implies
a mode of information propagation (error propagation) that
does not influence neural activity, and that depends on an
implausible network architecture (symmetric weight con-
nectivity for feedforward and feedback directions, which is
called the weight transport problem).

2.1.1. FEEDBACK ALIGNMENT

While we focus on TP variants in this manuscript, with
the purpose of a more complete experimental study of bio-
logically motivated algorithms, we explore FA as another
baseline. FA replaces the transpose weight matrices in the
backward pass for BP with fixed random connections. Thus,
FA shares features with both target propagation and conven-
tional backpropagation. On the one hand, it alleviates the
weight transport problem by maintaining a separate set of
connections that, under certain conditions, lead to synchro-
nized learning of the network. On the other hand, similar to
backpropagation, FA transports signed error information in
the backward pass, which may be problematic to implement
as a plausible neural computation. We consider both the
classical variant of FA (Lillicrap et al., 2016) with random
feedback weights at each hidden layer, and the recently pro-
posed Direct Feedback Alignment (Nøkland, 2016) (DFA)
or Broadcast Feedback Alignment (Samadi et al., 2017),
which connect feedback from the output layer directly to all
previous layers directly.

2.1.2. TARGET PROPAGATION AND ITS VARIANTS

Unlike backpropagation, where backwards communication
passes on gradients without inducing or altering neural activ-
ity, the backward pass in target propagation (LeCun, 1986;
1987; Bengio, 2014; Lee et al., 2015) takes place in the
same space as the forward-pass neural activity. The back-



Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures

ward induced activities are those that layers should strive to
match so as to produce the target output. After feedforward
propagation given some input, the final output layer hL is
trained directly to minimize the loss L, while all other layers
are trained so as to match their associated targets.

In general, good targets are those that minimize the loss com-
puted in the output layer if they had been realized in feed-
forward propagation. In networks with invertible layers one
could generate such targets by first finding a loss-optimal
output activation ĥL (e.g. the correct label distribution)
and then propagating it back using inverse transformations
ĥl = f−1(ĥl+1; θl+1). Since it is hard to maintain invert-
ibility in a network, approximate inverse transformations (or
decoders) can be learned g(hl+1;λl+1) ≈ f−1(hl+1; θl+1).
Note that this learning obviates the need for symmetric
weight connectivity.

The generic form of target propagation algorithms we con-
sider in this paper can be summarized as a scheduled mini-
mization of two kinds of losses for each layer.

1. Reconstruction or inverse loss

Linv
l (λl) = ‖hl−1 − g(f(hl−1; θl−1);λl)‖22

is used to train the approximate inverse that is
parametrized similarly to the forward computation:
g(hl;λl) = σl(Vlhl + cl), λl = {Vl, cl}, where ac-
tivations hl−1 are assumed to be propagated from the
input. One can imagine other learning rules for the in-
verse, for example, the original DTP algorithm trained
inverses on noise-corrupted versions of activations with
the purpose of improved generalization. The loss is ap-
plied for every layer except the first, since the first layer
does not need to propagate target inverses backwards.

2. Forward loss

Ll(θl) = ‖f(hl; θl)− ĥl+1‖22

penalizes the layer parameters for producing activa-
tions different from their targets. Parameters of the last
layer are trained to minimize the task’s loss L directly.

Under this framework both losses are local and involve only
a single layer’s parameters, and implicit dependencies on
other layer’s parameters are ignored. Variants differ in the
way targets ĥl are computed.

Target propagation “Vanilla” target propagation (TP)
computes targets by propagating the higher layers’ tar-
gets backwards through layer-wise inverses; i.e. ĥl =
g(ĥl+1;λl+1). For traditional categorization tasks the same
1-hot vector in the output will always map back to precisely
the same hidden unit activities in a given layer. Thus, this

kind of naive TP may have difficulties when different in-
stances of the same class have different appearances, since
it will attempt to make their representations identical even
in the early layers. As well, there are no guarantees about
how TP will behave when the inverses are imperfect.

Difference target propagation Both TP and DTP update
the output weights and biases using the standard delta rule,
but this is biologically unproblematic because it does not
require weight transport (O’Reilly, 1996; Lillicrap et al.,
2016). For most other layers in the network, DTP (Lee et al.,
2015) computes targets as

ĥl = g(ĥl+1;λl+1) + [hl − g(hl+1;λl+1)]. (2)

The second term is the error in the reconstruction, which
provides a stabilizing linear correction for imprecise inverse
functions. However, in the original work by Lee et al. (2015)
the penultimate layer target, ĥL−1, was computed using
gradients from the network’s loss, rather than by target
propagation. That is, ĥL−1 = hL−1 − α∂L(hL)

∂hL−1
, rather

than ĥL−1 = hL−1 − g(hL) + g(ĥL). Though not stated
explicitly, this approach was presumably taken to ensure that
the penultimate layer received reasonable and diverse targets
despite the low-dimensional 1-hot targets at the output layer.
When there are a small number of 1-hot targets (e.g. 10
classes), learning a good inverse mapping from these vectors
back to the hidden activity of the penultimate hidden layer
(e.g. 1000 units) might be problematic, since the inverse
mapping cannot provide information that is both useful
and unique to a particular input sample x. Using BP in
the penultimate layer sidesteps this concern, but deviates
from the intent of using these algorithms to avoid gradient
computation and delivery.

Simplified difference target propagation We introduce
SDTP as a simple modification to DTP. In SDTP we
compute the target for the penultimate layer as ĥL−1 =
hL−1 − g(hL) + g(ĥL), where ĥL = argminhL

L(hL), i.e.
the correct label distribution. This completely removes bi-
ologically infeasible gradient communication (and hence
weight-transport) from the algorithm. However, it is not
clear whether targets for the penultimate layer will be di-
verse enough (given low entropy classification targets) or
precise enough (given the inevitable poor performance of
the learned inverse for this layer). The latter is particularly
important if the dimensionality of the penultimate layer is
much larger than the output layer, which is the case for clas-
sification problems with a small number of classes. Hence,
this modification is a non-trivial change that requires em-
pirical investigation. In Section 3 we evaluate SDTP in the
presence of low-entropy targets (classification problems)
and also consider the problem of learning an autoencoder
(for which targets are naturally high-dimensional and di-
verse) in the supplementary material.
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Algorithm 1 Simplified Difference Target Propagation
Propagate activity forward:
for l = 1 to L do
hl ← fl(hl−1; θl)

end for
Compute first target: ĥL ← argminhL

L(hL)
Compute targets for lower layers:
for l = L− 1 to 1 do
ĥl ← hl − g(hl+1;λl+1) + g(ĥl+1;λl+1)

end for
Train inverse function parameters:
for l = L to 2 do

Generate corrupted activity h̃l−1 = hl−1 + ε, ε ∼ N (0, σ2)
Update parameters λl using SGD on loss Linv

l (λl)

Linv
l (λl) = ‖hl−1 − g(f(h̃l−1; θl−1);λl)‖22

end for
Train feedforward function parameters:
for l = 1 to L do

Update parameters θl using SGD on loss Ll(θl)

Ll(θl) = ‖f(hl; θl) − ĥl+1‖22 if l < L, else LL(θL) = L
(task loss)

end for

Auxiliary output SDTP As outlined above, in the context
of 1-hot classification, SDTP produces only weak targets for
the penultimate layer, i.e. one for each possible class label.
To circumvent this problem, we extend SDTP by introducing
a composite structure for the output layer hL = [o, z], where
o is the predicted class distribution on which the loss is
computed and z is an auxiliary output vector that is meant
to provide additional information about activations of the
penultimate layer hL−1. Thus, the inverse computation
g(hL) can be performed conditional on richer information
from the input, not just on the relatively weak information
available in the predicted and actual label.

The auxiliary output z is used to generate targets for penul-
timate layer as follows:

ĥL−1 = hL−1 − gL(o, z;λL) + gL(ô, z;λL), (3)

where o is the predicted class distribution, ô is the correct
class distribution and z produced from hL−1 is used in both
inverse computations. Here gL(ô, z;λL) can be interpreted
as a modification of hL that preserves certain features of the
original hL that can also be classified as ô. Here parameters
λL can be still learned using the usual inverse loss. But pa-
rameters of the forward computation θL−1 used to produce
z are difficult to learn in a way that maximizes their effec-
tiveness for reconstruction without backpropagation. Thus,
we studied a variant that does not require backpropagation:
we simply do not optimize the forward weights for z, so z
is just a set of random features of hL−1.

Parallel and alternating training of inverses In the orig-
inal implementation of DTP1, the authors trained forward
and inverse model parameters by alternating between their
optimizations; in practice they trained one loss for one full
epoch of the training set before switching to training the
other loss. We considered a variant that simply optimizes
both losses in parallel, which seems nominally more plausi-
ble in the brain since both forward and feedback connections
are thought to undergo plasticity changes simultaneously
— though it is possible that a kind of alternating learning
schedule for forward and backward connections could be
tied to wake/sleep cycles.

2.2. Biologically-plausible network architectures

Convolution-based architectures have been critical for
achieving state of the art in image recognition (Krizhevsky
et al., 2012). These architectures are biologically implausi-
ble, however, because of their extensive weight sharing. To
implement convolutions in biology, many neurons would
need to share the values of their weights precisely — a
requirement with no empirical support. In the absence of
weight sharing, the “locally connected” receptive field struc-
ture of convolutional neural networks is in fact very biologi-
cally realistic and may still offer a useful prior. Under this
prior, neurons in the brain could sample from small areas
of visual space, then pool together to create spatial maps of
feature detectors.

On a computer, sharing the weights of locally connected
units greatly reduces the number of free parameters and this
has several beneficial effects on simulations of large neural
nets. It improves generalization and it drastically reduces
both the amount of memory needed to store the parameters
and the amount of communication required between replicas
of the same model running on different subsets of the data
on different processors. From a biological perspective we
are interested in how TP and FA compare with BP without
using weight sharing, so both our BP results and our TP and
FA results are considerably worse than convolutional neural
nets and take far longer to produce. We assess the degree to
which BP-guided learning is enhanced by convolutions, and
not BP per se, by evaluating learning methods (including
BP) on networks with locally connected layers.

3. Experiments
In this section we experimentally evaluate variants of tar-
get propagation, backpropagation, and feedback alignment
(Lillicrap et al., 2016; Nøkland, 2016). We focused our
attention on TP variants. We found all of the variants we ex-
plored to be quite sensitive to the choice of hyperparameters

1https://github.com/donghyunlee/dtp/blob/
master/conti_dtp.py

https://github.com/donghyunlee/dtp/blob/master/conti_dtp.py
https://github.com/donghyunlee/dtp/blob/master/conti_dtp.py
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Table 1. Final errors (%) achieved by different learning methods for fully-connected (FC) and locally-connected (LC) networks on MNIST
and CIFAR. We highlight best and second best results.

(a) MNIST

FC LC
METHOD TRAIN TEST TRAIN TEST

DTP, PARALLEL 0.44 2.86 0.00 1.52
DTP, ALTERNATING 0.00 1.83 0.00 1.46
SDTP, PARALLEL 1.14 3.52 0.00 1.98
SDTP, ALTERNATING 0.00 2.28 0.00 1.90
AO-SDTP, PARALLEL 0.96 2.93 0.00 1.92
AO-SDTP, ALTERNATING 0.00 1.86 0.00 1.91
FA 0.00 1.85 0.00 1.26
DFA 0.85 2.75 0.23 2.05
BP 0.00 1.48 0.00 1.17
BP CONVNET – – 0.00 1.01

(b) CIFAR

FC LC
TRAIN TEST TRAIN TEST

59.45 59.14 28.69 39.47
30.41 42.32 28.54 39.47
51.48 55.32 43.00 46.63
48.65 54.27 40.40 45.66
4.28 47.11 32.67 40.05
0.00 45.40 34.11 40.21
25.62 41.97 17.46 37.44
33.35 47.80 32.74 44.41
28.97 41.32 0.83 32.41

– – 1.39 31.87

and network architecture, especially in the case of locally-
connected networks. With the aim of understanding the
limits of the considered algorithms, we manually searched
for architectures well suited to DTP. Then we fixed these
architectures for BP and FA variants and ran independent
hyperparameter searches for each learning method. For
additional details see Tables 3 and 4 in the Appendix.

For optimization we use Adam (Kingma & Ba, 2014), with
different hyper-parameters for forward and inverse models
in the case of target propagation. All layers are initialized
using the method suggested by Glorot & Bengio (2010). In
all networks we used the hyperbolic tangent as a nonlinearity
between layers as it was previously found to work better
with DTP than ReLUs (Lee et al., 2015).

3.1. MNIST

To compare to previously reported results we began with
the MNIST dataset, consisting of 28 × 28 gray-scale im-
ages of hand-drawn digits. The final performance for all
algorithms is reported in Table 1 and the learning dynamics
are plotted in Figure 4 (see Appendix). Our implementation
of DTP matches the performance of the original work (Lee
et al., 2015). However, all variants of TP performed slightly
worse than BP, with a larger gap for SDTP, which does not
rely on any gradient propagation. Interestingly, alternat-
ing optimization of forward and inverse losses consistently
demonstrates more stable learning and better final perfor-
mance.

3.2. CIFAR-10

CIFAR-10 is a more challenging dataset introduced
by Krizhevsky (2009). It consists of 32× 32 RGB images
of 10 categories of objects in natural scenes. In contrast
to MNIST, classes in CIFAR-10 do not have a “canonical

appearance” such as a “prototypical bird” or “prototypical
truck” as opposed to “prototypical 7” or “prototypical 9”.
This makes them harder to classify with simple template
matching, making depth imperative for achieving good per-
formance. The only prior study of biologically motivated
learning methods applied to this data was carried out by Lee
et al. (2015); this investigation was limited to DTP with
alternating updates and fully connected architectures. Here
we present a more comprehensive evaluation that includes
locally-connected architectures and experiments with an
augmented training set consisting of vertical flips and ran-
dom crops applied to the original images.

Final results can be found in Table 1. Overall, the results on
CIFAR-10 are similar to those obtained on MNIST, though
the gap between TP and backpropagation as well as between
different variants of TP is more prominent. Moreover, while
fully-connected DTP-alternating roughly matched the per-
formance of BP, locally-connected networks presented an
additional challenge for TP, yielding only a minor improve-
ment.

The issue of compatibility with locally-connected layers is
yet to be understood. One possible explanation is that the
inverse computation might benefit from a form that is not
symmetric to the forward computation. We experimented
with more expressive inverses, such as having larger re-
ceptive fields or a fully-connected structure, but these did
not lead to any significant improvements. We leave further
investigation of this question to future work.

As with MNIST, a BP trained convolutional network with
shared weights performed better than its locally-connected
variant. The gap, however, is not large, suggesting that
weight sharing is not necessary for good performance as
long as the learning algorithm is effective.

We hypothesize that the significant gap in performance be-
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Figure 2. Train (dashed) and test (solid) classification errors on CIFAR.

METHOD TOP-1 TOP-5

DTP, PARALLEL 98.34 94.56
SDTP, PARALLEL 99.28 97.15
FA 93.08 82.54
BACKPROPAGATION 71.79 49.54
BACKPROPAGATION, CONVNET 63.93 40.17

Table 2. Test errors on ImageNet.

tween DTP and the gradient-free SDTP on CIFAR-10 is due
to the problems with inverting a low-entropy target in the
output layer. To validate this hypothesis, we ran AO-SDTP
with 512 auxiliary output units and compare its performance
with other variants of TP. Even though the observed results
do not match the performance of DTP, they still present
a large improvement over SDTP. This confirms the impor-
tance of target diversity for learning in TP (see Appendix 5.5
for related experiments) and provides reasonable hope that
future work in this area could further improve the perfor-
mance of SDTP.

Feedback alignment algorithm performed quite well on both
MNIST and CIFAR, struggling only with the LC archi-
tecture on CIFAR. In contrast, DFA appeared to be quite
sensitive to the choice of architecture and our architecture
search was guided by the performance of TP methods. Thus,
the numbers achieved by DFA in our experiments should
be regarded only as a rough approximation of the attainable
performance for the algorithm. In particular, DFA appears
to struggle with the relatively narrow (256 unit) layers used
in the fully-connected MNIST case — see Lillicrap et al.
(2016) Supplementary Information for a possible explana-
tion. Under these conditions, DFA fails to match BP in
performance, and also tends to fall behind DTP and AO-
SDTP, especially on CIFAR.
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Figure 3. Top-1 (solid) and Top-5 (dotted) test errors on ImageNet.

3.3. ImageNet

Finally, we assessed performance of the methods on the
ImageNet dataset (Russakovsky et al., 2015), a large-scale
benchmark that has propelled recent progress in deep learn-
ing. To the best of our knowledge, this is the first empirical
study of biologically-motivated methods and architectures
conducted on a dataset of such scale and difficulty. Im-
ageNet has 1000 object classes appearing in a variety of
natural scenes and captured in high-resolution images (re-
sized to 224× 224).

Final results are reported in Table 2. Unlike MNIST and
CIFAR, on ImageNet all biologically motivated algorithms
performed very poorly relative to BP. A number of factors
could contribute to this result. One factor may be that deeper
networks might require more careful hyperparameter tuning;
for example, different learning rates or amounts of noise
injected for each layer.

A second factor might be a general incompatibility between
the mainstream design choices for convolutional networks
with TP and FA algorithms. Years of research have led to a
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better understanding of efficient architectures, weight initial-
ization, and optimizers for convolutional networks trained
with backpropagation, and perhaps more effort is required
to reach comparable results for biologically motivated algo-
rithms and architectures. Addressing both of these factors
could help improve performance, so it would be premature
to conclude that TP cannot perform adequately on ImageNet.
We can conclude though, that out-of-the-box application of
this class of algorithms does not provide a straightforward
solution to real data on even moderately large networks.

We note that FA demonstrated an improvement over TP, yet
still performed much worse than BP. It was not practically
feasible to run its sibling, DFA, on large networks such
as one we used in our ImageNet experiments. This was
due to the necessity of maintaining a large fully-connected
feedback layer of weights from the output layer to each
intermediate layer. Modern convolutional architectures tend
to have very large activation dimensions, and the require-
ment for linear projections back to all of the neurons in the
network is practically intractable: on a GPU with 16GB
of onboard memory, we encountered out-of-memory errors
when trying to initialize and train these networks using a
Tensorflow implementation. Thus, the DFA algorithm ap-
pears to require either modification or GPUs with more
memory to run with large networks.

4. Discussion
Historically, there has been significant disagreement about
whether BP can tell us anything interesting about learning
in the brain (Crick, 1989; Grossberg, 1987). Indeed, from
the mid 1990s to 2010, work on applying insights from BP
to help understand learning in the brain all but disappeared.
Recent progress in machine learning has prompted a revival
of this debate; where other approaches have failed, deep
networks trained via BP have been key to achieving impres-
sive performance on difficult datasets such as ImageNet. It
is once again natural to wonder whether some approxima-
tion of BP might underlie learning in the brain (Lillicrap
et al., 2014; Bengio et al., 2015). However, none of the algo-
rithms proposed as approximations of BP have been tested
on the datasets that were instrumental in convincing the
machine learning and neuroscience communities to revisit
these questions.

Here we studied TP and FA, and introduced a straightfor-
ward variant of the DTP algorithm that completely removed
gradient propagation and weight transport. We demon-
strated that networks trained with SDTP without any weight
sharing (i.e. weight transport in the backward pass or weight
tying in convolutions) perform much worse than DTP, likely
because of impoverished output targets. We also studied
an approach to rescue performance with SDTP. However,
while some variants of TP and FA came close to matching

the performance of BP on MNIST and CIFAR, all of the
biologically motivated algorithms performed much worse
than BP in the context of ImageNet.

We note that although TP and FA algorithms go a long way
towards biological plausibility, there are still many biologi-
cal constraints that we did not address here. For example,
we’ve set aside the question of spiking neurons entirely to
focus on asking whether variants of TP can scale up to solve
difficult problems at all. The question of spiking networks
is an important one (Samadi et al., 2017; Guergiuev et al.,
2016a; Bengio et al., 2017), but it should nevertheless be
possible to gain algorithmic insight to the brain without
tackling all of the elements of biological complexity simul-
taneously. Similarly, we also ignore Dale’s law in all of our
experiments (Parisien et al., 2008). In general, we’ve aimed
at the simplest models that allow us to address questions
around (1) weight sharing, and (2) the form and function
of feedback communication. However, it is worth noting
that our work here ignores one other significant issue with
respect to the plausibility of feedback communication: BP,
FA, all of the TP variants, and indeed all known activation
propagation algorithms, still require distinct forward and
backward (or “positive” and “negative”) phases. The way in
which forward and backward pathways in the brain interact
is not well characterized, but we’re not aware of existing
evidence that straightforwardly supports distinct phases.

Nevertheless, algorithms that aim to illuminate learning in
cortex should be able to perform well on difficult domains
without relying on any form of weight sharing. Thus, our
results offer a new benchmark for future work looking to
evaluate the effectiveness of biologically plausible algo-
rithms in more powerful architectures and on more difficult
datasets.
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5. Appendix
5.1. SDTP and AO-SDTP algorithm details

In this section, we provide detailed algorithm description
for both SDTP and its extension AO-SDTP which can be
found in Algorithm Box 1 and 2.

In the original DTP algorithm, autoencoder training is done
via a noise-preserving loss. This is a well principled choice
for the algorithm on a computer (Lee et al., 2015), and our
experiments with DTP use this noise-preserving loss. How-
ever, in the brain, autoencoder training would necessarily be
de-noising, since uncontrolled noise is added downstream
of a given layer (e.g. by subsequent spiking activity and
stochastic vesicle release). Therefore, in our experiments
with SDTP and AO-SDTP we use de-noising autoencoder
training.

Algorithm 2 Augmented Output Simplified Difference Tar-
get Propagation

Propagate activity forward:
for l = 1 to L do
hl ← fl(hl−1; θl)

end for
Split network output: [o, z]← hL

Compute first target: ô← argminoL(o)
Compute target for the penultimate layer: ĥL−1 ← hL−1 −
gL(o, z;λL) + gL(ô, z;λL)
Compute targets for lower layers:
for l = L− 2 to 1 do
ĥl ← hl − g(hl+1;λl+1) + g(ĥl+1;λl+1)

end for
Train inverse function parameters:
for l = L to 2 do

Generate corrupted activity h̃l−1 = hl−1 + ε, ε ∼ N (0, σ2)
Update parameters λl using SGD on loss Linv

l (λl)

Linv
l (λl) = ‖hl−1 − g(f(h̃l−1; θl−1);λl)‖22

end for
Train feedforward function parameters:
for l = 1 to L do

Update parameters θl using SGD on loss Ll(θl)

Ll(θl) = ‖f(hl; θl) − ĥl+1‖22 if l < L, else LL(θL) = L
(task loss)

end for

5.2. Architecture details for all experiments

In this section we provide details on the architectures used
across all experiments. The detailed specifications can be
found in Table 3.

All locally-connected architectures consist of a stack of
locally-connected layers (each specified by: receptive field
size, number of output channels, stride), followed by one
or more fully-connected layers and an output softmax layer.
All locally-connected layers use zero padding to ensure
unchanged shape of the output with stride = 1. One of our
general empirical findings was that pooling operations are

not very compatible with TP and are better to be replaced
with strided locally-connected layers.

The locally-connected architecture used for the ImageNet
experiment was inspired by the ImageNet architecture used
in (Springenberg et al., 2014). Unfortunately, the naive re-
placement of convolutional layers with locally-connected
layers would result in a computationally-prohibitive archi-
tecture, so we decreased number of output channels in the
layers and also removed layers with 1× 1 filters. We also
slightly decreased filters in the first layer, from 11× 11 to
9 × 9. Finally, as in the CIFAR experiments, we replaced
all pooling operations with strided locally-connected layers
and completely removed the spatial averaging in the last
layer that we previously found problematic when learning
with TP.

5.3. Details of hyperparameter optimization

For DTP and SDTP we optimized over parameters of the
model and inverse Adam optimizers, learning rate α used to
compute targets for hL−1 in DTP, and the Gaussian noise
magnitude σ used to train inverses. For backprop we op-
timized only the model Adam optimizer parameters. For
all experiments the best hyperparameters were found by
random searches over 60 random configurations drawn from
the relevant ranges specified in table 4.

5.4. Implementation details for locally-connected
architectures

Although locally-connected layers can be seen as a simple
generalization of convolution layers, their implementation is
not entirely straightforward. First, a locally-connected layer
has many more trainable parameters than a convolutional
layer with an equivalent specification (i.e. receptive field
size, stride and number of output channels). This means that
a simple replacement of every convolutional layer with a
locally-connected layer can be computationally prohibitive
for larger networks. Thus, for large networks, one has to
decrease the number of parameters in some way to run exper-
iments using a reasonable amount of memory and compute.
In our experiments we opted to decrease the number of
output channels in each layer by a given factor. Obviously,
this can have a negative effect on the resulting performance
and more work needs to be done to scale locally-connected
architectures.

Inverse operations When training locally-connected lay-
ers with target propagation, one also needs to implement the
inverse computation in order to train the feedback weights.
As in fully-connected layers, the forward computation imple-
mented by both locally-connected and convolutional layers
can be seen as a linear transformation y = Wx+ b, where
the matrixW has a special, sparse structure (i.e., has a block
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Figure 4. Train (dashed) and test (solid) classification errors on MNIST.

DATASET FULLY-CONNECTED NETWORK LOCALLY-CONNECTED NETWORK

MNIST

FC 256
FC 256
FC 256
FC 256
FC 256

Softmax 10

(3× 3, 32, 2)
(3× 3, 64, 2)

FC 1024
Softmax 10

CIFAR

FC 1024
FC 1024
FC 1024

Softmax 10

(5× 5, 64, 2)
(5× 5, 128, 2)
(3× 3, 256)

FC 1024
Softmax 10

IMAGENET –

(9× 9, 48, 4)
(3× 3, 48, 2)
(5× 5, 96, 1)
(3× 3, 96, 2)
(3× 3, 192, 1)
(3× 3, 192, 2)
(3× 3, 384, 1)
Softmax 1000

Table 3. Architecture specification. The format for locally-connected layers is (kernel size, number of output channels, stride).

Table 4. Hyperparameter search space used for the experiments
HYPERPARAMETER SEARCH DOMAIN

Learning rate of model Adam optimizer [10−5; 3× 10−4]
β1 parameter of model Adam optimizer Fixed to 0.9
β2 parameter of model Adam optimizer {0.99, 0.999}
ε parameter of model Adam optimizer {10−4, 10−6, 10−8}

Learning rate of inverse Adam optimizer [10−5; 3× 10−4]
β1 parameter of inverse Adam optimizer Fixed to 0.9
β2 parameter of inverse Adam optimizer {0.99, 0.999}
ε parameter of inverse Adam optimizer {10−4, 10−6, 10−8}

Learning rate α used to compute targets for hL−1 in DTP [0.01; 0.2]
Gaussian noise magnitude σ used to train inverses [0.01; 0.3]
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of non-zero elements, and zero-elements elsewhere), and
the dimensionality of y is not more than x.

The inverse operation requires computation of the form
x = V y + c, where matrix V has the same sparse structure
as WT . However, given this sparsity of V , computing the
inverse of y using V would be highly inefficient (Dumoulin
& Visin, 2016). We instead use an implementation trick
often used in deconvolutional architectures. First, we define
a forward computation z = Ax, where z and A are dummy
activities and weights. We then define a transpose matrix as
the gradient of this feedforward operation:

V = AT =

(
dz

dx

)T

,

and thus

x = V y + c =

(
dz

dx

)T

y + c.

The gradient dz
dx (and its multiplication with y) can be very

quickly computed by the means of automatic differentiation
in many popular deep learning frameworks. Note that this is
strictly an implementation detail and does not introduce any
additional use of gradients or weight sharing in learning.

5.5. Autoencoding and target diversity

Since one of the main limitations of SDTP is target diversity
for the penultimate layer, it may be instructive to compare
different learning methods on a task that involves rich output
targets. A natural choice for such a task is learning an
autoencoder with the reconstruction error as a loss.

We set a simple fully-connected architecture for the autoen-
coder of the following structure 28 × 28 − 512 − 64 −
512− 28× 28 and trained it on MNIST using squared L2

reconstruction error. The training curves can be found in
Figure 5. SDTP still demonstrated a tendency to underfit,
and did not match performance of DTP and backpropaga-
tion. But, visual inspection of reconstructions on the test
set of MNIST did not show a significant difference in the
quality of reconstructions (see Figure 6), which supports
the hypothesized importance of target diversity for SDTP
performance.

5.6. Backpropagation is a special case of target
propagation

Even though difference target propagation is usually op-
posed to back-propagation, it is interesting that these pro-
cedures have a similar functional form. One can ask the
following question: that should the targets be in order to
make minimization of the learning loss be equivalent to a
back-propagation update?

More formally, we want to solve the following equation for

0 100 200 300 400 500
Epoch

0.005

0.010

0.015

0.020

R
e
co

n
st

ru
ct

io
n
 e

rr
o
r

DTP parallel

SDTP parallel

BP

Figure 5. Train (solid) and test (dashed) reconstruction errors on
MNIST.

ĥl:
d

dθl

Ll

2
=

d

dθl
L.

Here we divided the learning loss by 2 for simplicity of fur-
ther calculations. Transforming both sides of the equation,
we obtain

dhl
dθl

(hl − ĥl) =
dhl
dθl

dLy

dhl
,

from where it follows that

dLy

dhl
= hl − ĥl and ĥl = hl −

dLy

dhl
.

We now expand the latter equation to express ĥl through
ĥl+1:

ĥl = hl −
dhl+1

dhl

dLy

dhl+1
= hl −

dhl+1

dhl
(hl+1 − ĥl+1).

Finally, if we define g(h̃l+1) = gbp(h̃l+1) = dhl+1

dhl
h̃l+1,

then we obtain exactly the equation in section 2.1.

The question is whether this functional similarity is nothing
more than a coincidence or it actually matters and can be
used to think about other learning algorithms of the similar
form. For example, one can imagine an algorithm that uses
hybrid targets, e.g. computed using a convex combination
of the differential and the pseudo-inverse g-functions:

g(h̃l+1) = αgbp(h̃l+1) + (1− α)gtp(h̃l+1), 0 ≤ α ≤ 1.

Continuing the analogy between these two methods, is it
possible that the inverse loss can be a useful regularizer
when used with gbp? Practically that would mean that we
want to regularize parameters of the forward computation
f indirectly through its derivative. Interestingly, in the one-
dimensional case (where hl and f(hl) are scalars) the loss
is minimized by f(hl) = ±

√
h2l + b.
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Figure 6. MNIST reconstructions obtained by different learning methods. Even though SDTP produces more artifacts, the visual quality
is comparable due to the presence of diverse targets.


